Citation: | LI X Y, LIU X Y, LI Q H, et al. Differential Analysis Of Post-harvest Lipid Metabolism In Oil Palm [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1−12 |
[1] |
MURPHY D J. Oil palm: Future prospects for yield and quality improvements [J]. Lipid Technology, 2009, 21(11/12): 257−260.
|
[2] |
CORLEY R H V, TINKER P B. The Oil Palm[M]. 出版社所属地?: Blackwell Pub Professional, 2003.
|
[3] |
PARVEEZ G K, RASID O A, MASANI M Y A, et al. Biotechnology of oil palm: Strategies towards manipulation of lipid content and composition [J]. Plant Cell Reports, 2015, 34(4): 533−543. doi: 10.1007/s00299-014-1722-4
|
[4] |
HOU Q C, UFER G, BARTELS D. Lipid signalling in plant responses to abiotic stress[J]. Plant, Cell & Environment, 2016, 39(5): 1029-1048.
|
[5] |
GROUP L T. Comprehensive classification system for lipids published[J]. Lipid Technology: the International Magazine of Oils, Fats, Lipids & Waxes, 2005, 17(8): 187.
|
[6] |
PATI S, NIE B, ARNOLD R D, et al. Extraction, chromatographic and mass spectrometric methods for lipid analysis [J]. Biomedical Chromatography, 2016, 30(5): 695−709. doi: 10.1002/bmc.3683
|
[7] |
CHEONG W F, WENK M R, SHUI G H. Comprehensive analysis of lipid composition in crude palm oil using multiple lipidomic approaches [J]. Journal of Genetics and Genomics, 2014, 41(5): 293−304. doi: 10.1016/j.jgg.2014.04.002
|
[8] |
Bourgis F , Kilaru A , Cao X , et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): p. 12527-12532. DOI: 10.1073/pnas.1106502108.(与11条相同,请修改
Bourgis F , Kilaru A , Cao X , et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): p. 12527-12532. DOI: 10.1073/pnas.1106502108.(与11条相同,请修改)
|
[9] |
TRANBARGER T J, DUSSERT S, JOËT T, et al. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism [J]. Plant Physiology, 2011, 156(2): 564−584. doi: 10.1104/pp.111.175141
|
[10] |
LU C F, XIN Z G, REN Z H, et al. An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(44): 18837−18842.
|
[11] |
Bourgis F , Kilaru A , Cao X , et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): p. 12527-12532. DOI: 10.1073/pnas.1106502108.(与第8条相同,请修改
Bourgis F , Kilaru A , Cao X , et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): p. 12527-12532. DOI: 10.1073/pnas.1106502108.(与第8条相同,请修改)
|
[12] |
NAKAMURA Y, TSUCHIYA M, OHTA H. Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin [J]. Journal of Biological Chemistry, 2007, 282(39): 29013−29021. doi: 10.1074/jbc.M704385200
|
[13] |
雷新涛, 曹红星. 油棕[M]. 北京: 中国农业出版社, 2013.
|
[14] |
Naim S , Missihoun T D , Kotchoni S O , et al. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis[J]. Frontiers in Plant Science, 2011, (2): 65. DOI: 10.3389/fpls.2011.00065.
|
[15] |
CHEN Z, CHEN M, XU Z S, et al. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L. ) [J]. PLoS One, 2014, 9(7): e101136. doi: 10.1371/journal.pone.0101136
|
[16] |
VASILIOU V, NEBERT D W. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family [J]. Human Genomics, 2005, 2(2): 138−143. doi: 10.1186/1479-7364-2-2-138
|
[17] |
BROCKER C, VASILIOU M, CARPENTER S, et al. Aldehyde dehydrogenase (ALDH) superfamily in plants: Gene nomenclature and comparative genomics [J]. Planta, 2013, 237(1): 189−210. doi: 10.1007/s00425-012-1749-0
|
[18] |
ABDUL W, ALIYU S R, LIN L L, et al. Family-four aldehyde dehydrogenases play an indispensable role in the pathogenesis of Magnaporthe oryzae [J]. Frontiers in Plant Science, 2018, 9: 980. doi: 10.3389/fpls.2018.00980
|
[19] |
LI Z, WANG J Y, LONG H X, et al. Cloning and expression analysis of an aldehyde dehydrogenase gene from Camellia oleifera [J]. Nanoscience and Nanotechnology Letters, 2017, 9(3): 364−373. doi: 10.1166/nnl.2017.2340
|
[20] |
TAGNON M D, SIMEON K O. Aldehyde dehydrogenases may modulate signaling by lipid peroxidation-derived bioactive aldehydes [J]. Plant Signaling & Behavior, 2017, 12(11): e1387707.
|
[21] |
BARTELS D, SUNKAR R. Drought and salt tolerance in plants [J]. Critical Reviews in Plant Sciences, 2005, 24(1): 23−58. doi: 10.1080/07352680590910410
|
[22] |
杨程, 张淑岩, 韦露, 等. 薄壳种油棕果实发育和采后脂肪酸合成转录代谢差异分析[J/OL]. 分子植物育种, 2023 (2023-06-13). https://kns.cnki.net/kcms/detail/46.1068.S.20230612.1612.020.html.
YANG C, ZHANG S Y, WEI L, et al. ■■■■■■■■[J/OL]. ■■■■■, 2023 (2023-06-13). https://kns.cnki.net/kcms/detail/46.1068.S.20230612.1612.020.html.(in Chinese)
|
[23] |
RIEGLER-BERKET L, LEITMEIER A, ASCHAUER P, et al. Identification of lipases with activity towards monoacylglycerol by criterion of conserved cap architectures [J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2018, 1863(7): 679−687. doi: 10.1016/j.bbalip.2018.03.009
|
[24] |
KIM R J, KIM H J, SHIM D, et al. Molecular and biochemical characterizations of the monoacylglycerol lipase gene family of Arabidopsis thaliana [J]. The Plant Journal, 2016, 85(6): 758−771. doi: 10.1111/tpj.13146
|
[25] |
MARIANI M E, FIDELIO G D. Secretory phospholipases A2 in plants [J]. Frontiers in Plant Science, 2019, 10: 861. doi: 10.3389/fpls.2019.00861
|
[26] |
RYU S B. Phospholipid-derived signaling mediated by phospholipase A in plants [J]. Trends in Plant Science, 2004, 9(5): 229−235. doi: 10.1016/j.tplants.2004.03.004
|
[27] |
WANG X M. Plant phospholipases [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 211−231. doi: 10.1146/annurev.arplant.52.1.211
|
[28] |
史敬芳, 张琪, 宋松泉, 等. 磷脂酶及其调控种子活力研究进展 [J]. 南方农业学报, 2022, 53(9):2612−2623. doi: 10.3969/j.issn.2095-1191.2022.09.024
SHI J F, ZHANG Q, SONG S Q, et al. Phospholipases and their seed vigor regulation: A review [J]. Journal of Southern Agriculture, 2022, 53(9): 2612−2623. (in Chinese) doi: 10.3969/j.issn.2095-1191.2022.09.024
|
[29] |
MUKHERJEE A B. Biochemistry, molecular biology, and physiology of phospholipase A2 and its regulatory factors [J]. Advances in Experimental Medicine and Biology, 1990, 279: 1−251.
|
[30] |
LIM C W, KIM B H, KIM I H, et al. Modeling and optimization of phospholipase A1-catalyzed hydrolysis of phosphatidylcholine using response surface methodology for lysophosphatidylcholine production [J]. Biotechnology Progress, 2015, 31(1): 35−41. doi: 10.1002/btpr.2009
|
[31] |
ZHAO Q Y, WANG M M, ZHANG W B, et al. Impact of phosphatidylcholine and phosphatidylethanolamine on the oxidative stability of stripped peanut oil and bulk peanut oil [J]. Food Chemistry, 2020, 311: 125962. doi: 10.1016/j.foodchem.2019.125962
|
[32] |
CHENG Y X, ZHOU W B, EL SHEERY N I, et al. Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation [J]. The Plant Journal, 2011, 66(5): 781−795. doi: 10.1111/j.1365-313X.2011.04538.x
|
[33] |
BANG H J, KIM I H, KIM B H. Phospholipase A1-catalyzed hydrolysis of soy phosphatidylcholine to prepare l-α-glycerylphosphorylcholine in organic-aqueous media [J]. Food Chemistry, 2016, 190: 201−206. doi: 10.1016/j.foodchem.2015.05.093
|
[34] |
CARMAN G M. Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli [J]. Biochimica et Biophysica Acta, 1997, 1348(1/2): 45−55.
|
[35] |
MUNNIK T, LIGTERINK W, et al. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress [J]. The Plant Journal, 1999, 20(4): 381−388. doi: 10.1046/j.1365-313x.1999.00610.x
|
[36] |
LIU Z F, YAN H C, WANG K B, et al. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution [J]. Nature, 2004, 428(6980): 287−292. doi: 10.1038/nature02373
|
[37] |
JORDAN P, FROMME P, WITT H T, et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution [J]. Nature, 2001, 411: 909−917. doi: 10.1038/35082000
|
[38] |
UMENA Y, KAWAKAMI K, SHEN J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å [J]. Nature, 2011, 473: 55−60. doi: 10.1038/nature09913
|
[39] |
KELLY A A, FROEHLICH J E, DÖRMANN P. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis [J]. The Plant Cell, 2003, 15(11): 2694−2706. doi: 10.1105/tpc.016675
|
[40] |
KOBAYASHI K, FUJII S, SASAKI D, et al. Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis [J]. Frontiers in Plant Science, 2014, 5: 272.
|