• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
CHEN F H,ZHANG H M,GAO Y Z,et al. Research Progress on Interactions Between Effector Proteins in Magnaporthe oryzae and Rice[J]. Fujian Journal of Agricultural Sciences,2025,40(4) :425−432. DOI: 10.19303/j.issn.1008-0384.2025.04.012
Citation: CHEN F H,ZHANG H M,GAO Y Z,et al. Research Progress on Interactions Between Effector Proteins in Magnaporthe oryzae and Rice[J]. Fujian Journal of Agricultural Sciences,2025,40(4) :425−432. DOI: 10.19303/j.issn.1008-0384.2025.04.012

Research Progress on Interactions Between Effector Proteins in Magnaporthe oryzae and Rice

More Information
  • Received Date: December 30, 2024
  • Revised Date: March 11, 2025
  • Available Online: April 24, 2025
  • A major threat to global rice production, rice blast is commonly caused by Magnaporthe oryzae. Thus, the fungal infection mechanism has been a focal point of the studies aiming to alleviate the disease. As a critical factor, the effector proteins secreted by the fungus target key components in the cytoplasm or organelles of rice cells to manipulate the host immunity and metabolic pathways resulted in weakened resistance to the disease of a rice plant. This article summarizes the advanced understanding of how the effectors act in rice cytoplasm and nucleus. The studies encompass the regulation of gene expression through interactions with nuclear-localized host proteins, the ubiquitination-mediated degradation of immunity-related proteins, and the modulation of ROS production and balance. Some of the effector proteins were found to disrupt energy metabolism and immune signal transduction by targeting mitochondria and chloroplasts in the rice. They not only suppress rice immune defenses but also exacerbate vulnerability to disease by inducing expression of susceptibility-related genes. The recently released reports provide valuable insights into the molecular mechanisms underlying the rice-pathogen interactions and offer promising a new direction for breeding disease-resistant rice varieties.

  • [1]
    GAO P,LI M Y,WANG X Q,et al. Identification of elite R-gene combinations against blast disease in Geng rice varieties[J]. International Journal of Molecular Sciences,2023,24(4) :3984. DOI: 10.3390/ijms24043984
    [2]
    WILSON R A,TALBOT N J. Under pressure:Investigating the biology of plant infection by Magnaporthe oryzae[J]. Nature Reviews Microbiology,2009,7(3) :185−195. DOI: 10.1038/nrmicro2032
    [3]
    MARCEL S,SAWERS R,OAKELEY E,et al. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae[J]. The Plant Cell,2010,22(9) :3177−3187. DOI: 10.1105/tpc.110.078048
    [4]
    YAN X,TALBOT N J. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae[J]. Current Opinion in Microbiology,2016,34:147−153. DOI: 10.1016/j.mib.2016.10.001
    [5]
    SAUNDERS D G O,AVES S J,TALBOT N J. Cell cycle–mediated regulation of plant infection by the rice blast fungus[J]. The Plant Cell,2010,22(2) :497−507.
    [6]
    JONES J D G,DANGL J L. The plant immune system[J]. Nature,2006,444(7117) :323−329. DOI: 10.1038/nature05286
    [7]
    LIU X,HU X C,TU Z Y,et al. The roles of Magnaporthe oryzae avirulence effectors involved in blast resistance/susceptibility[J]. Frontiers in Plant Science,2024,15:1478159. DOI: 10.3389/fpls.2024.1478159
    [8]
    BLOCK A,LI G Y,FU Z Q,et al. Phytopathogen type III effector weaponry and their plant targets[J]. Current Opinion in Plant Biology,2008,11(4) :396−403. DOI: 10.1016/j.pbi.2008.06.007
    [9]
    CHEN C L,VAN DER HOORN R A L,BUSCAILL P. Releasing hidden MAMPs from precursor proteins in plants[J]. Trends in Plant Science,2024,29(4) :428−436. DOI: 10.1016/j.tplants.2023.09.013
    [10]
    DODDS P N,CHEN J,OUTRAM M A. Pathogen perception and signaling in plant immunity[J]. The Plant Cell,2024,36(5) :1465−1481. DOI: 10.1093/plcell/koae020
    [11]
    DODDS P N,RATHJEN J P. Plant immunity:Towards an integrated view of plant–pathogen interactions[J]. Nature Reviews Genetics,2010,11(8) :539−548. DOI: 10.1038/nrg2812
    [12]
    MACHO A P,ZIPFEL C. Plant PRRs and the activation of innate immune signaling[J]. Molecular Cell,2014,54(2) :263−272. DOI: 10.1016/j.molcel.2014.03.028
    [13]
    NGUYEN Q M,ISWANTO A B B,SON G H,et al. Recent advances in effector-triggered immunity in plants:New pieces in the puzzle create a different paradigm[J]. International Journal of Molecular Sciences,2021,22(9) :4709. DOI: 10.3390/ijms22094709
    [14]
    FERNANDES P,PIMENTEL D,RAMIRO R S,et al. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors[J]. Frontiers in Plant Science,2024,15:1439380. DOI: 10.3389/fpls.2024.1439380
    [15]
    JONES J D G,STASKAWICZ B J,DANGL J L. The plant immune system:From discovery to deployment[J]. Cell,2024,187(9) :2095−2116. DOI: 10.1016/j.cell.2024.03.045
    [16]
    SHAO Z Q,WANG B,CHEN J Q. Tracking ancestral lineages and recent expansions of NBS-LRR genes in angiosperms[J]. Plant Signaling & Behavior,2016,11(7) :e1197470.
    [17]
    YUAN M H,JIANG Z Y,BI G Z,et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature,2021,592(7852) :105−109. DOI: 10.1038/s41586-021-03316-6
    [18]
    TIAN H N,CHEN S Y,WU Z S,et al. Activation of TIR signaling is required for pattern-triggered immunity[J]. bioRxiv,2020. DOI: 10.1101/2020.12.27.424494.
    [19]
    ZHAI K R,LIANG D,LI H L,et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature,2022,601(7892) :245−251. DOI: 10.1038/s41586-021-04219-2
    [20]
    ALI S,TYAGI A,AHMAD MIR Z. Plant immunity:At the crossroads of pathogen perception and defense response[J]. Plants,2024,13(11) :1434. DOI: 10.3390/plants13111434
    [21]
    LANG J,GENOT B,BIGEARD J,et al. MPK3 and MPK6 control salicylic acid signaling by up-regulating NLR receptors during pattern- and effector-triggered immunity[J]. Journal of Experimental Botany,2022,73(7) :2190−2205. DOI: 10.1093/jxb/erab544
    [22]
    ZHANG Y J,YU Q L,GAO S L,et al. Disruption of the primary salicylic acid hydroxylases in rice enhances broad-spectrum resistance against pathogens[J]. Plant,Cell & Environment,2022,45(7) :2211–2225.
    [23]
    LIU Z Q,QIU J H,SHEN Z N,et al. The E3 ubiquitin ligase OsRGLG5 targeted by the Magnaporthe oryzae effector AvrPi9 confers basal resistance against rice blast[J]. Plant Communications,2023,4(5) :100626. DOI: 10.1016/j.xplc.2023.100626
    [24]
    ZHU Z W,XIONG J,SHI H,et al. Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis[J]. Nature Communications,2023,14:8399. DOI: 10.1038/s41467-023-44197-9
    [25]
    GUO J Y,WU Y L,HUANG J Q,et al. The Magnaporthe oryzae effector Avr-PikD suppresses rice immunity by inhibiting an LSD1-like transcriptional activator[J]. The Crop Journal,2024,12(2) :482−492. DOI: 10.1016/j.cj.2024.01.011
    [26]
    LIU M X,WANG F F,HE B,et al. Targeting Magnaporthe oryzae effector MoErs1 and host papain-like protease OsRD21 interaction to combat rice blast[J]. Nature Plants,2024,10(4) :618−632. DOI: 10.1038/s41477-024-01642-x
    [27]
    FLOR H H. Current status of the gene-for-gene concept[J]. Annual Review of Phytopathology,1971,9:275−296. DOI: 10.1146/annurev.py.09.090171.001423
    [28]
    SETT S,PRASAD A,PRASAD M. Resistance genes on the verge of plant–virus interaction[J]. Trends in Plant Science,2022,27(12) :1242−1252. DOI: 10.1016/j.tplants.2022.07.003
    [29]
    XIE Y J,WANG Y P,YU X Z,et al. SH3P2,an SH3 domain-containing protein that interacts with both Pib and AvrPib,suppresses effector-triggered,Pib-mediated immunity in rice[J]. Molecular Plant,2022,15(12) :1931−1946. DOI: 10.1016/j.molp.2022.10.022
    [30]
    WANG Z C,YANG D W,ZHONG G T,et al. Nucleotide-binding leucine-rich repeat receptor homologs Pib and PibH8 interact and contribute to immunity in rice[J]. Plant Physiology,2024,195(4) :3010−3023. DOI: 10.1093/plphys/kiae244
    [31]
    HAN J L,WANG X Y,WANG F P,et al. The fungal effector avr-pita suppresses innate immunity by increasing COX activity in rice mitochondria[J]. Rice,2021,14(1) :12. DOI: 10.1186/s12284-021-00453-4
    [32]
    XIAO G,LAKSANAVILAT N,CESARI S,et al. The unconventional resistance protein PTR recognizes the Magnaporthe oryzae effector AVR-Pita in an allele-specific manner[J]. Nature Plants,2024,10(6) :994−1004. DOI: 10.1038/s41477-024-01694-z
    [33]
    DE LA CONCEPCION J C,FUJISAKI K,BENTHAM A R,et al. A blast fungus zinc-finger fold effector binds to a hydrophobic pocket in host Exo70 proteins to modulate immune recognition in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(43) :e2210559119.
    [34]
    OIKAWA K,FUJISAKI K,SHIMIZU M,et al. The blast pathogen effector AVR-Pik binds and stabilizes rice heavy metal-associated (HMA) proteins to co-opt their function in immunity[J]. PLoS Pathogens,2024,20(11) :e1012647. DOI: 10.1371/journal.ppat.1012647
    [35]
    SHI X T,XIONG Y H,ZHANG K,et al. The ANIP1-OsWRKY62 module regulates both basal defense and Pi9-mediated immunity against Magnaporthe oryzae in rice[J]. Molecular Plant,2023,16(4) :739−755. DOI: 10.1016/j.molp.2023.03.001
    [36]
    ZHANG C Y,FANG H,SHI X T,et al. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman–Birk trypsin inhibitor[J]. Plant Biotechnology Journal,2020,18(11) :2354−2363. DOI: 10.1111/pbi.13400
    [37]
    ZHANG F,FANG H,WANG M,et al. APIP5 functions as a transcription factor and an RNA-binding protein to modulate cell death and immunity in rice[J]. Nucleic Acids Research,2022,50(9) :5064−5079. DOI: 10.1093/nar/gkac316
    [38]
    PARK C H,CHEN S B,SHIRSEKAR G,et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern–triggered immunity in rice[J]. The Plant Cell,2012,24(11) :4748−4762. DOI: 10.1105/tpc.112.105429
    [39]
    PARK C H,SHIRSEKAR G,BELLIZZI M,et al. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor piz-t in rice[J]. PLoS Pathogens,2016,12(3) :e1005529. DOI: 10.1371/journal.ppat.1005529
    [40]
    TANG M Z,NING Y S,SHU X L,et al. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae[J]. Rice,2017,10(1) :5. DOI: 10.1186/s12284-017-0144-7
    [41]
    SHI X T,LONG Y,HE F,et al. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel[J]. PLoS Pathogens,2018,14(1) :e1006878. DOI: 10.1371/journal.ppat.1006878
    [42]
    GAO M J,HE Y,YIN X,et al. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector[J]. Cell,2021,184(21) :5391–5404. e17.
    [43]
    CESARI S,THILLIEZ G,RIBOT C,et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding[J]. The Plant Cell,2013,25(4) :1463−1481. DOI: 10.1105/tpc.112.107201
    [44]
    MIKI S,MATSUI K,KITO H,et al. Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae[J]. Molecular Plant Pathology,2009,10(3) :361−374. DOI: 10.1111/j.1364-3703.2009.00534.x
    [45]
    ZHANG S L,WANG L,WU W H,et al. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib[J]. Scientific Reports,2015,5:11642. DOI: 10.1038/srep11642
    [46]
    VO K T X ,LEE S K ,HALANE M K ,et al. Pi5 and Pii Paired NLRs Are Functionally Exchangeable and Confer Similar Disease Resistance Specificity[J]. Molecules and Cells,2019,42(9) . DOI: 10.14348/molcells.2019.0070.
    [47]
    WU W H,WANG L,ZHANG S,et al. Stepwise arms race between AvrPik and Pik alleles in the rice blast pathosystem[J]. Molecular Plant-Microbe Interactions®,2014,27(8) :759−769.
    [48]
    WU J,KOU Y J,BAO J D,et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice[J]. New Phytologist,2015,206(4) :1463−1475. DOI: 10.1111/nph.13310
    [49]
    SARKAR C,SAKLANI B K,SINGH P K,et al. Variation in the LRR region of Pi54 protein alters its interaction with the AvrPi54 protein revealed by in silico analysis[J]. PLoS One,2019,14(11) :e0224088. DOI: 10.1371/journal.pone.0224088
    [50]
    CHAUHAN R,FARMAN M,ZHANG H B,et al. Genetic and physical mapping of a rice blast resistance locus,Pi-CO39(t) ,that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea[J]. Molecular Genetics and Genomics,2002,267(5) :603−612. DOI: 10.1007/s00438-002-0691-4
    [51]
    CESARI S,XI Y X,DECLERCK N,et al. New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain[J]. Nature Communications,2022,13:1524. DOI: 10.1038/s41467-022-29196-6
    [52]
    GUO J Y,HONG Y H,HUANG J Q,et al. Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9[J]. Fujian Journal of Agricultural Sciences,2022,37(5) :668−674.
    [53]
    YANG T,SONG L L,HU J X,et al. Magnaporthe oryzae effector AvrPik-D targets a transcription factor WG7 to suppress rice immunity[J]. Rice,2024,17(1) :14. DOI: 10.1186/s12284-024-00693-0
    [54]
    ZHANG S J,XU J R. Effectors and effector delivery in Magnaporthe oryzae[J]. PLoS Pathogens,2014,10(1) :e1003826. DOI: 10.1371/journal.ppat.1003826
    [55]
    XU G J,ZHONG X H,SHI Y L,et al. A fungal effector targets a heat shock–dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity[J]. Science Advances,2020,6(48) :eabb7719. DOI: 10.1126/sciadv.abb7719
    [56]
    LIU X Y,GAO Y X,GUO Z Q,et al. MoIug4 is a novel secreted effector promoting rice blast by counteracting host OsAHL1-regulated ethylene gene transcription[J]. New Phytologist,2022,235(3) :1163−1178. DOI: 10.1111/nph.18169
    [57]
    KIM S,KIM C Y,PARK S Y,et al. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming[J]. Nature Communications,2020,11:5845. DOI: 10.1038/s41467-020-19624-w
    [58]
    LEE S,VÖLZ R,LIM Y J,et al. The nuclear effector MoHTR3 of Magnaporthe oryzae modulates host defence signalling in the biotrophic stage of rice infection[J]. Molecular Plant Pathology,2023,24(6) :602−615. DOI: 10.1111/mpp.13326
    [59]
    SHI X T,XIE X,GUO Y W,et al. A fungal core effector exploits the OsPUX8B. 2–OsCDC48-6 module to suppress plant immunity[J]. Nature Communications,2024,15:2559. DOI: 10.1038/s41467-024-46903-7
    [60]
    HU J X,LIU M X,ZHANG A,et al. Co-evolved plant and blast fungus ascorbate oxidases orchestrate the redox state of host apoplast to modulate rice immunity[J]. Molecular Plant,2022,15(8) :1347−1366. DOI: 10.1016/j.molp.2022.07.001
    [61]
    TAKEDA T,TAKAHASHI M,SHIMIZU M,et al. Rice apoplastic CBM1-interacting protein counters blast pathogen invasion by binding conserved carbohydrate binding module 1 motif of fungal proteins[J]. PLoS Pathogens,2022,18(9) :e1010792. DOI: 10.1371/journal.ppat.1010792
    [62]
    YANG C,YU Y Q,HUANG J K,et al. Binding of the Magnaporthe oryzae chitinase MoChia1 by a rice tetratricopeptide repeat protein allows free chitin to trigger immune responses[J]. The Plant Cell,2019,31(1) :172−188. DOI: 10.1105/tpc.18.00382
    [63]
    BÖHNERT H U,FUDAL I,DIOH W,et al. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea Signals pathogen attack to resistant rice [W[J]. The Plant Cell,2004,16(9) :2499−2513. DOI: 10.1105/tpc.104.022715
  • Related Articles

    [1]ZHANG Chengkang, WANG Yang, HUANG Xin, GUO Tianlong, LIN Wei. Pathogenic Functions of MoDock1 and MoElmo1 in Magnaporthe oryzae[J]. Fujian Journal of Agricultural Sciences, 2025, 40(4): 406-414. DOI: 10.19303/j.issn.1008-0384.2025.04.010
    [2]LAN Hanhong. Characterization of vsiRNAs derived from Cymbidium Mosaic/Odontoglossum Ringspot Viruses in co-infected Phalaenopsis equestris[J]. Fujian Journal of Agricultural Sciences, 2024, 39(9): 1086-1093. DOI: 10.19303/j.issn.1008-0384.2024.09.010
    [3]GUO Lina, SHEN Hongying, WANG Jue, YU Diandian, ZHANG Xufeng, GUO Yuan. Interacting Proteins of Olfactroy Receptor OR1and OR2 with Co-IP Approach Followed by Mass Spectrometry Analysis in Apis cerana cerana[J]. Fujian Journal of Agricultural Sciences, 2024, 39(1): 7-16. DOI: 10.19303/j.issn.1008-0384.2024.01.002
    [4]CHEN Yutong, TIAN Shujing, LU Chunxiu, SU Chunyu, LV Qizhuang, HUANG Wei. Research Progress on Intracellular Proteins Interacting with PCV2 Rep[J]. Fujian Journal of Agricultural Sciences, 2023, 38(8): 1004-1010. DOI: 10.19303/j.issn.1008-0384.2023.08.015
    [5]HU Li, WAN Chao, ZHANG Qu, CHEN Qingxi, WU Binghua, YUAN Yuan. Interacting Proteins with JsMYB305 Transcription Factor in Jasminum sambac[J]. Fujian Journal of Agricultural Sciences, 2022, 37(9): 1135-1144. DOI: 10.19303/j.issn.1008-0384.2022.009.004
    [6]GUO Jiayuan, HONG Yonghe, HUANG Jianqiang, WU Yiling, WANG Zonghua, CHEN Songbiao, CHEN Xiaofeng. Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9[J]. Fujian Journal of Agricultural Sciences, 2022, 37(5): 668-674. DOI: 10.19303/j.issn.1008-0384.2022.005.015
    [7]MIAO Shuyue, GAO Xiaoxiao, ZHENG Limin, CHEN Jianbin, ZHAO Xingyue, CHENG Jue, CHEN Sha, ZHANG Songbai, LIU Yong. Host Factors in Tobacco Interacting with N Protein of Tomato Spotted Wilt Virus[J]. Fujian Journal of Agricultural Sciences, 2021, 36(2): 221-227. DOI: 10.19303/j.issn.1008-0384.2021.02.013
    [8]XIONG Gui-hong, LIU Xiao-juan, YANG Liang, WU Zu-jian. Subcellular Localization Analysis of Rice Protein Kinase Gene OsCIPK5 and Generation of Its RNAi Transgenic Plants[J]. Fujian Journal of Agricultural Sciences, 2017, 32(4): 353-358. DOI: 10.19303/j.issn.1008-0384.2017.04.001
    [9]DING Xiao-chun, CHEN Wei-xin, LI Xue-ping. Research Progress of Protein-protein Interaction Technology A Research Review of the Technology of Protein-protein Interaction[J]. Fujian Journal of Agricultural Sciences, 2016, 31(10): 1131-1138. DOI: 10.19303/j.issn.1008-0384.2016.10.024
    [10]LAN Han-hong. Research of Fonctuonal Region Involved in the Self-interaction of Rice Stripe Virus Coat Protein[J]. Fujian Journal of Agricultural Sciences, 2016, 31(9): 957-961. DOI: 10.19303/j.issn.1008-0384.2016.09.011

Catalog

    Article Metrics

    Article views (73) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return