Citation: | ZHANG A, DONG Y P, LIN X J, et al. Effects of coffee waste mulching on photosynthesis and water use efficiency of coffee seedlings [J]. Fujian Journal of Agricultural Sciences,2022,37(X):1−9 |
[1] |
张明达, 王睿芳, 李艺, 等. 云南省小粒咖啡种植生态适宜性区划 [J]. 中国生态农业学报, 2020, 28(2):168−178.
ZHANG M D, WANG R F, LI Y, et al. Ecological suitability zoning of Coffea arabica L. in Yunnan Province [J]. Chinese Journal of Eco-Agriculture, 2020, 28(2): 168−178.(in Chinese)
|
[2] |
GOMES L C, BIANCHI F J J A, CARDOSO I M, et al. Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil [J]. Agriculture, Ecosystems & Environment, 2020, 294: 106858.
|
[3] |
赵青云, 普浩杰, 王秋晶, 等. 咖啡果皮不同堆沤处理养分含量及其对咖啡植株生长的影响 [J]. 热带作物学报, 2020, 41(4):633−639. doi: 10.3969/j.issn.1000-2561.2020.04.001
ZHAO Q Y, PU H J, WANG Q J, et al. Nutrient content of coffee peel with different composting treatments and its effects on coffee plant growth [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 633−639.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.04.001
|
[4] |
BERG B. Litter decomposition and organic matter turnover in northern forest soils [J]. Forest Ecology and Management, 2000, 133(1/2): 13−22.
|
[5] |
赵青云, 邢诒彰, 林兴军, 等. 施用咖啡果皮对咖啡幼苗生长及土壤理化性状的影响 [J]. 热带农业科学, 2017, 37(8):54−59.
ZHAO Q Y, XING Y Z, LIN X J, et al. Effects of coffee fruit peel application on coffee seedlings growth and soil physiochemical characteristics [J]. Chinese Journal of Tropical Agriculture, 2017, 37(8): 54−59.(in Chinese)
|
[6] |
BABLA M H, TISSUE D T, CAZZONELLI C I, et al. Effect of high light on canopy-level photosynthesis and leaf mesophyll ion flux in tomato [J]. Planta, 2020, 252(5): 80. doi: 10.1007/s00425-020-03493-0
|
[7] |
EGUCHI T, TANAKA H, MORIUCHI D, et al. Temperature effects on the photosynthesis by the medicinal plant Pinellia ternata breit [J]. Environment Control in Biology, 2020, 58(2): 49−50. doi: 10.2525/ecb.58.49
|
[8] |
VICO G, WAY D A, HURRY V, et al. Can leaf net photosynthesis acclimate to rising and more variable temperatures? [J]. Plant, Cell & Environment, 2019, 42(6): 1913−1928.
|
[9] |
邢钰媛, 娄运生, 王坤, 等. 施用生物炭和硅肥对增温水稻叶片光合及荧光特性的影响 [J]. 农业环境科学学报, 2021, 40(2):451−463. doi: 10.11654/jaes.2020-0879
XING Y Y, LOU Y S, WANG K, et al. Effects of biochar and silicate supply on photosynthetic and fluorescence characteristics of rice leaves under nighttime warming [J]. Journal of Agro-Environment Science, 2021, 40(2): 451−463.(in Chinese) doi: 10.11654/jaes.2020-0879
|
[10] |
EGEA G, VERHOEF A, VIDALE P L. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models [J]. Agricultural and Forest Meteorology, 2011, 151(10): 1370−1384. doi: 10.1016/j.agrformet.2011.05.019
|
[11] |
苗玉, 高冠龙, 李伟. 黄土高原苹果树叶片气孔导度的环境响应与模拟 [J]. 干旱区地理, 2021, 44(2):525−533. doi: 10.12118/j.issn.10006060.2021.02.23
MIAO Y, GAO G L, LI W. Environmental response and modeling of stomatal conductance of apple trees on the Loess Plateau [J]. Arid Land Geography, 2021, 44(2): 525−533.(in Chinese) doi: 10.12118/j.issn.10006060.2021.02.23
|
[12] |
艾雪莹, 吴奇, 周宇飞, 等. 干旱-复水条件下氮素对高粱光合特性及抗氧化代谢的影响 [J]. 干旱地区农业研究, 2019, 37(5):99−105,113. doi: 10.7606/j.issn.1000-7601.2019.05.15
AI X Y, WU Q, ZHOU Y F, et al. Effects of nitrogen on photosynthesis and antioxidant enzyme activities of Sorghum under drought stress and re-watering [J]. Agricultural Research in the Arid Areas, 2019, 37(5): 99−105,113.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.05.15
|
[13] |
LIU G Y, DU Q J, LI J M. Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings [J]. Scientia Horticulturae, 2017, 214: 41−50. doi: 10.1016/j.scienta.2016.09.006
|
[14] |
ZHANG Y Q, WANG J D, GONG S H, et al. Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat [J]. Agricultural Water Management, 2017, 179: 277−287. doi: 10.1016/j.agwat.2016.08.007
|
[15] |
杨珊珊, 王茜, 胡庭兴, 等. 3种农作物(玉米、黄瓜、豇豆)对银木凋落叶化感作用的生理响应 [J]. 应用与环境生物学报, 2018, 24(2):292−298.
YANG S S, WANG Q, HU T X, et al. Physiological responses to allelopathy of decomposing Cinnamomum septentrionale leaf litter of three crops(corn, cucumber, and cowpea) [J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 292−298.(in Chinese)
|
[16] |
DILLAWAY D N, KRUGER E L. Trends in seedling growth and carbon-use efficiency vary among broadleaf tree species along a latitudinal transect in eastern North America [J]. Global Change Biology, 2014, 20(3): 908−922. doi: 10.1111/gcb.12427
|
[17] |
连亚妮, 杨可伟, 牟洪香, 等. 农田防护林系统植物水分利用效率研究 [J]. 林业与生态科学, 2021, 36(3):229−235.
LIAN Y N, YANG K W, MU H X, et al. Study on the plant water use efficiency (WUE) of farmland shelterbelts system [J]. Forestry and Ecological Sciences, 2021, 36(3): 229−235.(in Chinese)
|
[18] |
BRADFORD M A, CROWTHER T W. Carbon use efficiency and storage in terrestrial ecosystems [J]. New Phytologist, 2013, 199(1): 7−9. doi: 10.1111/nph.12334
|
[19] |
刘洋洋, 王倩, 杨悦, 等. 2000—2013年中国植被碳利用效率(CUE)时空变化及其与气象因素的关系 [J]. 水土保持研究, 2019, 26(5):278−286,2.
LIU Y Y, WANG Q, YANG Y, et al. Spatiotemporal dynamic of vegetation carbon use efficiency and its relationship with climate factors in China during the period 2000-2013 [J]. Research of Soil and Water Conservation, 2019, 26(5): 278−286,2.(in Chinese)
|
[20] |
DELUCIA E H, DRAKE J E, THOMAS R B, et al. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? [J]. Global Change Biology, 2007, 13(6): 1157−1167. doi: 10.1111/j.1365-2486.2007.01365.x
|
[21] |
MARTHEWS T R, MALHI Y, GIRARDIN C A J, et al. Simulating forest productivity along a neotropical elevational transect: Temperature variation and carbon use efficiency [J]. Global Change Biology, 2012, 18(9): 2882−2898. doi: 10.1111/j.1365-2486.2012.02728.x
|
[22] |
FRANTZ J M, BUGBEE B. Acclimation of plant populations to shade: Photosynthesis, respiration, and carbon use efficiency [J]. Journal of the American Society for Horticultural Science, 2005, 130(6): 918−927. doi: 10.21273/JASHS.130.6.918
|
[23] |
VICCA S, LUYSSAERT S, PEÑUELAS J, et al. Fertile forests produce biomass more efficiently [J]. Ecology Letters, 2012, 15(6): 520−526. doi: 10.1111/j.1461-0248.2012.01775.x
|
[24] |
韩艳红, 于沐, 石彦召, 等. 基于隶属函数法对13个花生品种品质的综合评价 [J]. 中国农学通报, 2022, 38(2):7−11. doi: 10.11924/j.issn.1000-6850.casb2021-0979
HAN Y H, YU M, SHI Y Z, et al. Comprehensive evaluation of the quality of 13 peanut varieties by membership function method [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 7−11.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2021-0979
|
[25] |
高应敏, 苏艳. 普洱市生态咖啡园管理农艺措施 [J]. 云南农业科技, 2019(3):39−41. doi: 10.3969/j.issn.1000-0488.2019.03.016
GAO Y M, SU Y. Agronomic measures of ecological coffee garden management in Pu'er City [J]. Yunnan Agricultural Science and Technology, 2019(3): 39−41.(in Chinese) doi: 10.3969/j.issn.1000-0488.2019.03.016
|
[26] |
郑雅婷, 王学春, 胡瑶, 等. 秸秆还田对梓潼江流域土壤肥力及粮食生产的影响 [J]. 西南农业学报, 2021, 34(7):1510−1514.
ZHENG Y T, WANG X C, HU Y, et al. Effects of straw returning on soil fertility and grain production in Zitong River Basin [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(7): 1510−1514.(in Chinese)
|
[27] |
CASTRO-DÍEZ P, ALONSO Á, ROMERO-BLANCO A. Effects of litter mixing on litter decomposition and soil properties along simulated invasion gradients of non-native trees [J]. Plant and Soil, 2019, 442(1/2): 79−96.
|
[28] |
陈毅青, 陈宗铸, 陈小花, 等. 海南岛东南沿海地区不同森林类型林地凋落物现存量和养分特征 [J]. 热带作物学报, 2021, 42(4):1159−1165. doi: 10.3969/j.issn.1000-2561.2021.04.036
CHEN Y Q, CHEN Z Z, CHEN X H, et al. Stock and nutrient characteristics of litter at different forest types in the southeast coast of Hainan Island [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 1159−1165.(in Chinese) doi: 10.3969/j.issn.1000-2561.2021.04.036
|
[29] |
JANISSEN B, HUYNH T. Chemical composition and value-adding applications of coffee industry by-products: A review [J]. Resources, Conservation and Recycling, 2018, 128: 110−117. doi: 10.1016/j.resconrec.2017.10.001
|
[30] |
杨晶晶, 周正立, 吕瑞恒, 等. 干旱生境下3种植物叶凋落物分解动态特征 [J]. 干旱区研究, 2019, 36(4):916−923.
YANG J J, ZHOU Z L, LYU R H, et al. Dynamic decomposition of foliar litters of three plant species in arid habitats [J]. Arid Zone Research, 2019, 36(4): 916−923.(in Chinese)
|
[31] |
曾锋, 邱治军, 许秀玉. 森林凋落物分解研究进展 [J]. 生态环境学报, 2010, 19(1):239−243. doi: 10.3969/j.issn.1674-5906.2010.01.044
ZENG F, QIU Z J, XU X Y. Review on forest litter decomposition [J]. Ecology and Environmental Sciences, 2010, 19(1): 239−243.(in Chinese) doi: 10.3969/j.issn.1674-5906.2010.01.044
|
[32] |
王金悦, 邓羽松, 林立文, 等. 南亚热带5种典型人工林凋落物水文效应 [J]. 水土保持学报, 2020, 34(5):169−175.
WANG J Y, DENG Y S, LIN L W, et al. Study on the hydrological effects of the litters layer from five typical plantations in south subtropics of China [J]. Journal of Soil and Water Conservation, 2020, 34(5): 169−175.(in Chinese)
|
[33] |
STOY P C, EL-MADANY T S, FISHER J B, et al. Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities [J]. Biogeosciences, 2019, 16(19): 3747−3775. doi: 10.5194/bg-16-3747-2019
|
[34] |
韦婷婷, 杨再强, 王明田, 等. 高温与空气湿度交互对花期番茄植株水分生理的影响 [J]. 中国农业气象, 2019, 40(5):317−326. doi: 10.3969/j.issn.1000-6362.2019.05.006
WEI T T, YANG Z Q, WANG M T, et al. Effects of high temperature and different air humidity on water physiology of flowering tomato seedlings [J]. Chinese Journal of Agrometeorology, 2019, 40(5): 317−326.(in Chinese) doi: 10.3969/j.issn.1000-6362.2019.05.006
|
[35] |
WAGNER Y, POZNER E, BAR-ON P, et al. Rapid stomatal response in lemon saves trees and their fruit yields under summer desiccation, but fails under recurring droughts [J]. Agricultural and Forest Meteorology, 2021, 307: 108487. doi: 10.1016/j.agrformet.2021.108487
|
[36] |
杨天乐, 吴峰峰, 刘涛, 等. 作物气孔的作用及其影响因素的研究进展 [J]. 北方园艺, 2020(3):143−148.
YANG T L, WU F F, LIU T, et al. Research progress on the role of crop stomata and its influencing factors [J]. Northern Horticulture, 2020(3): 143−148.(in Chinese)
|
[37] |
HUSSAIN A, ARSHAD M, AHMAD Z, et al. Potassium fertilization influences growth, physiology and nutrients uptake of maize (Zea mays L. ) [J]. Cercetari Agronomice in Moldova, 2015, 48(1): 37−50. doi: 10.1515/cerce-2015-0015
|
[38] |
孙燕, 董云萍, 龙宇宙, 等. 施氮量对咖啡生长及光合特征的影响 [J]. 热带作物学报, 2019, 40(2):215−220.
SUN Y, DONG Y P, LONG Y Z, et al. Growth and photosynthetic characteristics of coffee under different nitrogen level [J]. Chinese Journal of Tropical Crops, 2019, 40(2): 215−220.(in Chinese)
|
[39] |
DAMATTA F M, GODOY A G, MENEZES-SILVA P E, et al. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: Disentangling the contributions of stomatal, mesophyll, and biochemical limitations [J]. Journal of Experimental Botany, 2015, 67(1): 341−352.
|
[40] |
BARBOSA S M, SILVA B M, DE OLIVEIRA G C, et al. Deep furrow and additional liming for coffee cultivation under first year in a naturally dense inceptisol [J]. Geoderma, 2020, 357: 113934. doi: 10.1016/j.geoderma.2019.113934
|
[41] |
罗明霞, 胡宗达, 刘兴良, 等. 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性 [J]. 生态学报, 2021, 41(14):5632−5642.
LUO M X, HU Z D, LIU X L, et al. Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China [J]. Acta Ecologica Sinica, 2021, 41(14): 5632−5642.(in Chinese)
|
[42] |
沈立明, 钟惠, 朱雅婷, 等. 温度胁迫下4种广义虾脊兰属植物的光合特性 [J]. 森林与环境学报, 2021, 41(1):60−65.
SHEN L M, ZHONG H, ZHU Y T, et al. Photosynthetic characteristics of four Calanthe s. L. species under temperature stress [J]. Journal of Forest and Environment, 2021, 41(1): 60−65.(in Chinese)
|
[43] |
SONG Y P, CHEN Q Q, CI D, et al. Effects of high temperature on photosynthesis and related gene expression in poplar [J]. BMC Plant Biology, 2014, 14: 111. doi: 10.1186/1471-2229-14-111
|
[44] |
LU Z F, XIE K L, PAN Y H, et al. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy [J]. Plant, Cell & Environment, 2019, 42(7): 2231−2244.
|
[45] |
王双成, 黄华梨, 张露荷, 等. 不同时期根施钾肥对沿黄灌区‘骏枣’光合特性及其产量和品质的影响 [J]. 西北植物学报, 2020, 40(6):1022−1030.
WANG S C, HUANG H L, ZHANG L H, et al. Effect of root application of potassium fertilizer in different periods on photosynthetic characteristics, yield and quality of Junzao in irrigation area along the Yellow River [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(6): 1022−1030.(in Chinese)
|
[46] |
KUBIEN D S, SAGE R F. The temperature response of photosynthesis in tobacco with reduced amounts of Rubisco [J]. Plant, Cell & Environment, 2008, 31(4): 407−418.
|
[47] |
周敏, 曾蓓, 赵玉华, 等. 钾对刺葡萄光合作用的影响 [J]. 湖南农业大学学报(自然科学版), 2017, 43(2):156−160.
ZHOU M, ZENG B, ZHAO Y H, et al. Effects of potassium on the photosynthesis of Vitis davidii foёx [J]. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(2): 156−160.(in Chinese)
|
[48] |
PIAO S L, LUYSSAERT S, CIAIS P, et al. Forest annual carbon cost: A global-scale analysis of autotrophic respiration [J]. Ecology, 2010, 91(3): 652−661. doi: 10.1890/08-2176.1
|
[49] |
JONES D L, OLIVERA-ARDID S, KLUMPP E, et al. Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert [J]. Soil Biology and Biochemistry, 2018, 117: 68−71. doi: 10.1016/j.soilbio.2017.10.026
|
[50] |
TJOELKER M G. The role of thermal acclimation of plant respiration under climate warming: Putting the brakes on a runaway train? [J]. Plant, Cell & Environment, 2018, 41(3): 501−503.
|
[51] |
CHU Z Y, LU Y J, CHANG J, et al. Leaf respiration/photosynthesis relationship and variation: An investigation of 39 woody and herbaceous species in east subtropical China [J]. Trees, 2011, 25(2): 301−310. doi: 10.1007/s00468-010-0506-x
|
[52] |
HUNTINGFORD C, ATKIN O K, MARTINEZ-DE LA TORRE A, et al. Implications of improved representations of plant respiration in a changing climate [J]. Nature Communications, 2017, 8(1): 1602. doi: 10.1038/s41467-017-01774-z
|
[53] |
WEI D, QI Y H, MA Y M, et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau[J]. PNAS, 2021, 118(33). Doi: 10.1073/pnas.2015283118.
|