• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
LAN H H. Characterization of vsiRNAs derived from Cymbidium Mosaic/Odontoglossum Ringspot Viruses in co-infected Phalaenopsis equestris [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1086−1093. DOI: 10.19303/j.issn.1008-0384.2024.09.010
Citation: LAN H H. Characterization of vsiRNAs derived from Cymbidium Mosaic/Odontoglossum Ringspot Viruses in co-infected Phalaenopsis equestris [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1086−1093. DOI: 10.19303/j.issn.1008-0384.2024.09.010

Characterization of vsiRNAs derived from Cymbidium Mosaic/Odontoglossum Ringspot Viruses in co-infected Phalaenopsis equestris

More Information
  • Received Date: April 16, 2024
  • Revised Date: May 22, 2024
  • Available Online: November 10, 2024
  • Objective 

    Interactions between Phalaenopsis equestris and cymbidium mosaic virus (CymMV) and odontoglossum ringspot virus (ORSV) were studied to aid the effort in developing effective preventive and control means against the diseases caused by the pathogens.

    Method 

    The coat protein (CP) genes of CymMV and ORSV were amplified using RT-PCR. Under an electron microscope, viral morphology and size of CymMV and ORSV particles in P. equestris cells were examined. Abundance, length, base preference and origin of virus-derived vsiRNAs were analyzed applying the small RNA deep sequencing technology.

    Result 

    The amplifications of CP genes of CymMV and ORSV were specifically obtain by RT-PCR. The electron microscopy revealed the lengths of the rod-like CymMV to be approximate 300 nm, while the linear ORSV, 500 nm. The small RNA deep sequencing yielded 7 563 892 CymMV-derived and 6 133 689 ORSV-derived vsiRNAs exhibiting the universality and specificity in abundance, length, base preference and sense strand distribution.

    Conclusion 

    Co-infections of CymMV and ORSV on P. equestris were clearly demonstrated in this study. The vsiRNAs of CymMV and ORSV displayed characteristic patterns in abundance, length, base preferences and sense strand distribution.

  • [1]
    庄西卿. 中国国兰产业化发展的问题与对策 [J]. 福建热作科技, 2004, 29(1):23−25. DOI: 10.3969/j.issn.1006-2327.2004.01.013

    ZHUANG X Q. The development for the production of Chinese orchids (Cymbidium) in large quantity [J]. Fujian Science & Technology of Tropical Crops, 2004, 29(1): 23−25. (in Chinese) DOI: 10.3969/j.issn.1006-2327.2004.01.013
    [2]
    KADO C I , ENSEN D D. Cymbidium mosaic virus in Phalaenopsis [J]. Phytopathology, 1964, 54: 944-947.
    [3]
    INOUYE N. Host range and properties of a strain of Odontoglossum ringspot virus in Japan [J]. Nogaku kenkyu, 1983, 60(2): 53−67.
    [4]
    ZETTLER F W. Viruses of orchids and their control [J]. Plant Disease, 1990, 74(9): 621−626. DOI: 10.1094/PD-74-0621
    [5]
    BAKER C A, DAVISON D, JONES L. Impatiens necrotic spot virus and Tomato spotted wilt virus Diagnosed in Phalaenopsis Orchids from Two Florida Nurseries [J]. Plant Disease, 2007, 91(11): 1515.
    [6]
    ZHENG Y X, CHEN C C, YANG C J, et al. Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids [J]. European Journal of Plant Pathology, 2008, 120(2): 199−209. DOI: 10.1007/s10658-007-9208-7
    [7]
    ZHANG Q, DING Y M, LI M. First Report of Impatiens necrotic spot virus Infecting Phalaenopsis and Dendrobium Orchids in Yunnan Province, China [J]. Plant Disease, 2010, 94(7): 915.
    [8]
    LESEMANN D E. Long, filamentous virus-like particles associated with vein necrosis of Dendrobium phalaenopsis [J]. Journal of Phytopathology, 1977, 89(4): 330−339. DOI: 10.1111/j.1439-0434.1977.tb02873.x
    [9]
    ZHENG Y X, CHEN C C, CHEN Y K, et al. Identification and characterization of a potyvirus causing chlorotic spots on Phalaenopsis orchids [J]. European Journal of Plant Pathology, 2008, 121(1): 87−95. DOI: 10.1007/s10658-008-9281-6
    [10]
    ZHENG Y X, CHEN C C, JAN F J. First Report of Carnation mottle virus in Phalaenopsis Orchids [J]. Plant Disease, 2011, 95(3): 354.
    [11]
    LESEMANN D, BEGTRUP J. Elektronenmikroskopischer Nachweis eines bazilliformen Virus in Phalaenopsis [J]. Journal of Phytopathology, 1971, 71(3): 257−269. DOI: 10.1111/j.1439-0434.1971.tb03162.x
    [12]
    施农农, 徐莺, 王慧中, 等. 复合感染建兰花叶病毒和齿兰环斑病毒的兰花超微结构观察及病原物快速鉴定 [J]. 分子细胞生物学报, 2007, 40(2):153−163.

    SHI N N, XU Y, WANG H Z, et al. Molecular identification of Cymbidium mosaic potexvirus and Odontoglossum ringspot tobamovirus complex infected Phalaenopsis and its pathological ultrastructural alteration [J]. Journal of Molecular Cell Biology, 2007, 40(2): 153−163. (in Chinese)
    [13]
    张建军, 谢为龙. 兰花病毒病研究进展 [J]. 植物检疫, 1999, 13(2):47−49.

    ZHANG J J, XIE W L. Research progress of orchid virus disease [J]. Plant Quarantine, 1999, 13(2): 47−49. (in Chinese)
    [14]
    刘黎卿, 林志楷, 郭莺. 蝴蝶兰病毒病研究进展及防治对策综述 [J]. 安徽农学通报, 2010, 16(24):21−23,126. DOI: 10.3969/j.issn.1007-7731.2010.24.012

    LIU L Q, LIN Z K, GUO Y. Progress on molecule biology of Phalaenopsis virus and the corresponding prevention measures [J]. Anhui Agricultural Science Bulletin, 2010, 16(24): 21−23,126. (in Chinese) DOI: 10.3969/j.issn.1007-7731.2010.24.012
    [15]
    DING S W. RNA-based antiviral immunity [J]. Nature Reviews Immunology, 2010, 10(9): 632−644. DOI: 10.1038/nri2824
    [16]
    BLEVINS T, RAJESWARAN R, SHIVAPRASAD P V, et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing [J]. Nucleic Acids Research, 2006, 34(21): 6233−6246. DOI: 10.1093/nar/gkl886
    [17]
    GUO Z X, LI Y, DING S W. Small RNA-based antimicrobial immunity [J]. Nature Reviews Immunology, 2019, 19(1): 31−44. DOI: 10.1038/s41577-018-0071-x
    [18]
    LAN H H, LU L M. Characterization of Hibiscus Latent Fort Pierce Virus-Derived siRNAs in Infected Hibiscus rosa-Sinensis in China [J]. The Plant Pathology Journal, 2020, 36(6): 618−627. DOI: 10.5423/PPJ.OA.09.2020.0169
    [19]
    PAI H, JEAN W H, LEE Y S, et al. Genome-wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis [J]. Molecular Plant Pathology, 2020, 21(2): 188−205. DOI: 10.1111/mpp.12888
    [20]
    LIU C, CHEN Z, HU Y, et al. Complemented palindromic small RNAs first discovered from SARS coronavirus [J]. Genes, 2018, 9(9): 442. DOI: 10.3390/genes9090442
    [21]
    NIU X R, SUN Y, CHEN Z, et al. Using small RNA-seq data to detect siRNA duplexes induced by plant viruses [J]. Genes, 2017, 8(6): 163. DOI: 10.3390/genes8060163
    [22]
    BAULCOMBE D. RNA silencing in plants [J]. Nature, 2006, 431(7006): 356−363.
    [23]
    MI S J, CAI T, HU Y G, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide [J]. Cell, 2008, 133(1): 116−127. DOI: 10.1016/j.cell.2008.02.034
    [24]
    DONAIRE L, BARAJAS D, MARTÍNEZ-GARCÍA B, et al. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs [J]. Journal of Virology, 2008, 82(11): 5167−5177. DOI: 10.1128/JVI.00272-08
    [25]
    XU D L, ZHOU G H. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation [J]. Virology Journal, 2017, 14(1): 27. DOI: 10.1186/s12985-017-0699-3
    [26]
    HO T, WANG H, PALLETT D, et al. Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins [J]. FEBS Letters, 2007, 581(17): 3267−3272. DOI: 10.1016/j.febslet.2007.06.022
    [27]
    LI Y Q, DENG C L, SHANG Q X, et al. Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants [J]. Archives of Virology, 2016, 161(2): 455−458. DOI: 10.1007/s00705-015-2687-5
    [28]
    XIA Z H, PENG J, LI Y Q, et al. Characterization of small interfering RNAs derived from Sugarcane mosaic virus in infected maize plants by deep sequencing [J]. PLoS One, 2014, 9(5): e97013. DOI: 10.1371/journal.pone.0097013
    [29]
    YANG J, ZHENG S L, ZHANG H M, et al. Analysis of small RNAs derived from Chinese wheat mosaic virus [J]. Archives of Virology, 2014, 159(11): 3077−3082. DOI: 10.1007/s00705-014-2155-7
    [30]
    FLYNT A, LIU N, MARTIN R, et al. Dicing of viral replication intermediates during silencing of latent Drosophila viruses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5270−5275.
    [31]
    MOLNÁR A, CSORBA T, LAKATOS L, et al. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs [J]. Journal of Virology, 2005, 79(12): 7812−7818. DOI: 10.1128/JVI.79.12.7812-7818.2005
  • Related Articles

    [1]ZHAO Xinxin, WEI Yundong, CHEN Ruirui, ZHOU Shiyi, ZHENG Hua, MA Chongxi, XU Chuan, LI Jun, LU Saiqing. Fungal Community and C, N, P, and S Functional Genes in Rhizosphere Soil of Cassava Field Treated with a Slow-release Fertilizer[J]. Fujian Journal of Agricultural Sciences, 2024, 39(8): 914-926. DOI: 10.19303/j.issn.1008-0384.2024.08.005
    [2]YUAN Chao, ZHANG Panpan, PANG Wenbo, CHENG Yuanyuan, ZHANG Taoxiang. Ectomycorrhizal Fungi Communities at Natural and Cultivated Castanea henryi Forests[J]. Fujian Journal of Agricultural Sciences, 2023, 38(3): 367-375. DOI: 10.19303/j.issn.1008-0384.2023.03.014
    [3]HU Qianyu, CAI Yongzhan, HAN Xiaonyu, FU Zongwei, LIU Shun, YANG Zuheng, LEI Lei, CHEN Xiaolong, FANG Yu, YU Lei, HUANG Feiyan. Bacterial Community Structure and Diversity in Rhizosphere Soils in Healthy and Black Shank-infected Tobacco Fields[J]. Fujian Journal of Agricultural Sciences, 2022, 37(2): 233-239. DOI: 10.19303/j.issn.1008-0384.2022.002.013
    [4]QIN Yumeng, ZHOU Xiaoli, GUAN Qingling, LIU Yunhan, WU Chengmu. Fungal Diversity in Natural Tomato Fermentation as Shown by High-throughput Sequencing[J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1110-1118. DOI: 10.19303/j.issn.1008-0384.2021.09.017
    [5]WANG Yanhong, HAO Zhao, ZHANG Yanming, GUO Xiaofang, Deji  . Relationship between Environmental Factors and Diversity of Culturable Yeasts in Rhizosphere Soil of Rice Field on Tibetan Plateau[J]. Fujian Journal of Agricultural Sciences, 2021, 36(7): 817-825. DOI: 10.19303/j.issn.1008-0384.2021.07.011
    [6]GAO Huifang, XU Jiayin, MENG Ting, CHEN Jinshao, QIU Junzhi, ZHANG Zhongyi, ZHANG Liaoyuan. Microbial Diversity in Rhizosphere Soil of Pseudostellaria heterophylla and Its Correlation with Main Soil Physicochemical Factor[J]. Fujian Journal of Agricultural Sciences, 2021, 36(3): 345-357. DOI: 10.19303/j.issn.1008-0384.2021.03.014
    [7]YANG Xin, FAN Wu-jing, LI Li-shu, HE Hu-yi, TANG Zhou-ping. Effect of Cultivation Practices on Fungal Diversity in Rhizosphere Soil at Winter Potato Fields as Determined by High-throughput Sequencing[J]. Fujian Journal of Agricultural Sciences, 2020, 35(2): 192-199. DOI: 10.19303/j.issn.1008-0384.2020.02.010
    [8]HE Bin, LI Qing, XUE Xiao-hui, LIU Yong. Composition and Diversity of Forests at Caohai National Nature Reserve[J]. Fujian Journal of Agricultural Sciences, 2019, 34(11): 1332-1341. DOI: 10.19303/j.issn.1008-0384.2019.11.014
    [9]LAI Bao-chun, DAI Rui-qing, WU Zhen-qiang, LI Feng, LIN De-feng, WANG Jia-rui. Bacterial Diversities in Rhizosphere Soils at Sites of Healthy and Fusarium Wilt Infected Chili Plants[J]. Fujian Journal of Agricultural Sciences, 2019, 34(9): 1073-1080. DOI: 10.19303/j.issn.1008-0384.2019.09.012
    [10]CHEN Ze-bin, LI Bing, WANG Ding-kang, YU Lei, LIU Jia-ni, XU Sheng-guang, JIN Song, REN Zhen. Diversity of Endophytic Fungi in Leaves of Dendrobium candidum[J]. Fujian Journal of Agricultural Sciences, 2015, 30(10): 978-983. DOI: 10.19303/j.issn.1008-0384.2015.10.011
  • Cited by

    Periodical cited type(2)

    1. 沈文浩,郑丽屏,周建芹,王剑文. 子实体伴生菌多样性及其生物活性研究进展. 微生物学报. 2025(04): 1433-1445 .
    2. 熊雪,李鹏,向准,黄静. 一株我国特有低温草菇菌株液体菌种发酵条件优化. 广东农业科学. 2024(10): 42-52 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (98) PDF downloads (36) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return