• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents
LAN H H. Characterization of vsiRNAs derived from Cymbidium Mosaic/Odontoglossum Ringspot Viruses in co-infected Phalaenopsis equestris [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−8
Citation: LAN H H. Characterization of vsiRNAs derived from Cymbidium Mosaic/Odontoglossum Ringspot Viruses in co-infected Phalaenopsis equestris [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−8

Characterization of vsiRNAs derived from Cymbidium Mosaic/Odontoglossum Ringspot Viruses in co-infected Phalaenopsis equestris

  • Received Date: 2024-04-17
  • Rev Recd Date: 2024-05-23
  • Available Online: 2024-11-11
  •   Objective  Interactions between Phalaenopsis equestris and cymbidium mosaic virus (CymMV) and odontoglossum ringspot virus (ORSV) were studied to aid the effort in developing effective preventive and control means against the diseases caused by the pathogens.   Method   The coat protein (CP) genes of CymMV and ORSV were amplified using RT-PCR. Under an electron microscope, viral morphology and size of CymMV and ORSV particles in P. equestris cells were examined. Abundance, length, base preference and origin of virus-derived vsiRNAs were analyzed applying the small RNA deep sequencing technology.   Result   The amplifications of CP genes of CymMV and ORSV were specifically obtain by RT-PCR. The electron microscopy revealed the lengths of the rod-like CymMV to be approximate 300 nm, while the linear ORSV, 500 nm. The small RNA deep sequencing yielded 7 563 892 CymMV-derived and 6 133 689 ORSV-derived vsiRNAs exhibiting the universality and specificity in abundance, length, base preference and sense strand distribution.   Conclusion  Co-infections of CymMV and ORSV on P. equestris were clearly demonstrated in this study. The vsiRNAs of CymMV and ORSV displayed characteristic patterns in abundance, length, base preferences and sense strand distribution.
  • loading
  • [1]
    庄西卿. 中国国兰产业化发展的问题与对策 [J]. 福建热作科技, 2004, 29(1):23−25. doi: 10.3969/j.issn.1006-2327.2004.01.013

    ZHUANG X Q. The development for the production of Chinese orchids (Cymbidium) in large quantity [J]. Fujian Science & Technology of Tropical Crops, 2004, 29(1): 23−25. (in Chinese) doi: 10.3969/j.issn.1006-2327.2004.01.013
    [2]
    KADO C I , ENSEN D D. Cymbidium mosaic virus in Phalaenopsis [J]. Phytopathology, 1964, 54: 944-947.
    [3]
    INOUYE N. Host range and properties of a strain of Odontoglossum ringspot virus in Japan [J]. Nogaku kenkyu, 1983, 60(2): 53−67.
    [4]
    ZETTLER F W. Viruses of orchids and their control [J]. Plant Disease, 1990, 74(9): 621−626. doi: 10.1094/PD-74-0621
    [5]
    BAKER C A, DAVISON D, JONES L. Impatiens necrotic spot virus and Tomato spotted wilt virus Diagnosed in Phalaenopsis Orchids from Two Florida Nurseries [J]. Plant Disease, 2007, 91(11): 1515.
    [6]
    ZHENG Y X, CHEN C C, YANG C J, et al. Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids [J]. European Journal of Plant Pathology, 2008, 120(2): 199−209. doi: 10.1007/s10658-007-9208-7
    [7]
    ZHANG Q, DING Y M, LI M. First Report of Impatiens necrotic spot virus Infecting Phalaenopsis and Dendrobium Orchids in Yunnan Province, China [J]. Plant Disease, 2010, 94(7): 915.
    [8]
    LESEMANN D E. Long, filamentous virus-like particles associated with vein necrosis of Dendrobium phalaenopsis [J]. Journal of Phytopathology, 1977, 89(4): 330−339. doi: 10.1111/j.1439-0434.1977.tb02873.x
    [9]
    ZHENG Y X, CHEN C C, CHEN Y K, et al. Identification and characterization of a potyvirus causing chlorotic spots on Phalaenopsis orchids [J]. European Journal of Plant Pathology, 2008, 121(1): 87−95. doi: 10.1007/s10658-008-9281-6
    [10]
    ZHENG Y X, CHEN C C, JAN F J. First Report of Carnation mottle virus in Phalaenopsis Orchids [J]. Plant Disease, 2011, 95(3): 354.
    [11]
    LESEMANN D, BEGTRUP J. Elektronenmikroskopischer Nachweis eines bazilliformen Virus in Phalaenopsis [J]. Journal of Phytopathology, 1971, 71(3): 257−269. doi: 10.1111/j.1439-0434.1971.tb03162.x
    [12]
    施农农, 徐莺, 王慧中, 等. 复合感染建兰花叶病毒和齿兰环斑病毒的兰花超微结构观察及病原物快速鉴定 [J]. 分子细胞生物学报, 2007, 40(2):153−163.

    SHI N N, XU Y, WANG H Z, et al. Molecular identification of Cymbidium mosaic potexvirus and Odontoglossum ringspot tobamovirus complex infected Phalaenopsis and its pathological ultrastructural alteration [J]. Journal of Molecular Cell Biology, 2007, 40(2): 153−163. (in Chinese)
    [13]
    张建军, 谢为龙. 兰花病毒病研究进展 [J]. 植物检疫, 1999, 13(2):47−49.

    ZHANG J J, XIE W L. Research progress of orchid virus disease [J]. Plant Quarantine, 1999, 13(2): 47−49. (in Chinese)
    [14]
    刘黎卿, 林志楷, 郭莺. 蝴蝶兰病毒病研究进展及防治对策综述 [J]. 安徽农学通报, 2010, 16(24):21−23,126. doi: 10.3969/j.issn.1007-7731.2010.24.012

    LIU L Q, LIN Z K, GUO Y. Progress on molecule biology of Phalaenopsis virus and the corresponding prevention measures [J]. Anhui Agricultural Science Bulletin, 2010, 16(24): 21−23,126. (in Chinese) doi: 10.3969/j.issn.1007-7731.2010.24.012
    [15]
    DING S W. RNA-based antiviral immunity [J]. Nature Reviews Immunology, 2010, 10(9): 632−644. doi: 10.1038/nri2824
    [16]
    BLEVINS T, RAJESWARAN R, SHIVAPRASAD P V, et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing [J]. Nucleic Acids Research, 2006, 34(21): 6233−6246. doi: 10.1093/nar/gkl886
    [17]
    GUO Z X, LI Y, DING S W. Small RNA-based antimicrobial immunity [J]. Nature Reviews Immunology, 2019, 19(1): 31−44. doi: 10.1038/s41577-018-0071-x
    [18]
    LAN H H, LU L M. Characterization of Hibiscus Latent Fort Pierce Virus-Derived siRNAs in Infected Hibiscus rosa-Sinensis in China [J]. The Plant Pathology Journal, 2020, 36(6): 618−627. doi: 10.5423/PPJ.OA.09.2020.0169
    [19]
    PAI H, JEAN W H, LEE Y S, et al. Genome-wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis [J]. Molecular Plant Pathology, 2020, 21(2): 188−205. doi: 10.1111/mpp.12888
    [20]
    LIU C, CHEN Z, HU Y, et al. Complemented palindromic small RNAs first discovered from SARS coronavirus [J]. Genes, 2018, 9(9): 442. doi: 10.3390/genes9090442
    [21]
    NIU X R, SUN Y, CHEN Z, et al. Using small RNA-seq data to detect siRNA duplexes induced by plant viruses [J]. Genes, 2017, 8(6): 163. doi: 10.3390/genes8060163
    [22]
    BAULCOMBE D. RNA silencing in plants [J]. Nature, 2006, 431(7006): 356−363.
    [23]
    MI S J, CAI T, HU Y G, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide [J]. Cell, 2008, 133(1): 116−127. doi: 10.1016/j.cell.2008.02.034
    [24]
    DONAIRE L, BARAJAS D, MARTÍNEZ-GARCÍA B, et al. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs [J]. Journal of Virology, 2008, 82(11): 5167−5177. doi: 10.1128/JVI.00272-08
    [25]
    XU D L, ZHOU G H. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation [J]. Virology Journal, 2017, 14(1): 27. doi: 10.1186/s12985-017-0699-3
    [26]
    HO T, WANG H, PALLETT D, et al. Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins [J]. FEBS Letters, 2007, 581(17): 3267−3272. doi: 10.1016/j.febslet.2007.06.022
    [27]
    LI Y Q, DENG C L, SHANG Q X, et al. Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants [J]. Archives of Virology, 2016, 161(2): 455−458. doi: 10.1007/s00705-015-2687-5
    [28]
    XIA Z H, PENG J, LI Y Q, et al. Characterization of small interfering RNAs derived from Sugarcane mosaic virus in infected maize plants by deep sequencing [J]. PLoS One, 2014, 9(5): e97013. doi: 10.1371/journal.pone.0097013
    [29]
    YANG J, ZHENG S L, ZHANG H M, et al. Analysis of small RNAs derived from Chinese wheat mosaic virus [J]. Archives of Virology, 2014, 159(11): 3077−3082. doi: 10.1007/s00705-014-2155-7
    [30]
    FLYNT A, LIU N, MARTIN R, et al. Dicing of viral replication intermediates during silencing of latent Drosophila viruses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5270−5275.
    [31]
    MOLNÁR A, CSORBA T, LAKATOS L, et al. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs [J]. Journal of Virology, 2005, 79(12): 7812−7818. doi: 10.1128/JVI.79.12.7812-7818.2005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return