Citation: | HUANG J - H,LIN X J,CHEN M L,et al. Yeast one-hybrid library construction and screening of upstream regulators of MIR397 in boron-treated Citrus leaves[J]. Fujian Journal of Agricultural Sciences,2025,40(X) :1−10. |
To gain a deeper understanding of the mechanism underlying boron toxicity in citrus and provide scientific basis for genetic improvement of citrus resistance to boron toxicity, upstream regulatory factors to MIR397, one of key boron toxicity-responded gene in citrus, were screened and identified in this study.
A homogenized yeast one-hybrid three-frame cDNA Library was constructed by SMART RACE technology using ‘Xuegan’ (Citrus sinensis) and sour pumelo (C. grandis) as materials, and upstream regulators of boron toxicity responsive MIR397 were screened using cis-elements, including ABRE, GCN4, Box II-like and ERE, as baits.
The results show that the capacity of the three frame cDNA libraries were 1.5×106,1.5×106 and 1.6×106 CFU, respectively. The amplification sizes of inserted fragments in the cDNA library ranged from 500 to
Three transcription factors that interact with the ERE element of the MIR397 promoter were identified through yeast one hybrid library screening, laying the foundation for further molecular network research on citrus responses to boron toxicity.
[1] |
YANG W Y,YANG H D,LING L L,et al. Tolerance and physiological responses of Citrus rootstock cultivars to boron toxicity[J]. Horticulturae,2023,9(1) :44. DOI: 10.3390/horticulturae9010044
|
[2] |
MARTÍNEZ-CUENCA M R,MARTÍNEZ-ALCÁNTARA B,QUIÑONES A,et al. Physiological and molecular responses to excess boron in Citrus macrophylla W[J]. PLoS One,2015,10(7) :e0134372. DOI: 10.1371/journal.pone.0134372
|
[3] |
SIMÓN-GRAO S,NIEVES M,MARTÍNEZ-NICOLÁS J J,et al. Response of three Citrus genotypes used as rootstocks grown under boron excess conditions[J]. Ecotoxicology and Environmental Safety,2018,159:10−19. DOI: 10.1016/j.ecoenv.2018.04.042
|
[4] |
APARICIO-DURÁN L,GMITTER F G Jr,ARJONA-LÓPEZ J M,et al. Evaluation of three new Citrus rootstocks under boron toxicity conditions[J]. Agronomy,2021,11(12) :2490. DOI: 10.3390/agronomy11122490
|
[5] |
卢晓佩,刘秀红,董肖昌,等. 南丰和衢州柑橘产区土壤及叶片硼含量状况分析[J]. 华中农业大学学报,2015,34(6) :61−65.
LU X P,LIU X H,DONG X C,et al. Analyzing boron contents in soil and leaf of Citrus orchards in the Nanfeng and Quzhou[J]. Journal of Huazhong Agricultural University,2015,34(6) :61−65. (in Chinese)
|
[6] |
LI Y,HAN M Q,LIN F,et al. Soil chemical properties,‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province,China[J]. Journal of Soil Science and Plant Nutrition,2015.
|
[7] |
张峻,林伟杰,李歆博,等. 椪柑叶片硼毒害症状及光合生理响应研究[J]. 植物营养与肥料学报,2020,26(10) :1879−1886. DOI: 10.11674/zwyf.20123
ZHANG J,LIN W,LI Y,et al. Symposium of boron toxicity and photosynthesis response study in leaves of Ponkan (Citrus reticulata Blanco) [J]. Journal of Plant Nutrition and Fertilizers,2020,26(10) :1879−1886. (in Chinese) DOI: 10.11674/zwyf.20123
|
[8] |
HAN S,TANG N,JIANG H X,et al. CO2 assimilation,photosystem II photochemistry,carbohydrate metabolism and antioxidant system of Citrus leaves in response to boron stress[J]. Plant Science,2009,176(1) :143−153. DOI: 10.1016/j.plantsci.2008.10.004
|
[9] |
张世祺,程琛,林伟杰,等. ‘琯溪蜜柚’园土壤和树体的硼素营养与果实粒化关系分析[J]. 果树学报,2019,36(4) :468−475.
ZHANG S Q,CHENG C,LIN W J,et al. Analysis of boron nutrition status in soils and trees and its relationship with fruit granulation in ‘Guanximiyou' pomelo[J]. Journal of Fruit Science,2019,36(4) :468−475. (in Chinese)
|
[10] |
BRDAR-JOKANOVIĆ M. Boron toxicity and deficiency in agricultural plants[J]. International Journal of Molecular Sciences,2020,21(4) :1424. DOI: 10.3390/ijms21041424
|
[11] |
SEN S,MONDAL N,GHOSH W,et al. Inducible boron resistance via active efflux in Lysinibacillus and Enterococcus isolates from boron-contaminated agricultural soil[J]. BioMetals,2022,35(2) :215−228. DOI: 10.1007/s10534-021-00359-0
|
[12] |
MARTÍNEZ-MAZÓN P,BAHAMONDE C,HERRERA-RODRÍGUEZ M B,et al. Role of ABA in the adaptive response of Arabidopsis plants to long-term boron toxicity treatment[J]. Plant Physiology and Biochemistry,2023,202:107965. DOI: 10.1016/j.plaphy.2023.107965
|
[13] |
MAMANI-HUARCAYA B M,GONZÁLEZ-FONTES A,NAVARRO-GOCHICOA M T,et al. Characterization of two Peruvian maize landraces differing in boron toxicity tolerance[J]. Plant Physiology and Biochemistry,2022,185:167−177. DOI: 10.1016/j.plaphy.2022.06.003
|
[14] |
HRMOVA M,GILLIHAM M,TYERMAN S D. Plant transporters involved in combating boron toxicity:Beyond 3D structures[J]. Biochemical Society Transactions,2020,48(4) :1683−1696. DOI: 10.1042/BST20200164
|
[15] |
LANDI M,GUIDI L,PARDOSSI A,et al. Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum) [J]. Planta,2014,240(5) :941−953. DOI: 10.1007/s00425-014-2087-1
|
[16] |
PAPADAKIS I E,TSIANTAS P I,TSANIKLIDIS G,et al. Changes in sugar metabolism associated to stem bark thickening partially assist young tissues of Eriobotrya japonica seedlings under boron stress[J]. Journal of Plant Physiology,2018,231:337−345. DOI: 10.1016/j.jplph.2018.10.012
|
[17] |
HUANG J H,ZHANG L Y,LIN X J,et al. CsiLAC4 modulates boron flow in Arabidopsis and Citrus via high-boron-dependent lignification of cell walls[J]. New Phytologist,2022,233(3) :1257−1273. DOI: 10.1111/nph.17861
|
[18] |
AKSOY E,KAYıHAN C. Transcription factors and target genes involved in plant responses to high boron adaptation[M]//Boron in Plants and Agriculture. Amsterdam:Elsevier,2022:207–231.
|
[19] |
TAKANO J,WADA M,LUDEWIG U,et al. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation[J]. The Plant Cell,2006,18(6) :1498−1509. DOI: 10.1105/tpc.106.041640
|
[20] |
FENG Y N,CUI R,HUANG Y P,et al. Repression of transcription factor AtWRKY47 confers tolerance to boron toxicity in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety,2021,220:112406. DOI: 10.1016/j.ecoenv.2021.112406
|
[21] |
YıLMAZ H,KAYıHAN C,ÜNAL H B,et al. Single-cell transcriptional profiling in Arabidopsis root exposed to B toxicity at seedling stages[J/OL]. [2024-09-03]. bioRxiv,2023. https://doi.org/10.1101/2023.03.09. 531923.
|
[22] |
OCHIAI K,SHIMIZU A,OKUMOTO Y,et al. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice[J]. Plant Physiology,2011,156(3) :1457−1463. DOI: 10.1104/pp.110.171470
|
[23] |
KAYıHAN C,ÖZ M T,EYIDOĞAN F,et al. Physiological,biochemical,and transcriptomic responses to boron toxicity in leaf and root tissues of contrasting wheat cultivars[J]. Plant Molecular Biology Reporter,2017,35(1) :97−109. DOI: 10.1007/s11105-016-1008-9
|
[24] |
HUANG J H,CAI Z J,WEN S X,et al. Effects of boron toxicity on root and leaf anatomy in two Citrus species differing in boron tolerance[J]. Trees,2014,28(6) :1653−1666. DOI: 10.1007/s00468-014-1075-1
|
[25] |
HUANG J H,QI Y P,WEN S X,et al. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis[J]. Scientific Reports,2016,6:22900. DOI: 10.1038/srep22900
|
[26] |
GIETZ R D,SCHIESTL R H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nature Protocols,2007,2(1) :31−34. DOI: 10.1038/nprot.2007.13
|
[27] |
JIN L F,LIU Y Z,YIN X X,et al. Transcript analysis of Citrus miRNA397 and its target LAC7 reveals a possible role in response to boron toxicity[J]. Acta Physiologiae Plantarum,2015,38(1) :18.
|
[28] |
BERTHET S,DEMONT-CAULET N,POLLET B,et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems[J]. The Plant Cell,2011,23(3) :1124−1137. DOI: 10.1105/tpc.110.082792
|
[29] |
WEI X R,DING H F,FAN Y L,et al. Overexpression of a laccase gene,DiLAC17,from Davidia involucrata causes severe seed abortion in Arabidopsis[J]. Plant Physiology and Biochemistry,2023,202:107956. DOI: 10.1016/j.plaphy.2023.107956
|
[30] |
RAKWAL R,TAMOGAMI S,AGRAWAL G K,et al. Octadecanoid signaling component “burst” in rice (Oryza sativa L. ) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan[J]. Biochemical and Biophysical Research Communications,2002,295(5) :1041−1045. DOI: 10.1016/S0006-291X(02)00779-9
|
[31] |
WANG J D,WANG J,HUANG L C,et al. ABA-mediated regulation of rice grain quality and seed dormancy via the NF-YB1-SLRL2-bHLH144 Module[J]. Nature Communications,2024,15:4493. DOI: 10.1038/s41467-024-48760-w
|
[32] |
闫志强,徐海,马作斌,等. 籼稻与粳稻花时对茉莉酸甲酯(MeJA) 响应的敏感性差异[J]. 中国农业科学,2014,47(13) :2529−2540. DOI: 10.3864/j.issn.0578-1752.2014.13.005
YAN Z Q,XU H,MA Z B,et al. Differential response of floret opening to exo-methyl jasmonate between Subsp. Indica and subsp. Japonica in rice[J]. Scientia Agricultura Sinica,2014,47(13) :2529−2540. (in Chinese) DOI: 10.3864/j.issn.0578-1752.2014.13.005
|
[33] |
LI H P,SUN H C,PING W C,et al. Exogenous ethylene promotes the germination of cotton seeds under salt stress[J]. Journal of Plant Growth Regulation,2023,42(6) :3923−3933. DOI: 10.1007/s00344-022-10859-z
|
[34] |
王雪,王盛昊,于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展[J]. 中国农学通报,2021,37(33) :112−119. DOI: 10.11924/j.issn.1000-6850.casb2021-0563
WANG X,WANG S H,YU B. Interaction analysis of transcription factors and promoters and its application in response of plants to stress[J]. Chinese Agricultural Science Bulletin,2021,37(33) :112−119. (in Chinese) DOI: 10.11924/j.issn.1000-6850.casb2021-0563
|
[35] |
ÖZ M T,YILMAZ R,EYİDOĞAN F,et al. Microarray analysis of late response to boron toxicity in barley (Hordeum vulgare L. ) leaves[J]. Turkish Journal of Agriculture and Forestry,2009,33(2) :191−202.
|
[36] |
KAYIHAN D S,KAYIHAN C,ÖZDEN ÇİFTÇİ Y. Moderate level of toxic boron causes differential regulation of microRNAs related to jasmonate and ethylene metabolisms in Arabidopsis thaliana[J]. Turkish Journal of Botany,2019,43(2) :167−172. DOI: 10.3906/bot-1810-10
|
[37] |
AQUEA F,FEDERICI F,MOSCOSO C,et al. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity[J]. Plant,Cell & Environment,2012,35(4) :719–734.
|
[38] |
薄蕾,冯爱云,李文滨. GmHAP3与多个植物抗逆基因在拟南芥中的抗逆性比较[J]. 作物杂志,2014(3) :44−50.
BO L,FENG A Y,LI W B. The comparision of the tolerance to abiotic stress between GmHAP3 and several other transcript genes in Arabidopsis[J]. Crops,2014(3) :44−50. (in Chinese)
|
[39] |
杨宁,从青,程龙军. 植物BBX转录因子基因家族的研究进展[J]. 生物工程学报,2020,36(4) :666−677.
YANG N,CONG Q,CHENG L J. BBX transcriptional factors family in plants–a review[J]. Chinese Journal of Biotechnology,2020,36(4) :666−677. (in Chinese)
|
[40] |
KUANG J F,CHEN L,SHAN W,et al. Molecular characterization of two banana ethylene signaling component MaEBFs during fruit ripening[J]. Postharvest Biology and Technology,2013,85:94−101. DOI: 10.1016/j.postharvbio.2013.05.004
|
[41] |
HUANG Y P,WANG S L,SHI L,et al. JASMONATE RESISTANT 1 negatively regulates root growth under boron deficiency in Arabidopsis[J]. Journal of Experimental Botany,2021,72(8) :3108−3121. DOI: 10.1093/jxb/erab041
|
[1] | ZHANG Yue, HU Li, WAN Chao, HU Shuangling, YIN Qinwan, YUAN Yuan. Regulating JsTPS Promoters by JsMYB108 and JsMYB305 in Jasminum sambac[J]. Fujian Journal of Agricultural Sciences, 2024, 39(8): 927-937. DOI: 10.19303/j.issn.1008-0384.2024.08.006 |
[2] | WANG Yiqin, SUN Bo, HE Ling, SHI Kaihui, HUANG Xin, WANG Dongmei, CHEN Yu, ZANG Rui, HE Fengmei. Cloning and Analyzing of AP3-3 and Its Promoter from Dendrobium officinale[J]. Fujian Journal of Agricultural Sciences, 2022, 37(5): 585-591. DOI: 10.19303/j.issn.1008-0384.2022.005.005 |
[3] | CHEN Yongping, HE Shuilin, LIU Zhiqin, CHEN Guixin, JIANG Jimou. Cloning and Expression of PsWRKY33 Promoter in Nane[J]. Fujian Journal of Agricultural Sciences, 2022, 37(2): 170-177. DOI: 10.19303/j.issn.1008-0384.2022.002.006 |
[4] | LIU Fangchen, JIA Xianbo, WU Liangquan, FANG Yu, ZHAO Ke, LIN Junjie, CHEN Longjun, ZHANG Hui, LIN Chenqiang, CHEN Jichen. Heterologous Expression and Temperature Regulation of Prodigiosin-synthesis Gene Cluster in Serratia marcecens[J]. Fujian Journal of Agricultural Sciences, 2021, 36(3): 337-344. DOI: 10.19303/j.issn.1008-0384.2021.03.013 |
[5] | XU Yi, LI Yujia, WEI Qing, WANG Anbang, WANG Xiaoyi, SONG Shun, LI Jingyang. Constructions of Banana MaAQP1 Bait Vector and Drought-resistance cDNA Library[J]. Fujian Journal of Agricultural Sciences, 2020, 35(10): 1078-1085. DOI: 10.19303/j.issn.1008-0384.2020.10.005 |
[6] | CHEN Rui, CHEN Jian-ming, WU Ming-ji, YANG Shao-hua, HU Chang-quan. Cloning and Expression Analysis of OsPLATZ14 Promoter in Rice (Oryza sativa L.)[J]. Fujian Journal of Agricultural Sciences, 2019, 34(10): 1137-1143. DOI: 10.19303/j.issn.1008-0384.2019.10.004 |
[7] | ZHENG Xue-li, LIU Sheng-cai, XIE Li-yang, CHENG Chun-zhen, LAI Zhong-xiong. Promoter-cloning,Protein Subcellular Localization,and Expression Analysis for AmaDOPA5-GT Gene of Amaranth tricolor[J]. Fujian Journal of Agricultural Sciences, 2015, 30(11): 1064-1070. DOI: 10.19303/j.issn.1008-0384.2015.11.008 |
[8] | LIAN Ling, HE Wei, CAI Qiu-hua, XU Hui-bin, ZHU Yong-sheng, ZHANG Jian-fu, XIE Hua-an. Cloning and Construct of Over-expression Vector of IPA1 cDNA from Nipponbare[J]. Fujian Journal of Agricultural Sciences, 2012, 27(9): 913-918. |
[9] | Wang Feng, Zhu Zhen, Li Xianghui, Zhang Wencai. Transient Expression of Gus Genes Controlled by Differential Regulator Sequences in Citrus Protoplasts[J]. Fujian Journal of Agricultural Sciences, 1998, 13(2): 1-5. |
[10] | Su Minghua, Liu Zhicheng, Huang Zhenliang. Application of Chemical Regulating Technique in Cultivation of “Shuizhang”Longan(Notes Research)[J]. Fujian Journal of Agricultural Sciences, 1997, 12(4): 28-31. |
1. |
王艳玲,郭勇,高洁. 病原真菌CFEM蛋白功能及分子机制研究进展. 华中农业大学学报. 2025(01): 156-167 .
![]() |