• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
YAO Y X, ZHANG M Z, SHU Y, et al. Responses of Tea Plants to Blister Blight Analyzed Using Transcriptome and Metabolome [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1265−1279. DOI: 10.19303/j.issn.1008-0384.2024.11.008
Citation: YAO Y X, ZHANG M Z, SHU Y, et al. Responses of Tea Plants to Blister Blight Analyzed Using Transcriptome and Metabolome [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1265−1279. DOI: 10.19303/j.issn.1008-0384.2024.11.008

Responses of Tea Plants to Blister Blight Analyzed Using Transcriptome and Metabolome

More Information
  • Received Date: May 13, 2024
  • Revised Date: July 17, 2024
  • Available Online: November 10, 2024
  • Objective 

    Resistance mechanism and associated genes of tea plants in response to blister blight infection were studied based on transcriptome as well as metabolome.

    Methods 

    Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in leaves of healthy (CK) and blister blight-infected (TB) tea plants were compared by using both transcriptome and metabolome.

    Results 

    Between CK and TB, 1 009 DEGs associated with the cell wall metabolism and the regulations of chitinase, oxidoreductase, and xyloglucan:xyloglucanosyltransferase activities were identified by a GO enrichment analysis. The KEGG analysis showed the DEGs significantly enriched in the pathways of flavonoid biosynthesis, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, glycerolipid metabolism, and stilbenoid, diarylheptanoid, and gingerol biosynthesis. Forty-seven transcription factors in the DEGs, which belonged to 21 transcription factor families including bHLH, SBP, AP2/ERF-AP2, and MYB, might be the genes significantly involved in the resistance of a tea plant to blister blight. The 353 DAMs identified by using the widely targeted metabolomics were enriched mainly in the flavonoid biosynthesis and lysine biosynthesis as well as the alanine, aspartate, and glutamate metabolism pathways. The transcriptome and metabolome revealed significant co-enrichments in the flavonoid biosynthesis, phenylpropanoid biosynthesis, and stilbenoid, diarylheptanoid, and gingerol biosynthesis pathways. Among the selected 20 DEGs and 15 DAMs associated with the phenylpropanoids and flavonoids biosynthesis pathways, DEGs such as CSS00117414CL), CSS0002940DFR), CSS0015968DFR), and CSS0010687ANS) were upregulated, while DAMs such as phloretin, phlorizin, 4-Hydroxystyrene, p-Coumaroyl quinic acid, dihydromyricetin, epigallocatechin, and peonidin 3-O-glucoside were accumulated in the infected leaves.

    Conclusion 

    The DEGs in the phenylpropanoid and flavonoid biosynthesis pathways might play a crucial role in the response of tea plants to blister blight. And the DAMs, such as phloretin, phlorizin, and epigallocatechin, might be the secondary metabolites in tea plants that participated closely in the resistance mechanism.

  • [1]
    孙云南, 许燕, 冉隆珣, 等. 茶树叶片响应茶饼病侵染的转录组分析 [J]. 茶叶科学, 2020, 40(1):113−124.

    SUN Y N, XU Y, RAN L X, et al. Transcriptome analysis of the tea leaves (Camellia sinensis var. assamica) infected by tea blister blight [J]. Journal of Tea Science, 2020, 40(1): 113−124. (in Chinese)
    [2]
    NISHA S N, PRABU G, MANDAL A K A. Biochemical and molecular studies on the resistance mechanisms in tea[Camellia sinensis (L. ) O. Kuntze]against blister blight disease [J]. Physiology and Molecular Biology of Plants, 2018, 24(5): 867−880. DOI: 10.1007/s12298-018-0565-9
    [3]
    张瑾, 孙晓玲, 肖强. 茶树嫩叶上的“白馒头”: 茶饼病 [J]. 中国茶叶, 2021, 43(4):32−34.

    ZHANG J, SUN X L, XIAO Q. The white bread shaped blister in tea plantation—Blister blight disease [J]. China Tea, 2021, 43(4): 32−34. (in Chinese)
    [4]
    杨运良, 李建勋, 马革农. 基于转录组测序的火龙果果肉不同发育时期淀粉和蔗糖代谢途径相关基因差异表达分析 [J]. 热带作物学报, 2021, 42(6):1520−1530.

    YANG Y L, LI J X, MA G N. Differential expression analysis of genes related to starch and sucrose metabolism pathway in different developmental stages of dragon fruit pulp based on transcriptome [J]. Chinese Journal of Tropical Crops, 2021, 42(6): 1520−1530. (in Chinese)
    [5]
    WANG L, WANG Y C, CAO H L, et al. Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae [J]. PLoS One, 2016, 11(2): e0148535. DOI: 10.1371/journal.pone.0148535
    [6]
    JAYASWALL K, MAHAJAN P, SINGH G, et al. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze) [J]. Scientific Reports, 2016, 6: 30412. DOI: 10.1038/srep30412
    [7]
    BHORALI P, GOHAIN B, GUPTA S, et al. Molecular analysis and expression profiling of blister blight defenserelated genes in tea [J]. Indian Journal of Genetics and Plant Breeding, 2012, 72(2): 226−233.
    [8]
    ZHANG Q Q, GUO N N, ZHANG Y H, et al. Genome-wide characterization and expression analysis of pathogenesis-related 1 (PR-1) gene family in tea plant (Camellia sinensis (L. ) O. Kuntze) in response to blister-blight disease stress [J]. International Journal of Molecular Sciences, 2022, 23(3): 1292. DOI: 10.3390/ijms23031292
    [9]
    SINGH G, SINGH G, SETH R, et al. Functional annotation and characterization of hypothetical protein involved in blister blight tolerance in tea (Camellia sinensis (L) O. Kuntze) [J]. Journal of Plant Biochemistry and Biotechnology, 2019, 28(4): 447−459. DOI: 10.1007/s13562-019-00492-5
    [10]
    龙亚芹, 冉隆珣, 夏丽飞, 等. 茶饼病诱导感、抗茶树品种的基因表达谱分析 [J]. 分子植物育种, 2021, 19(18):6020−6034.

    LONG Y Q, RAN L X, XIA L F, et al. Gene expression profiling analysis of resistant and susceptible tea cultivars in response to tea blister blight [J]. Molecular Plant Breeding, 2021, 19(18): 6020−6034. (in Chinese)
    [11]
    ZHOU X L, HOANG N H, TAO F, et al. Transcriptomics and phytohormone metabolomics provide comprehensive insights into the response mechanism of tea against blister blight disease [J]. Scientia Horticulturae, 2024, 324: 112611. DOI: 10.1016/j.scienta.2023.112611
    [12]
    ZHOU X L, HU L H, HOANG N H, et al. The changes in metabolites, quality components, and antioxidant activity of tea (Camellia sinensis) infected with Exobasidium vexans by applying UPLC-MS/MS-based widely targeted metabolome and biochemical analysis [J]. Phytopathology, 2024, 114(1): 164−176. DOI: 10.1094/PHYTO-03-23-0105-R
    [13]
    薛守宇, 朱涛, 李冰冰, 等. 转录组和代谢组联合分析在植物中的应用研究 [J]. 山西农业大学学报(自然科学版), 2022, 42(3):1−13.

    XUE S Y, ZHU T, LI B B, et al. Application research of combined transcriptome with metabolome in plants [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(3): 1−13. (in Chinese)
    [14]
    XIA E H, LI F D, TONG W, et al. Tea Plant Information Archive: A comprehensive genomics and bioinformatics platform for tea plant [J]. Plant Biotechnology Journal, 2019, 17(10): 1938−1953. DOI: 10.1111/pbi.13111
    [15]
    WANG F, GE S F, XU X X, et al. Multiomics analysis reveals new insights into the apple fruit quality decline under high nitrogen conditions [J]. Journal of Agricultural and Food Chemistry, 2021, 69(19): 5559−5572. DOI: 10.1021/acs.jafc.1c01548
    [16]
    LI S P, DENG B L, TIAN S, et al. Metabolic and transcriptomic analyses reveal different metabolite biosynthesis profiles between leaf buds and mature leaves in Ziziphus jujuba Mill. [J]. Food Chemistry, 2021, 347: 129005. DOI: 10.1016/j.foodchem.2021.129005
    [17]
    CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. DOI: 10.1016/j.molp.2020.06.009
    [18]
    赵晓珍, 王勇, 任亚峰, 等. 茶饼病病原— Exobasidium vexans侵染茶树叶片过程的形态学观察 [J]. 中国农学通报, 2018, 34(5):117−122.

    ZHAO X Z, WANG Y, REN Y F, et al. The morphology observation of infection process for the pathogen Exobasidium vexans of tea blister blight against tea leaf [J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 117−122. (in Chinese)
    [19]
    CHANDRA S, CHAKRABORTY N, CHAKRABORTY A, et al. Induction of defence response against blister blight by calcium chloride in tea [J]. Archives of Phytopathology and Plant Protection, 2014, 47(19): 2400−2409. DOI: 10.1080/03235408.2014.880555
    [20]
    肖景惠, 李美玉, 孙淼, 等. 一种几丁质酶基因的克隆表达及酶解产物分析 [J]. 微生物学通报, 2016, 43(10):2179−2186.

    XIAO J H, LI M Y, SUN M, et al. Cloning and expression of a novel chitinase gene and the analysis of its hydrolysis products [J]. Microbiology China, 2016, 43(10): 2179−2186. (in Chinese)
    [21]
    李惠敏, 李璐璐, 陈玉梅, 等. 罗汉果几丁质酶基因家族的生物信息学分析 [J]. 生物信息学, 2019, 17(3):167−174.

    LI H M, LI L L, CHEN Y M, et al. Bioinformatics analysis of chitinase gene family in Siraitia grosvenorii [J]. Chinese Journal of Bioinformatics, 2019, 17(3): 167−174. (in Chinese)
    [22]
    李晓丽, 罗榴彬, 周斌雄, 等. 基于共聚焦显微拉曼的真菌菌丝中几丁质的原位检测研究 [J]. 光谱学与光谱分析, 2016, 36(1):119−124.

    LI X L, LUO L B, ZHOU B X, et al. In vivo study of chitin in fungal hyphae based on confocal Raman microscopy [J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 119−124. (in Chinese)
    [23]
    CHEN A, SUN J M, VILJOEN A, et al. Genetic mapping, candidate gene identification and marker validation for host plant resistance to the race 4 of Fusarium oxysporum f. sp. cubense using Musa acuminata ssp. malaccensis [J]. Pathogens, 2023, 12(6): 820. DOI: 10.3390/pathogens12060820
    [24]
    冉隆珣, 肖星, 殷丽琼, 等. 水杨酸和茉莉酸诱导茶树抗茶饼病研究初报 [J]. 陕西农业科学, 2022, 68(4):32−35.

    RAN L X, XIAO X, YIN L Q, et al. Effect of salicylic acid and jasmonic acid on inducement of tea plants against Exobasidium vexans massee [J]. Shaanxi Journal of Agricultural Sciences, 2022, 68(4): 32−35. (in Chinese)
    [25]
    LIU S Y, ZHANG Q Q, GUAN C F, et al. Transcription factor WRKY14 mediates resistance of tea plants (Camellia sinensis (L. ) O. Kuntze) to blister blight [J]. Physiological and Molecular Plant Pathology, 2021, 115: 101667. DOI: 10.1016/j.pmpp.2021.101667
    [26]
    CHEN S L, ZHANG L P, CAI X M, et al. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants [J]. Horticulture Research, 2020, 7(1): 52. DOI: 10.1038/s41438-020-0275-7
    [27]
    FICK A, SWART V, BOMBARELY A, et al. Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection [J]. Molecular Plant Pathology, 2024, 25(4): e13453. DOI: 10.1111/mpp.13453
    [28]
    AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens [J]. Trends in Plant Science, 2012, 17(2): 73−90. DOI: 10.1016/j.tplants.2011.11.002
    [29]
    XU D D, DENG Y Z, XI P G, et al. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism [J]. Food Chemistry, 2019, 286: 226−233. DOI: 10.1016/j.foodchem.2019.02.015
    [30]
    ZHANG P, ZHU Y Q, ZHOU S J. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L. ) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection [J]. BMC Plant Biology, 2021, 21(1): 24. DOI: 10.1186/s12870-020-02797-3
    [31]
    贺军花, 马利菁, 周会玲. 根皮苷对苹果采后灰霉病的影响 [J]. 食品科学, 2018, 39(15):190−196.

    HE J H, MA L J, ZHOU H L. Effect of phlorizin treatment on postharvest gray mold of apples [J]. Food Science, 2018, 39(15): 190−196. (in Chinese)
    [32]
    HAN S, XU X, YUAN H, et al. Integrated transcriptome and metabolome analysis reveals the molecular mechanism of rust resistance in resistant (youkang) and susceptive (Tengjiao) Zanthoxylum armatum cultivars [J]. International Journal of Molecular Sciences, 2023, 24(19): 14761. DOI: 10.3390/ijms241914761
    [33]
    刘亚军, 王培强, 蒋晓岚, 等. 茶树单体和聚合态儿茶素生物合成的研究进展 [J]. 茶叶科学, 2022, 42(1):1−17.

    LIU Y J, WANG P Q, JIANG X L, et al. Research progress on the biosynthesis of monomeric and polymeric catechins in Camellia sinensis [J]. Journal of Tea Science, 2022, 42(1): 1−17. (in Chinese)
    [34]
    张琦琦. 茶饼病对茶树叶片形态、生理指标和品质成分的影响[D]. 杨凌: 西北农林科技大学, 2022.

    ZHANG Q Q. Effects of tea blister blight on leaf morphology, physiological indices and quality components of tea plant [D]. Yangling: Northwest A & F University, 2022. (in Chinese)
  • Related Articles

    [1]LI Xinyu, LIU Xiaoyu, LI Qihong, ZHOU Lixia, LI Rui, FU Dengqiang, CAO Hongxing. Differentiation in Post-harvest Lipid Metabolism of Oil Palm Fruits[J]. Fujian Journal of Agricultural Sciences, 2024, 39(9): 1058-1068. DOI: 10.19303/j.issn.1008-0384.2024.09.007
    [2]DAI Jianqing, CHEN Wenzhi, ZENG Zhiheng, CAI Zhixin, CHEN Meiyuan. Differentiate Transcriptomes of Aerial and Creepy Agaricus bisporus Hyphae[J]. Fujian Journal of Agricultural Sciences, 2024, 39(9): 1023-1034. DOI: 10.19303/j.issn.1008-0384.2024.09.003
    [3]LIANG Yanni, WEI Shiqin, QIAO Ruying, LIANG Jianfeng, TAN Huagui. Transcriptome Analysis on Anthocyanin Synthesis-related Genes in Liupao Tea Plants[J]. Fujian Journal of Agricultural Sciences, 2024, 39(6): 711-719. DOI: 10.19303/j.issn.1008-0384.2024.06.010
    [4]GE Jintao, WANG Jiangying, TANG Xueyan, SUN Mingwei, TENG Nianjun, ZHU Pengbo, ZHAO Tongli, WU Qiuyue, SHAO Xiaobin. Changes in Cell Structure and Gene Expression of Lily Leaves with Necrosis[J]. Fujian Journal of Agricultural Sciences, 2022, 37(2): 224-232. DOI: 10.19303/j.issn.1008-0384.2022.002.012
    [5]ZHANG Qiong, LU Luanmei, ZHU Lixia. Transcriptome Changes of Citrus grandis Seedlings in Response to Acid Rain Stress[J]. Fujian Journal of Agricultural Sciences, 2021, 36(7): 750-758. DOI: 10.19303/j.issn.1008-0384.2021.07.003
    [6]CHE Surong, ZHANG Jiayuan, LU Wei, QI Keming, WEI Yicong. Profiling Differential Gene Expressions in Leaves and Roots of Sarcandra glabra Based on Transcriptome[J]. Fujian Journal of Agricultural Sciences, 2020, 35(6): 598-610. DOI: 10.19303/j.issn.1008-0384.2020.06.005
    [7]ZOU Yi-hui, LIU Chang-yong, LIN Ze-yan, LI Zhen. Transcriptome Sequencing and Flavonoid Biosynthesis-related Genes of Scutellaria barbata D. Don[J]. Fujian Journal of Agricultural Sciences, 2018, 33(12): 1242-1250. DOI: 10.19303/j.issn.1008-0384.2018.12.003
    [8]WU Xiao-mei, YE Mei-feng, WU Fei-long, LIN Dai-yan. Cu and Zn Accumulations in Myriophyllum spicatum for Purification of Pig Farm Biogas Slurry[J]. Fujian Journal of Agricultural Sciences, 2018, 33(11): 1195-1200. DOI: 10.19303/j.issn.1008-0384.2018.11.013
    [9]SHAO En-si, LIN Hui, JIANG Shu-peng, CHEN Bi-cheng, LI Jing, LIN Jie-rong, LIN Zhan-xi. Biomasses and Transcript Levels of Aundo donax L. Species[J]. Fujian Journal of Agricultural Sciences, 2016, 31(12): 1280-1288. DOI: 10.19303/j.issn.1008-0384.2016.12.005
    [10]ZHENG Nen-zhu, XIN Qing-wu, MOU Zhong-wei, ZHU Zhi-ming, CHEN Hui. Differential Expressions of Melanin Genes in the Mule and Muscovy Duck with Different Plumage Colors[J]. Fujian Journal of Agricultural Sciences, 2013, 28(5): 427-431. DOI: 10.19303/j.issn.1008-0384.2013.05.004

Catalog

    Article Metrics

    Article views (92) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return