• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents
WANG F, YU P, ZHAI Y, et al. Proteomics analysis on response of Duyun Maojian native tea plant to the invasion of Empoasca vitis Gothe [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−11
Citation: WANG F, YU P, ZHAI Y, et al. Proteomics analysis on response of Duyun Maojian native tea plant to the invasion of Empoasca vitis Gothe [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−11

Proteomics analysis on response of Duyun Maojian native tea plant to the invasion of Empoasca vitis Gothe

  • Received Date: 2024-03-25
  • Rev Recd Date: 2024-05-09
  • Available Online: 2024-10-31
  •   Objective  In order to study the proteins related to the response of Duyun Maojian native tea plant infected by Empoasca vitis Gothe.  Method  The leaves of Duyun Maojian native tea plant were infected by E. vitis Göthe for 0 h, 12 h, 24 h, 36 h and 48 h, were used as research materials. Tandem mass tag (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique was used to qualitatively and quantitatively analyze the proteins of tea leaves infected with E. vitis Göthe.   Results  We identified a total of 2,893 proteins. There were 0, 1, 848, and 849 differential expression proteins (DEPs) between 0 h and 12 h, 0 h and 24 h, 0 h and 36 h, 0 h and 48 h, respectively. Furthermore, 2,622 proteins were annotated, of which 2,360 proteins were annotated to the GO database and 1,232 proteins were annotated to KEGG database. GO and KEGG analyses showed that tea plants may be in resistance to E. vitis Göthe infestation through CMK, FPPS, GPPS, GGPPS, peroxidase, pectinesterase, and allene-oxide cyclase, sesquiterpenoid, triterpeoid, monoterpenoid, diterpenoid, sesquiterpenoid and triterpenoid biosynthesis, terpenoid backbone biosynthesis, and monoterpenoid biosynthesis.   Conclusion  Four DEPs (CMK, FPPS, GPPS, and GGPPS) and terpenoids may play important roles in the response and defense against E. vitis Göthe. The research results may provide theoretical basis for revealing the molecular mechanism of tea plant response to the harm of E. vitis Göthe.
  • loading
  • [1]
    黄瑞, 夏华富, 代洪苇, 等. 茶树开花相关基因家族的克隆及CsMFT基因的可变剪切分析 [J]. 西北植物学报, 2021, 41(12):2002−2013. doi: 10.7606/j.issn.1000-4025.2021.12.2002

    HUANG R, XIA H F, DAI H W, et al. Cloning of flowering-related genes and alternative splicing analysis of CsMFT in tea plant [J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(12): 2002−2013. (in Chinese) doi: 10.7606/j.issn.1000-4025.2021.12.2002
    [2]
    杨家干. 都匀毛尖成分及其部分生理功能研究[D]. 广州: 华南农业大学, 2016.

    YANG J G. Study on constituent and part of physiological function from DuyunMaojian [D]. Guangzhou: South China Agricultural University, 2016. (in Chinese)
    [3]
    邬子惠, 王梦馨, 潘铖, 等. 茶小绿叶蝉发生规律与绿色防控研究进展 [J]. 茶叶通讯, 2021, 48(2):200−206,252. doi: 10.3969/j.issn.1009-525X.2021.02.002

    WU Z H, WANG M X, PAN C, et al. Research progress and prospect of occurrence regularity and green control of tea green leafhopper [J]. Journal of Tea Communication, 2021, 48(2): 200−206,252. (in Chinese) doi: 10.3969/j.issn.1009-525X.2021.02.002
    [4]
    李金玉, 王庆森, 李良德等. 茶小绿叶蝉种名变更及其种群发生与生物生态环境关系的研究进展 [J]. 福建农业学报, 2022, 37(1):123−130.

    LI J Y, WANG Q S, LI L D, et al. Research progress on the dominant species identification of tea green leafhopper and the relationship between its population and the biological and ecological environment [J]. Fujian Journal of Agricultural Sciences, 2022, 37(1): 123−130. (in Chinese)
    [5]
    潘杰. 茶树抗性相关蛋白(Cs-cystatin, Cs-Rip)对假眼小绿叶蝉消化道组织的影响[D]. 厦门: 厦门大学, 2014.

    PAN J. Toxic effects of resistance associated proteins (Cs-cystatin, Cs-Rip) of tea on empoasca vitis [D]. Xiamen: Xiamen University, 2014. (in Chinese)
    [6]
    杨会敏. 茶树抗假眼小绿叶蝉相关基因的克隆及表达研究[D]. 信阳: 信阳师范学院, 2010.

    YANG H M. Cloning and expression of anti-Empoasca vitis-related genes in tea [D]. Xinyang: Xinyang Normal University, 2010. (in Chinese)
    [7]
    王梦馨. 叶蝉诱导的茶树重要防御相关基因的功能解析和互利素鉴定应用[D]. 南京: 南京农业大学, 2012.

    WANG M X. Function analysis of defence-related genes of tea plant (Camellia Sinensis) and identification and application of its synomones induced by tea green leafhopper [D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
    [8]
    任倩倩. 抗、感茶树品种对茶小绿叶蝉取食诱导的防御反应[D]. 福州: 福建农林大学, 2020.

    REN Q Q. The defense strategies of resistant and susceptible tea cultivars in response to Empoasca onukii feeding [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. (in Chinese)
    [9]
    MEI X, LIU X Y, ZHOU Y, et al. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda) [J]. Food Chemistry, 2017, 237: 356−363. doi: 10.1016/j.foodchem.2017.05.124
    [10]
    ZHAO X M, CHEN S, WANG S S, et al. Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: A multi-omics study [J]. Frontiers in Plant Science, 2019, 10: 1705.
    [11]
    WASINGER V C, CORDWELL S J, CERPA-POLJAK A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090−1094.
    [12]
    陈玲玲. 敖汉苜蓿小花与种子响应硼胁迫的蛋白质组学与代谢组学分析[D]. 北京: 中国农业大学, 2017.

    CHEN L L. Proteomic and metabolomics analysis of flowers and seeds of Medicago sativa L. cv. “Aohan” response to boron stress [D]. Beijing: China Agricultural University, 2017. (in Chinese)
    [13]
    程晓梅, 黄建安, 刘仲华, 等. 茶树蛋白质组学研究进展 [J]. 湖南农业科学, 2014(23):28−31.

    CHENG X M, HUANG J A, LIU Z H, et al. Research progress in tea proteomics [J]. Hunan Agricultural Sciences, 2014(23): 28−31. (in Chinese)
    [14]
    庄重光. 不同水分处理下铁观音茶树的生理机制及其差异蛋白质组学研究[D]. 福州: 福建农林大学, 2008.

    ZHUANG C G. A study on physiological mechanism and differential proteomics of tea (Camelllia sinensis (L. ) O. Kuntze) under different watering regimes [D]. Fuzhou: Fujian Agriculture and Forestry University, 2008. (in Chinese)
    [15]
    郭春芳. 水分胁迫下茶树的生理响应及其分子基础[D]. 福州: 福建农林大学, 2008.

    GUO C F. Physiological response and molecular basis of tea plant (Camellia sinensis) exposed to water stress [D]. Fuzhou: Fujian Agriculture and Forestry University, 2008. (in Chinese)
    [16]
    LI J K, CHEN J, ZHANG Z H, et al. Proteome analysis of tea pollen (Camellia sinensis) under different storage conditions [J]. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7535−7544. doi: 10.1021/jf800885z
    [17]
    CHIEN H J, YANG M M, WANG W C, et al. Proteomic analysis of “Oriental Beauty” oolong tea leaves with different degrees of leafhopper infestation [J]. Rapid Communications in Mass Spectrometry, 2020, 34(15): e8825. doi: 10.1002/rcm.8825
    [18]
    邹瑶, 齐桂年, 陈盛相, 等. 蛋白质组学关键技术及其在茶树研究中的应用 [J]. 生物技术通报, 2012, 28(7):60−64.

    ZOU Y, QI G N, CHEN S X, et al. Key technology of proteomics and its application in tea plant [J]. Biotechnology Bulletin, 2012, 28(7): 60−64. (in Chinese)
    [19]
    周琼琼, 孙威江. 茶树总蛋白质提取方法及双向电泳体系的建立 [J]. 热带作物学报, 2014, 35(8):1517−1522. doi: 10.3969/j.issn.1000-2561.2014.08.012

    ZHOU Q Q, SUN W J. Establishment of extraction methods and two-dimensional electrophoresis conditions for proteomic analysis of Camellia sinensis [J]. Chinese Journal of Tropical Crops, 2014, 35(8): 1517−1522. (in Chinese) doi: 10.3969/j.issn.1000-2561.2014.08.012
    [20]
    HU Y G, LU Y Z, LU J. Comparative proteomics analysis of tea leaves exposed to subzero temperature: Molecular mechanism of freeze injury [J]. International Journal of Agricultural & Biological Engineering, 2013, 6(4): 27−34.
    [21]
    XU Q S, WANG Y, DING Z T, et al. Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves [J]. Plant Physiology and Biochemistry, 2017, 115: 141−151. doi: 10.1016/j.plaphy.2017.03.017
    [22]
    吴致君. 茶树叶发育相关miRNA和转录因子挖掘及采后不同萎凋蛋白质组差异分析[D]. 南京: 南京农业大学, 2017.

    WU Z J. Discovery of leaf development-related miRNAs and transcription factors and analysis of the proteome differences of postharvest leaves under different treatments in tea plant (Camellia sinensis) [D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
    [23]
    任燕. 茶树雌蕊自交和杂交的差异蛋白质组学初步研究[D]. 南京: 南京农业大学, 2013.

    REN Y. Primary differential proteome analysis of self-and cross-pollinated pistils in tea plant (Camellia sinensis) [D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
    [24]
    BAI B, TAN H, PAGALA V R, et al. Chapter twenty deep profiling of proteome and phosphoproteome by isobaric labeling, extensive liquid chromatography, and mass spectrometry [J]. Methods in Enzymology, 2017, 585: 377−395.
    [25]
    TYERS M, MANN M. From genomics to proteomics [J]. Nature, 2003, 422(6928): 193−197. doi: 10.1038/nature01510
    [26]
    LI Z, ADAMS R M, CHOUREY K, et al. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos [J]. Journal of Proteome Research, 2012, 11(3): 1582−1590. doi: 10.1021/pr200748h
    [27]
    JIN S, REN Q Q, LIAN L L, et al. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage [J]. Planta, 2020, 252(1): 10. doi: 10.1007/s00425-020-03407-0
    [28]
    陈升龙. 诱导茶树抗茶小绿叶蝉挥发物筛选体系的建立及反式: 橙花叔醇诱抗机制初探[D]. 北京: 中国农业科学院, 2020

    CHEN S L. Establishment of screening system for volatiles that induces tea plant defense against tea green leafhopper and preliminary study on (E)-nerolidol induction mechanism [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
    [29]
    梅瑜, 王继华, 蔡时可, 等. 金线莲应答高温胁迫的蛋白质组学分析 [J]. 江苏农业学报, 2020, 36(6):1389−1397. doi: 10.3969/j.issn.1000-4440.2020.06.006

    MEI Y, WANG J H, CAI S K, et al. Proteomics analysis on Anoectochilus roxburghii in response to high temperature stress [J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(6): 1389−1397. (in Chinese) doi: 10.3969/j.issn.1000-4440.2020.06.006
    [30]
    袁清华. 茶树“信阳10号”生态休眠不同阶段的蛋白质组学研究[D]. 信阳: 信阳师范学院, 2020.

    YUANG Q. Proteomics research of ecodormancy of tea plant variety ‘Xinyang 10’ [D]. Xinyang: Xinyang Normal University, 2020. (in Chinese)
    [31]
    YANG Y X, AHAMMED G J, WU C J, et al. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses [J]. Current Protein & Peptide Science, 2015, 16(5): 450−461.
    [32]
    李新岗, 刘惠霞, 黄建. 虫害诱导植物防御的分子机理研究进展 [J]. 应用生态学报, 2008, 19(4):893−900.

    LI X G, LIU H X, HUANG J. Molecular mechanisms of insect pests-induced plant defense [J]. Chinese Journal of Applied Ecology, 2008, 19(4): 893−900. (in Chinese)
    [33]
    BLOCK A K, VAUGHAN M M, SCHMELZ E A, et al. Biosynthesis and function of terpenoid defense compounds in maize (Zea mays) [J]. Planta, 2019, 249(1): 21−30. doi: 10.1007/s00425-018-2999-2
    [34]
    NINKUU V, ZHANG L, YAN J P, et al. Biochemistry of terpenes and recent advances in plant protection [J]. International Journal of Molecular Sciences, 2021, 22(11): 5710. doi: 10.3390/ijms22115710
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (30) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return