• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
YANG F Q, LI T C, FENG H K, et al. UAV Digital Image-assisted Monitoring on Nitrogen Nutrition of Winter Wheat in the Field [J]. Fujian Journal of Agricultural Sciences,2021,36(3):369−378. DOI: 10.19303/j.issn.1008-0384.2021.03.016
Citation: YANG F Q, LI T C, FENG H K, et al. UAV Digital Image-assisted Monitoring on Nitrogen Nutrition of Winter Wheat in the Field [J]. Fujian Journal of Agricultural Sciences,2021,36(3):369−378. DOI: 10.19303/j.issn.1008-0384.2021.03.016

UAV Digital Image-assisted Monitoring on Nitrogen Nutrition of Winter Wheat in the Field

More Information
  • Received Date: June 14, 2020
  • Revised Date: October 28, 2020
  • Available Online: April 19, 2021
  •   Objective  Utilization of digital images taken by unmanned aerial vehicle (UAV) to quickly and accurately monitor the nitrogen nutrition of winter wheat crops in the field for fertilization management was explored.
      Method  The digital images of field winter wheat at flagging and flowering stages obtained by camera on a UAV along with the agronomic information of the crop on the ground were collected. A correlation analysis on the data was conducted, and the variance inflation factors integrated for index selection. The selected indices sensitive to the variations of nitrogen nutrition indicators (NNIs) and free of co-linearity among themselves were employed to develop a mathematic model on nitrogen nutrition using the partial least square regression method and verified with the collected data for prediction accuracy and applicability.
      Result   The correlation coefficient and variance inflation factor allowed a precise index selection from the digital images. The indices for the winter wheat at flagging stage were thus determined to include b, g/b, (r-g-b)/(r+g), NDI, and WI, while those at flowering stage b, r/b, (r-g-b)/(r+g), and VARI. The coefficient on the model at the flowering stage was 0.008 8 higher, and the root mean square error 0.021 7 lower, than those at the flagging stage.
      Conclusion  Using the UAV digital images of the winter wheat at flagging and flowering stages, a visualized distribution map of the indices was constructed to enable a clear and accurate display of the nitrogen nutrition status of the crop in the field. The results at the flowering stage were considered slightly more sensitive than those obtained at the flagging stage in providing information on fertilization management.
  • [1]
    陆增根, 戴廷波, 姜东, 等. 氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响 [J]. 作物学报, 2007(4):590−597. DOI: 10.3321/j.issn:0496-3490.2007.04.011

    LU Z G, DAI T B, JIANG D, et al. Effects of nitrogen strategies on population quality index and grain yield & quality in weak-gluten wheat [J]. Acta Agronomica Sinica, 2007(4): 590−597.(in Chinese) DOI: 10.3321/j.issn:0496-3490.2007.04.011
    [2]
    郑利芳, 吴三鼎, 党廷辉. 不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响 [J]. 水土保持学报, 2019, 33(4):221−227.

    ZHENG L F, WU S D, DANG T H. Effects of different fertilization modes on spring maize yield, water use efficiency and nitrate nitrogen residue [J]. Journal of Soil and Water Conservation, 2019, 33(4): 221−227.(in Chinese)
    [3]
    黄倩楠, 王朝辉, 黄婷苗, 等. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系 [J]. 中国农业科学, 2018, 51(14):2722−2734. DOI: 10.3864/j.issn.0578-1752.2018.14.010

    HUANG Q N, WANG Z H, HUANG T M, et al. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China [J]. Scientia Agricultura Sinica, 2018, 51(14): 2722−2734.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2018.14.010
    [4]
    YU H, WU H S, WANG Z J. Evaluation of SPAD and dualex for in-season corn nitrogen status estimation [J]. Acta Agronomica Sinica, 2010, 36(5): 840−847.
    [5]
    孙俊, 金夏明, 毛罕平, 等. 基于高光谱图像光谱与纹理信息的生菜氮素含量检测 [J]. 农业工程学报, 2014, 30(10):167−173. DOI: 10.3969/j.issn.1002-6819.2014.10.021

    SUN J, JIN X M, MAO H P, et al. Detection of nitrogen content in lettuce leaves based on spectroscopy and texture using hyperspectral imaging technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 167−173.(in Chinese) DOI: 10.3969/j.issn.1002-6819.2014.10.021
    [6]
    李振海, 王纪华, 贺鹏, 等. 基于Dualex氮平衡指数测量仪的作物叶绿素含量估算模型 [J]. 农业工程学报, 2015, 31(21):191−197. DOI: 10.11975/j.issn.1002-6819.2015.21.025

    LI Z H, WANG J H, HE P, et al. Modelling of crop chlorophyll content based on Dualex [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 191−197.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2015.21.025
    [7]
    冯家莉, 刘凯, 朱远辉, 等. 无人机遥感在红树林资源调查中的应用 [J]. 热带地理, 2015, 35(1):35−42.

    FENG J L, LIU K, ZHU Y H, et al. Application of unmanned aerial vehicles to mangrove resources monitoring [J]. Tropical Geography, 2015, 35(1): 35−42.(in Chinese)
    [8]
    王果, 蒋瑞波, 肖海红, 等. 基于无人机倾斜摄影的露天矿边坡三维重建 [J]. 中国矿业, 2017, 26(4):158−161. DOI: 10.3969/j.issn.1004-4051.2017.04.031

    WANG G, JIANG R B, XIAO H H, et al. Research on slope reconstruction technique based on UAV oblique photogrammetry [J]. China Mining Magazine, 2017, 26(4): 158−161.(in Chinese) DOI: 10.3969/j.issn.1004-4051.2017.04.031
    [9]
    TURNER D, LUCIEER A, WATSON C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds [J]. Remote Sensing, 2012, 4(5): 1392−1410. DOI: 10.3390/rs4051392
    [10]
    杨全月, 董泽宇, 马振宇, 等. 基于SfM的针叶林无人机影像树冠分割算法 [J]. 农业机械学报, 2020, 51(6):181−190.

    YANG Q Y, DONG Z Y, MA Z Y, et al. Coniferous forest crown segmentation algorithm of UAV images based on SfM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 181−190.(in Chinese)
    [11]
    金忠明, 曹姗姗, 王蕾, 等. 天山云杉林无人机可见光影像树冠信息提取方法研究 [J]. 林业资源管理, 2020(1):125−135.

    JIN Z M, CAO S S, WANG L, et al. Study on extraction of tree crown information from UAV visible light image of piceaschrenkiana var. tianschanica forest [J]. Forest Resources Management, 2020(1): 125−135.(in Chinese)
    [12]
    周小成, 何艺, 黄洪宇, 等. 基于两期无人机影像的针叶林伐区蓄积量估算 [J]. 林业科学, 2019, 55(11):117−125. DOI: 10.11707/j.1001-7488.20191113

    ZHOU X C, HE Y, HUANG H Y, et al. Estimation of forest stand volume on coniferous forest cutting area based on two periods unmanned aerial vehicle images [J]. Scientia Silvae Sinicae, 2019, 55(11): 117−125.(in Chinese) DOI: 10.11707/j.1001-7488.20191113
    [13]
    侍昊, 李旭文, 牛志春, 等. 基于微型无人机遥感数据的城市水环境信息提取初探 [J]. 中国环境监测, 2018, 34(3):141−147.

    SHI H, LI X W, NIU Z C, et al. A preliminary study on remote sensing information extraction of urban water environment based on micro UAV images [J]. Environmental Monitoring in China, 2018, 34(3): 141−147.(in Chinese)
    [14]
    陈桥驿. 无人机航测技术在河道水环境治理中的应用研究 [J]. 北京测绘, 2018, 32(8):953−956.

    CHEN Q Y. The application of unmanned aerial vehicle aerial survey technology in river water environment control [J]. Beijing Surveying and Mapping, 2018, 32(8): 953−956.(in Chinese)
    [15]
    冯磊, 崔胜涛. 无人机遥感技术在海域监测陆源排污口中的应用 [J]. 测绘与空间地理信息, 2019, 42(5):107−109. DOI: 10.3969/j.issn.1672-5867.2019.05.033

    FENG L, CUI S T. Application of UAV remote sensing technology in monitoring land source sewage in sea area [J]. Geomatics & Spatial Information Technology, 2019, 42(5): 107−109.(in Chinese) DOI: 10.3969/j.issn.1672-5867.2019.05.033
    [16]
    杨进. 基于无人机遥感玉米生长动态监测[D]. 石河子: 石河子大学, 2019.

    YANG J. Dynamic monitoring of maize growth based on unmanned aerial vehicle remote sensing[D]. Shihezi, China: Shihezi University, 2019. (in Chinese)
    [17]
    赵晓庆, 杨贵军, 刘建刚, 等. 基于无人机载高光谱空间尺度优化的大豆育种产量估算 [J]. 农业工程学报, 2017, 33(1):110−116.

    ZHAO X Q, YANG G J, LIU J G, et al. Estimation of soybean breeding yield based on optimization of spatial scale of UAV hyperspectral image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 110−116.(in Chinese)
    [18]
    纪景纯, 赵原, 邹晓娟, 等. 无人机遥感在农田信息监测中的应用进展 [J]. 土壤学报, 2019, 56(4):773−784.

    JI J C, ZHAO Y, ZOU X J, et al. Advancement in application of UAV remote sensing to monitoring of farmlands [J]. Acta Pedologica Sinica, 2019, 56(4): 773−784.(in Chinese)
    [19]
    李长春, 牛庆林, 杨贵军, 等. 基于无人机数码影像的大豆育种材料叶面积指数估测 [J]. 农业机械学报, 2017, 48(8):147−158.

    LI C C, NIU Q L, YANG G J, et al. Estimation of leaf area index of soybean breeding materials based on UAV digital images [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 147−158.(in Chinese)
    [20]
    陈鹏, 冯海宽, 李长春, 等. 无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量 [J]. 农业工程学报, 2019, 35(11):63−74. DOI: 10.11975/j.issn.1002-6819.2019.11.008

    CHEN P, FENG H K, LI C C, et al. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 63−74.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2019.11.008
    [21]
    田明璐, 班松涛, 常庆瑞, 等. 基于低空无人机成像光谱仪影像估算棉花叶面积指数 [J]. 农业工程学报, 2016, 32(21):102−108. DOI: 10.11975/j.issn.1002-6819.2016.21.014

    TIAN M L, BAN S T, CHANG Q R, et al. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21): 102−108.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2016.21.014
    [22]
    DU M M, NOGUCHI N. Monitoring of wheat growth status and mapping of wheat yield's within-field spatial variations using color images acquired from UAV-camera system [J]. Remote Sensing, 2017, 9(3): 289. DOI: 10.3390/rs9030289
    [23]
    岳松华, 刘春雨, 黄玉芳, 等. 豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立 [J]. 作物学报, 2016, 42(6):909−916. DOI: 10.3724/SP.J.1006.2016.00909

    YUE S H, LIU C Y, HUANG Y F, et al. Simulating critical nitrogen dilution curve and modeling nitrogen nutrition index in winter wheat in central Henan area [J]. Acta Agronomica Sinica, 2016, 42(6): 909−916.(in Chinese) DOI: 10.3724/SP.J.1006.2016.00909
    [24]
    杨福芹, 戴华阳, 冯海宽, 等. 基于赤池信息准则的冬小麦植株氮含量高光谱估算 [J]. 农业工程学报, 2016, 32(23):161−167. DOI: 10.11975/j.issn.1002-6819.2016.23.022

    YANG F Q, DAI H Y, FENG H K, et al. Hyperspectral estimation of plant nitrogen content based on Akaike's information criterion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 161−167.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2016.23.022
    [25]
    王新, 马富裕, 刁明, 等. 滴灌番茄临界氮浓度、氮素吸收和氮营养指数模拟 [J]. 农业工程学报, 2013, 29(18):99−108. DOI: 10.3969/j.issn.1002-6819.2013.18.013

    WANG X, MA F Y, DIAO M, et al. Simulation of critical nitrogen concentration, nitrogen uptake and nitrogen nutrition index of processing tomato with drip irrigation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 99−108.(in Chinese) DOI: 10.3969/j.issn.1002-6819.2013.18.013
    [26]
    王仁红, 宋晓宇, 李振海, 等. 基于高光谱的冬小麦氮素营养指数估测 [J]. 农业工程学报, 2014, 30(19):191−198. DOI: 10.3969/j.issn.1002-6819.2014.19.023

    WANG R H, SONG X Y, LI Z H, et al. Estimation of winter wheat nitrogen nutrition index using hyperspectral remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 191−198.(in Chinese) DOI: 10.3969/j.issn.1002-6819.2014.19.023
    [27]
    DORDAS C A. Nitrogen nutrition index and its relationship to N use efficiency in linseed [J]. European Journal of Agronomy, 2011, 34(2): 124−132. DOI: 10.1016/j.eja.2010.11.005
    [28]
    JUSTES E, MARY B, MEYNARD J M, et al. Determination of a critical nitrogen dilution curve for winter wheat crops [J]. Annals of Botany, 1994, 74(4): 397−407. DOI: 10.1006/anbo.1994.1133
    [29]
    KAWASHIMA S, NAKATANI M. An algorithm for estimating chlorophyll content in leaves using a video camera [J]. Annals of Botany, 1998, 81(1): 49−54. DOI: 10.1006/anbo.1997.0544
    [30]
    MEYER G E, NETO J C. Verification of color vegetation indices for automated crop imaging applications [J]. Computers and Electronics in Agriculture, 2008, 63(2): 282−293. DOI: 10.1016/j.compag.2008.03.009
    [31]
    TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation [J]. Remote Sensing of Environment, 1979, 8(2): 127−150. DOI: 10.1016/0034-4257(79)90013-0
    [32]
    BENDIG J, YU K, AASEN H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley [J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39(7): 79−87. DOI: 10.1016/j.jag.2015.02.012
    [33]
    WOEBBECKE D M, MEYER G E, BARGEN K V, et al. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Transactions of the ASAE, 1995, 38(1): 259−269. DOI: 10.13031/2013.27838
    [34]
    GITELSON A A, VIÑA A, ARKEBAUER T J, et al. Remote estimation of leaf area index and green leaf biomass in maize canopies [J]. Geophysical Research Letters, 2003, 30(5): 1248.
    [35]
    LOUHAICHI M, BORMAN M M, JOHNSON D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat [J]. Geocarto International, 2001, 16(1): 65−70. DOI: 10.1080/10106040108542184
    [36]
    KATAOKA T, KANEKO T, OKAMOTO H, et al. Crop growth estimation system using machine vision[C]//Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003). July 20-24, 2003, Kobe, Japan. IEEE, 2003: b1079-b1083.
    [37]
    张湘平, 邹逢兴, 李大琪. 线性回归模型岭迹选择主元方法及应用研究 [J]. 航天控制, 1998(1):33−38. DOI: 10.3969/j.issn.1006-3242.1998.01.006

    ZHANG X P, ZOU F X, LI D Q. Linear regression model ridge trace selection procedure and application research [J]. Aerospace Control, 1998(1): 33−38.(in Chinese) DOI: 10.3969/j.issn.1006-3242.1998.01.006
    [38]
    吴明山. 回归模型的估计方法及在林业中的应用研究[D]. 昆明: 西南林学院, 2008.

    WU M S. Study on estimation method and application of regression model in forestry[D]. Kunming: Southwest Forestry University, 2008. (in Chinese)
    [39]
    魏鹏飞, 徐新刚, 李中元, 等. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测 [J]. 农业工程学报, 2019, 35(8):126−133, 335.

    WEI P F, XU X G, LI Z Y, et al. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 126−133, 335.(in Chinese)
    [40]
    陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究 [J]. 中国农业科学, 2019, 52(13):2220−2229. DOI: 10.3864/j.issn.0578-1752.2019.13.003

    CHEN P F, LIANG F. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle [J]. Scientia Agricultura Sinica, 2019, 52(13): 2220−2229.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2019.13.003
    [41]
    刘帅兵, 杨贵军, 景海涛, 等. 基于无人机数码影像的冬小麦氮含量反演 [J]. 农业工程学报, 2019, 35(11):75−85. DOI: 10.11975/j.issn.1002-6819.2019.11.009

    LIU S B, YANG G J, JING H T, et al. Retrieval of winter wheat nitrogen content based on UAV digital image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 75−85.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2019.11.009
    [42]
    秦占飞, 常庆瑞, 谢宝妮, 等. 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测 [J]. 农业工程学报, 2016, 32(23):77−85. DOI: 10.11975/j.issn.1002-6819.2016.23.011

    QIN Z F, CHANG Q R, XIE B N, et al. Rice leaf nitrogen content estimation based on hysperspectral imagery of UAV in Yellow River diversion irrigation district [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 77−85.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2016.23.011
  • Related Articles

    [1]CHEN Rujing, WU Xuemin, CHEN Qiuyong, CHE Yongliang, WANG Longbai, YAN Shan, ZHOU Lunjiang. A TaqMan RT-PCR Method for Detecting Porcine Circovirus 3[J]. Fujian Journal of Agricultural Sciences, 2020, 35(7): 739-745. DOI: 10.19303/j.issn.1008-0384.2020.07.007
    [2]WANG Cheng-ji, LI Yan-chun, LIU Cen-wei, WANG Yi-xiang, LUO Tao, HUNG Yi-bin. Nitrous Oxide Emission Estimation of Fujian Agricultural Activities Based on the IPCC Methods[J]. Fujian Journal of Agricultural Sciences, 2018, 33(10): 1071-1077. DOI: 10.19303/j.issn.1008-0384.2018.10.011
    [3]LIU Pei-qing, CAI Mao-qiang, LI Ben-jin, CHEN Qing-he, WENG Qi-yong. Development of a Nested-PCR detection for Aspergillus flavus Based on Aflatoxins Gene aflP[J]. Fujian Journal of Agricultural Sciences, 2015, 30(1): 65-68. DOI: 10.19303/j.issn.1008-0384.2015.01.011
    [4]ZHONG Ming-jie, ZHONG Tao, WANG Yi-kang. Identification of Protein Content in Corn Based on Partial Least Squares Regression[J]. Fujian Journal of Agricultural Sciences, 2014, 29(6): 597-601. DOI: 10.19303/j.issn.1008-0384.2014.06.017
    [5]WANG Rang-jian, YANG Jun, KONG Xiang-rui. Extraction of Genomic DNA and PCR Verification for Processed Tea Products[J]. Fujian Journal of Agricultural Sciences, 2013, 28(10): 999-1003. DOI: 10.19303/j.issn.1008-0384.2013.10.013
    [6]YANG Jin-xia, RUAN Chuan-qing, LIU Bo, CHEN Jian-li. Comparative evaluation on different methods to extract endophytic bacteria DNA from Diaphorina citri Kuwayama[J]. Fujian Journal of Agricultural Sciences, 2013, 28(4): 361-365. DOI: 10.19303/j.issn.1008-0384.2013.04.012
    [7]LIAN Ling, HE Wei, CAI Qiu-hua, XU Hui-bin, ZHU Yong-sheng, ZHANG Jian-fu, XIE Hua-an. Cloning and Construct of Over-expression Vector of IPA1 cDNA from Nipponbare[J]. Fujian Journal of Agricultural Sciences, 2012, 27(9): 913-918.
    [8]XU Qing-xian, SHEN Heng-sheng, LIN Bin, GUAN Xue-fang, TANG Bao-sha. Near-Infrared Diffuse Reflectance Spectroscopy for Heavy Metal Determination of Sweet Potato Leaves and Stems[J]. Fujian Journal of Agricultural Sciences, 2011, 26(3): 440-445.
    [9]LIN Jie, LIN Zhi-min, SONG Ya-na, HUAN Yue-ying, CHEN Jun. PCR and amplification of ITS and 5.8S ribosomal DNA for Fusarium genus detection and identification[J]. Fujian Journal of Agricultural Sciences, 2007, 22(3): 241-244.
    [10]HUANG Qin, CHEN Xi, YANG Jin-xian, LIN Neng-feng. The use of RAPD markers in population genetic analyses of cage-cultured Pseudosciaena crocea(Richardson) from Fujian,China[J]. Fujian Journal of Agricultural Sciences, 2007, 22(2): 130-135.
  • Cited by

    Periodical cited type(9)

    1. 余庆,赖伟鑫,曹德胜,万程鹏,沈欣怡. 基于交通波理论的内河航道拥塞度预测方法研究. 中国航海. 2025(01): 50-59 .
    2. 刘美艳,聂胜,王成,习晓环,程峰,冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演. 自然资源遥感. 2024(01): 210-216 .
    3. 岳蓉,尹本酥,李振发,李粉玲. 基于无人机RGB影像的染条锈冬小麦花青素含量监测. 麦类作物学报. 2024(07): 936-946 .
    4. 陈桂良,黎小清,许木果,刘忠妹,耿顺军,杨丽萍. 基于光谱敏感变量优选的澳洲坚果叶片氮素含量估算. 热带作物学报. 2024(10): 2107-2116 .
    5. 樊意广,冯海宽,刘杨,边明博,孟炀,杨贵军. 基于冠层光谱特征和株高的马铃薯植株氮含量估算. 农业机械学报. 2022(06): 202-208+294 .
    6. 舒时富,李艳大,曹中盛,孙滨峰,叶春,吴罗发,朱艳,丁艳锋,何勇. 基于无人机图像的水稻地上部生物量估算. 福建农业学报. 2022(07): 824-832 . 本站查看
    7. 徐艺,邵光成,丁鸣鸣,章二子,何菁. 基于岭回归的土壤全氮含量反演模型. 排灌机械工程学报. 2022(11): 1159-1166 .
    8. 何相良,戴建国,侯文庆,蒋楠,左昌鑫. 基于深度卷积神经网络的棉花叶片缺氮诊断. 江苏农业科学. 2022(22): 180-191 .
    9. 赵芳,贺怡. 基于无人机遥感影像的农业种植数量测量. 无线电工程. 2021(10): 1110-1115 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (747) PDF downloads (59) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return