• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
ZHONG H Q,LUO Y T,ZHONG S Y,et al. A Concise Phenotype-based Collection of Phalaenopsis Germplasms[J]. Fujian Journal of Agricultural Sciences,2025,40(1) :53−62. DOI: 10.19303/j.issn.1008-0384.2025.01.007
Citation: ZHONG H Q,LUO Y T,ZHONG S Y,et al. A Concise Phenotype-based Collection of Phalaenopsis Germplasms[J]. Fujian Journal of Agricultural Sciences,2025,40(1) :53−62. DOI: 10.19303/j.issn.1008-0384.2025.01.007

A Concise Phenotype-based Collection of Phalaenopsis Germplasms

More Information
  • Received Date: October 15, 2024
  • Revised Date: December 26, 2024
  • Available Online: January 22, 2025
  • Objective 

    A concise collection of Phalaenopsis germplasms based on their phenotypic traits was preliminarily assembled to facilitate conservation and utilization of the natural resource.

    Methods 

    Two hundred and ten Phalaenopsis germplasms encompassing 32 phenotypes, including 13 qualitative and 19 quantitative traits, were included in this study. The random, preferred, and deviation sampling methods, the Euclidean and Mahalanobis genetic distances, the 20%, 25%, and 30% sampling ratios as well as the single, complete, median, centroid, unweighted, weighted, flexible, and ward clustering methods were employed in comparison to optimize the selection process. The information obtained was scrutinized with evaluations on the mean difference percentage (MD), variance difference percentage (VD), range coincidence rate (CR), and variation coefficient change rate (VR). It was further verified by the mean and extreme comparative analyses and principal component analysis to arrive at a concise and representative collection of the germplasms.

    Results 

    The germplasms for the collection were eventually gathered by means of the preferred sampling at the Euclidean distance and 25% sampling ratio with the complete clustering. Out of the 210 germplasms, 52 selected cultivars were deemed to statistically represent the genetic diversity of the current collection with all the principal components on phenotypic traits preserved without redundancy.

    Conclusion 

    The collection of Phalaenopsis germplasms assembled by this study was concise and representative of the resource presently in stock. It covered all key phenotypes needed to be preserved for future studies and applications.

  • [1]
    朱根发. 蝴蝶兰种质资源及杂交育种进展[J]. 广东农业科学,2015,42(5) :31–38.

    ZHU G F. Progress in germplasm resources and crossbreeding of Phalaenopsis[J]. Guangdong Agricultural Sciences,2015,42(5) :31–38. (in Chinese)
    [2]
    许申平,张腾飞,廖飞雄,等. 蝴蝶兰种质资源与育种研究[J]. 中国园艺文摘,2010,26(5) :27–30.

    XU S P,ZHANG T F,LIAO F X,et al. A review on studies of Phalaenopsis germplasm resources and breeding[J]. Chinese Horticulture Abstracts,2010,26(5) :27–30. (in Chinese)
    [3]
    FRANKEL O. Genetic perspectives of germplasm conservation[M]. Cambridge:Cambridge University Press,1984:161–170.
    [4]
    BROWN A H D. Core collections:A practical approach to genetic resources management[J]. Genome,1989,31(2) :818−824. DOI: 10.1139/g89-144
    [5]
    TANAKA N,SHENTON M,KAWAHARA Y,et al. Investigation of the genetic diversity of a rice core collection of Japanese landraces using whole-genome sequencing[J]. Plant &; Cell Physiology,2021,61(12) :2087–2096.
    [6]
    朱业宝,王金英,江川. 水稻种质资源核心种质的研究进展[J]. 江西农业学报,2023,35(4) :27–32.

    ZHU Y B,WANG J Y,JIANG C. Research progress in core collection of rice germplasm resources[J]. Acta Agriculturae Jiangxi,2023,35(4) :27–32. (in Chinese)
    [7]
    李永祥,李会勇,扈光辉,等. 玉米应用核心种质的构建与应用[J]. 植物遗传资源学报,2023,24(4) :911–916.

    LI Y X,LI H Y,HU G H,et al. Construction and utilization of applied core collection in maize[J]. Journal of Plant Genetic Resources,2023,24(4) :911–916. (in Chinese)
    [8]
    赵欣蕊,陈啸天,薛薇,等. 基于表型性状分析构建冀北地区马铃薯核心种质[J]. 核农学报,2024,38(5) :805–818.

    ZHAO X R,CHEN X T,XUE W,et al. Construction of core potato germplasm resources in north Hebei based on phenotypic traits[J]. Journal of Nuclear Agricultural Sciences,2024,38(5) :805–818. (in Chinese)
    [9]
    郑福顺,王晓敏,李国花,等. 基于表型性状的宁夏番茄种质资源核心种质构建[J]. 浙江大学学报(农业与生命科学版) ,2021,47(2) :171–181.

    ZHENG F S,WANG X M,LI G H,et al. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits[J]. Journal of Zhejiang University (Agriculture and Life Sciences) ,2021,47(2) :171–181. (in Chinese)
    [10]
    李嘉伟,苏江硕,张飞,等. 基于表型性状构建传统菊花核心种质[J]. 中国农业科学,2021,54(16) :3514–3526.

    LI J W,SU J S,ZHANG F,et al. Construction of core collection of traditional Chrysanthemum morifolium based on phenotypic traits[J]. Scientia Agricultura Sinica,2021,54(16) :3514–3526. (in Chinese)
    [11]
    赵立民,李嘉伟,张飞,等. 基于表型数据构建切花小菊核心种质[J]. 园艺学报,2022,49(10) :2273–2284.

    ZHAO L M,LI J W,ZHANG F,et al. Construction of a core collection of spray cut Chrysanthemum based on phenotypic data[J]. Acta Horticulturae Sinica,2022,49(10) :2273–2284. (in Chinese)
    [12]
    秦子璐,徐正康,戴晓港,等. 望春玉兰种质资源遗传多样性分析与核心种质构建[J]. 园艺学报,2024,51(8) :1823–1832.

    QIN Z L,XU Z K,DAI X G,et al. Genetic diversity analysis and core collection construction of Magnolia biondii germplasm[J]. Acta Horticulturae Sinica,2024,51(8) :1823–1832. (in Chinese)
    [13]
    张林娟,李向茂,奉树成. 紫薇种质资源与应用研究进展[J]. 广东农业科学,2024,51(2) :81–91.

    ZHANG L J,LI X M,FENG S C.Research progress on germplasm resources and application of Lagerstroemia indica[J]. Guangdong Agricultural Sciences,2024,51(2) :81–91.(in Chinese)
    [14]
    陈明堃,陈璐,孙维红,等. 建兰种质资源遗传多样性分析及核心种质构建[J]. 园艺学报,2022,49(1) :175–186.

    CHEN M K,CHEN L,SUN W H,et al. Genetic diversity analysis and core collection of Cymbidium ensifolium germplasm resources[J]. Acta Horticulturae Sinica,2022,49(1) :175–186. (in Chinese)
    [15]
    张保青,黄玉新,周珊,等. 广西割手密核心种质构建与关联分析[J]. 华中农业大学学报 ,2024,43(5) :75–81.

    ZHANG B Q,HUANG Y X,ZHOU S,et al. Construction and association analysis of core germplasm for Saccharum spontaneum L. in Guangxi[J]. Journal of Huazhong Agricultural University,2024,43 (5) :75–81. (in Chinese)
    [16]
    陈妍,杨午,万坤,等. 基于表型多样性构建山西大豆地方品种核心种质[J]. 中国油料作物学报,2025,47(1) :105–114.

    CHEN Y,YANG W,WAN K,et al.Establishment of soybean core collection based on phenotypic characters in Shanxi Province[J]. Chinese Journal of Oil Crop Sciences,2025,47(1) :105–114.(in Chinese)
    [17]
    丁艺冰,辛旭霞,冯智尊,等. 东北春播区糜子核心种质及其DNA分子身份证构建[J]. 作物学报,2024,50(5) :1181–1192.

    DING Y B,XIN X X,FENG Z Z,et al. Core germplasm and DNA molecular identity card of proso millet in Northeast Spring sowing region in China[J]. Acta Agronomica Sinica,2024,50(5) :1181–1192. (in Chinese)
    [18]
    明军,张启翔,兰彦平. 梅花品种资源核心种质构建[J]. 北京林业大学学报,2005,27(2) :65–69.

    MING J,ZHANG Q X,LAN Y P. Core collection of Prunus mume sieb. et zucc[J]. Journal of Beijing Forestry University,2005,27(2) :65–69. (in Chinese)
    [19]
    陈剑锋,钟声远,陈宇华,等. 基于花表型性状的蝴蝶兰品种资源多样性研究[J]. 热带作物学报,2023,44(3) :494–505.

    CHEN J F,ZHONG S Y,CHEN Y H,et al. Research on diversity of Phalaenopsis germplasm resources based on flowers phenotype traits[J]. Chinese Journal of Tropical Crops,2023,44(3) :494–505. (in Chinese)
    [20]
    王钦,黄捷,涂松,等. 蝴蝶兰不同品种表型性状遗传多样性分析[J]. 西南林业大学学报(自然科学) ,2023,43(6) :8–18.

    WANG Q,HUANG J,TU S,et al. Analysis of phenotypic genetic diversity of various Phalaenopsis varieties[J]. Journal of Southwest Forestry University (Natural Sciences) ,2023,43(6) :8–18. (in Chinese)
    [21]
    李佐,肖文芳,尤毅,等. 蝴蝶兰核心种质构建初探[J]. 广东农业科学,2013,40(1) :46–49.

    LI Z,XIAO W F,YOU Y,et al. Preliminary establishment of core collection for Phalaenopsis[J]. Guangdong Agricultural Sciences,2013,40(1) :46–49. (in Chinese)
    [22]
    中华人民共和国农业部. 植物新品种特异性、一致性和稳定性测试指南 蝴蝶兰:NY/T 2230—2012[S]. 北京:中国农业出版社,2013.
    [23]
    胡晋,徐海明,朱军. 保留特殊种质材料的核心库构建方法[J]. 生物数学学报,2001,16(3) :348–352.

    HU J,XU H M,ZHU J. A method of constructing core collection reserving special germplasm materials[J]. Journal of Biomathematics,2001,16(3) :348–352. (in Chinese)
    [24]
    徐海明,胡晋,朱军. 构建作物种质资源核心库的一种有效抽样方法[J]. 作物学报,2000,26(2) :157–162.

    XU H M,HU J,ZHU J. An efficient method of sampling core collection from crop germpl asm[J]. Acta Agronomica Sinica,2000,26(2) :157–162. (in Chinese)
    [25]
    刘遵春,张春雨,张艳敏,等. 利用数量性状构建新疆野苹果核心种质的方法[J]. 中国农业科学,2010,43(2) :358–370.

    LIU Z C,ZHANG C Y,ZHANG Y M,et al. Study on method of constructing core collection of Malus sieversii based on quantitative traits[J]. Scientia Agricultura Sinica,2010,43(2) :358–370. (in Chinese)
    [26]
    刘艳阳,梅鸿献,杜振伟,等. 基于表型和SSR分子标记构建芝麻核心种质[J]. 中国农业科学,2017,50(13) :2433–2441.

    LIU Y Y,MEI H X,DU Z W,et al. Construction of core collection of sesame based on phenotype and molecular markers[J]. Scientia Agricultura Sinica,2017,50(13) :2433–2441. (in Chinese)
    [27]
    刘娟,廖康,赵世荣,等. 利用ISSR分子标记构建新疆野杏核心种质资源[J]. 中国农业科学,2015,48(10) :2017–2028.

    LIU J,LIAO K,ZHAO S R,et al. The core collection construction of Xinjiang wild apricot based on ISSR molecular markers[J]. Scientia Agricultura Sinica,2015,48(10) :2017–2028. (in Chinese)
    [28]
    彭枫,李阳,戴雨柔,等. 基于表型性状的菠菜核心种质构建[J]. 上海师范大学学报(自然科学版) ,2022,51(1) :9–19.

    PENG F,LI Y,DAI Y R,et al. Construction of spinach’s core germplasms based on its phenotypic traits[J]. Journal of Shanghai Normal University (Natural Sciences) ,2022,51(1) :9–19. (in Chinese)
    [29]
    陈建华,曲凯伦,张云程,等. 基于表型性状的酸枣核心种质构建[J]. 沈阳农业大学学报,2024,55(2) :176–186.

    CHEN J H,QU K L,ZHANG Y C,et al. Construction of Ziziphus jujuba var. spinosa core collection based on phenotypic traits[J]. Journal of Shenyang Agricultural University,2024,55(2) :176–186. (in Chinese)
    [30]
    郎彬彬,黄春辉,朱博,等. 基于果实相关性状的江西野生毛花猕猴桃初级核心种质的构建方法研究[J]. 果树学报,2016,33(7) :794–803.

    LANG B B,HUANG C H,ZHU B,et al. Study on the method of constructing a primary core collection of Jiangxi wild Actinidia eriantha based on fruit traits[J]. Journal of Fruit Science,2016,33(7) :794–803. (in Chinese)
    [31]
    PEETERS J P,MARTINELLI J A. Hierarchical cluster analysis as a tool to manage variation in germplasm collections[J]. Theoretical and Applied Genetics,1989,78(1) :42–48.
    [32]
    缪黎明,王神云,邹明华,等. 园艺作物核心种质构建的研究进展[J]. 植物遗传资源学报,2016,17(5) :791–800.

    MIAO L M,WANG S Y,ZOU M H,et al. Review of the studies on core collection for horticultural crops[J]. Journal of Plant Genetic Resources,2016,17(5) :791–800. (in Chinese)
    [33]
    侯志强,王丽慧,赵孟良,等. 基于表型数据的菊芋核心种质初步构建[J]. 分子植物育种,2021,19(10) :3463–3472.

    HOU Z Q,WANG L H,ZHAO M L,et al. Preliminary construction of core collection of Jerusalem artichoke based on phenotypic data[J]. Molecular Plant Breeding,2021,19(10) :3463–3472. (in Chinese)
    [34]
    崔艳华,邱丽娟,常汝镇,等. 黄淮夏大豆(G. max) 初选核心种质代表性检测[J]. 作物学报,2004,30(3) :284–288.

    CUI Y H,QIU L J,CHANG R Z,et al. Representative test for primary core collection of summer sowing soybeans in Huanghuai region of China[J]. Acta Agronomica Sinica,2004,30(3) :284–288. (in Chinese)
    [35]
    HU J,ZHU J,XU H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theoretical and Applied Genetics,2000,101(1) :264−268.
    [36]
    王建成,胡晋,张彩芳,等. 建立在基因型值和分子标记信息上的水稻核心种质评价参数[J]. 中国水稻科学,2007,21(1) :51–58.

    WANG J C,HU J,ZHANG C F,et al. Evaluating parameters of rice core collections based on genotypic values and molecular marker information[J]. Chinese Journal of Rice Science,2007,21(1) :51–58. (in Chinese)
  • Related Articles

    [1]ZHANG Wujun, CHEN Jingying, LIU Baocai, ZHAO Yunqing, HUANG Yingzhen. Establishing a Primary Core Collection of Chinese Yam Germplasms in Fujian[J]. Fujian Journal of Agricultural Sciences, 2023, 38(11): 1267-1276. DOI: 10.19303/j.issn.1008-0384.2023.11.002
    [2]CHEN Rujing, WU Xuemin, CHEN Qiuyong, CHE Yongliang, WANG Longbai, YAN Shan, ZHOU Lunjiang. A TaqMan RT-PCR Method for Detecting Porcine Circovirus 3[J]. Fujian Journal of Agricultural Sciences, 2020, 35(7): 739-745. DOI: 10.19303/j.issn.1008-0384.2020.07.007
    [3]WANG Cheng-ji, LI Yan-chun, LIU Cen-wei, WANG Yi-xiang, LUO Tao, HUNG Yi-bin. Nitrous Oxide Emission Estimation of Fujian Agricultural Activities Based on the IPCC Methods[J]. Fujian Journal of Agricultural Sciences, 2018, 33(10): 1071-1077. DOI: 10.19303/j.issn.1008-0384.2018.10.011
    [4]LÜ Xin, LIU Lan-ying, CHEN Li-hua, LI Yue-ren, LIN Bi-jiao. Composition of Bacterial Community at Lake Zuohai Determined by PCR-Denaturing Gradient Gel Electrophoresis[J]. Fujian Journal of Agricultural Sciences, 2016, 31(9): 986-992. DOI: 10.19303/j.issn.1008-0384.2016.09.017
    [5]JIAO Yun, SHU Qiao-yun, LIU Zhu-qin. Single Nucleotide Polymorphism (SNP) Analysis of the Endopolygalacturonase Gene in Chinese Bayberry (Myrica rubra)[J]. Fujian Journal of Agricultural Sciences, 2016, 31(5): 465-470. DOI: 10.19303/j.issn.1008-0384.2016.05.005
    [6]YANG Jin-xia, RUAN Chuan-qing, LIU Bo, CHEN Jian-li. Comparative evaluation on different methods to extract endophytic bacteria DNA from Diaphorina citri Kuwayama[J]. Fujian Journal of Agricultural Sciences, 2013, 28(4): 361-365. DOI: 10.19303/j.issn.1008-0384.2013.04.012
    [7]LIAN Ling, HE Wei, CAI Qiu-hua, XU Hui-bin, ZHU Yong-sheng, ZHANG Jian-fu, XIE Hua-an. Cloning and Construct of Over-expression Vector of IPA1 cDNA from Nipponbare[J]. Fujian Journal of Agricultural Sciences, 2012, 27(9): 913-918.
    [8]LIN Jie, LIN Zhi-min, SONG Ya-na, HUAN Yue-ying, CHEN Jun. PCR and amplification of ITS and 5.8S ribosomal DNA for Fusarium genus detection and identification[J]. Fujian Journal of Agricultural Sciences, 2007, 22(3): 241-244.
    [9]HUANG Qin, CHEN Xi, YANG Jin-xian, LIN Neng-feng. The use of RAPD markers in population genetic analyses of cage-cultured Pseudosciaena crocea(Richardson) from Fujian,China[J]. Fujian Journal of Agricultural Sciences, 2007, 22(2): 130-135.
    [10]Liu Bo, Song Xiaochuan, Li Ping, Liu Haoguang. Studies on the Sampling Efficiency by Traditional and Motor-Sucking Methods for Insect Collection in Field Condition[J]. Fujian Journal of Agricultural Sciences, 1994, 9(1): 42-46.

Catalog

    Article Metrics

    Article views (87) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return