• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
WANG B Z, WANG A, WU X F, et al. IL15RA Mutation Site and Relationship with Growth of Goats [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1218−1227. DOI: 10.19303/j.issn.1008-0384.2024.11.002
Citation: WANG B Z, WANG A, WU X F, et al. IL15RA Mutation Site and Relationship with Growth of Goats [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1218−1227. DOI: 10.19303/j.issn.1008-0384.2024.11.002

IL15RA Mutation Site and Relationship with Growth of Goats

More Information
  • Received Date: July 01, 2024
  • Revised Date: October 16, 2024
  • Accepted Date: December 09, 2024
  • Available Online: December 09, 2024
  • Objective 

    The interleukin 15 receptor subunit α gene (IL15RA) in goats was studied to identify the mutation site that differentiates the growth of Fuqing and Nubian goats.

    Methods 

    Three 12-month-old Fuqing and Nubian goats each were randomly selected to collect tissue samples of the heart, liver, spleen, lung, and kidney as well as the head and neck semispinalis muscles, longest back muscle, thigh muscle, and biceps brachii muscle for qRT-PCR to construct a spectrum of expression variations between the two goat species. The SNP of IL15RAs extracted from the Fuqing goats (n=108) and the Nubian goats (n=286) were subjected to a PCR hybridization Sanger sequencing for genotype classification using PCR-RFLP and correlation with goat growth.

    Results 

    (1) The IL15RA expressions in the muscles were significantly lower than those in the viscera (P<0.05); the expression in the longest back muscle of the Fuqing goats significantly lower than that of the Nubian goats (P<0.05); and the expression in the lung of the Fuqing goats significantly higher than that of the Nubian goats (P<0.05). (2) One InDel site, g.22224_222225 Del A, Del22224, was found in the intron 3 of IL15RAs of Fuqing and Nubian goats, and one SNP site, g.33428A>G, in the intron 6. (3) SNP-g.33428 significantly affected the body weight, chest circumference, chest width, and hucklebone width of Fuqing goats (P<0.05). (4) DD/AA and ID/GG were the dominant haplotype combinations in the Fuqing goats. It was ID/AA and II/GG in the Nubian goats.

    Conclusion 

    The polymorphisms of IL15RAs significantly related to the differentiate growth traits of Fuqing and Nubian goats. The gene could conceivably become the target for improving the currently practiced molecular markers-assisted breeding programs.

  • [1]
    陈甜, 肖海峰. 中国羊肉消费状况及影响因素研究 [J]. 中国畜牧杂志, 2016, 52(12):15−20.

    CHEN T, XIAO H F. Research on the factors and the influence of mutton consumption situation in China [J]. Chinese Journal of Animal Science, 2016, 52(12): 15−20. (in Chinese)
    [2]
    刘远, 李文杨, 吴贤锋, 等. 福清山羊与努比亚黑山羊背最长肌比较转录组分析 [J]. 中国农业科学, 2019, 52(14):2525−2537. DOI: 10.3864/j.issn.0578-1752.2019.14.011

    LIU Y, LI W Y, WU X F, et al. Transcriptome analysis of differentially gene expression associated with longissimus Doris tissue in Fuqing goat and Nubian black goat [J]. Scientia Agricultura Sinica, 2019, 52(14): 2525−2537. (in Chinese) DOI: 10.3864/j.issn.0578-1752.2019.14.011
    [3]
    MORRIS R, KERSHAW N J, BABON J J. The molecular details of cytokine signaling via the JAK/STAT pathway [J]. Protein Science, 2018, 27(12): 1984−2009. DOI: 10.1002/pro.3519
    [4]
    RICHARD A J, STEPHENS J M. The role of JAK–STAT signaling in adipose tissue function [J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2014, 1842(3): 431−439. DOI: 10.1016/j.bbadis.2013.05.030
    [5]
    FUJIMOTO M, NAKA T. Regulation of cytokine signaling by SOCS family molecules [J]. Trends in Immunology, 2003, 24(12): 659−666. DOI: 10.1016/j.it.2003.10.008
    [6]
    HEWETSON A, MOORE S L, CHILTON B S. Prolactin signals through RUSH/SMARCA3 in the absence of a physical association with Stat5a [J]. Biology of Reproduction, 2004, 71(6): 1907−1912. DOI: 10.1095/biolreprod.104.031435
    [7]
    LEONARD W J, O’SHEA J J. Jaks and STATs: Biological implications [J]. Annual Review of Immunology, 1998, 16: 293−322. DOI: 10.1146/annurev.immunol.16.1.293
    [8]
    ZHU J, SHIMIZU E, ZHANG X R, et al. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix [J]. Journal of Cellular Biochemistry, 2011, 112(7): 1749−1760. DOI: 10.1002/jcb.23094
    [9]
    GABER T, BRINKMAN A C K, PIENCZIKOWSKI J, et al. Impact of Janus kinase inhibition with tofacitinib on fundamental processes of bone healing [J]. International Journal of Molecular Sciences, 2020, 21(3): 865. DOI: 10.3390/ijms21030865
    [10]
    AKAMATSU N, NAKAJIMA H, OHNO M, et al. Increase in acetyl CoA synthetase activity after phenobarbital treatment [J]. Biochemical Pharmacology, 1975, 24(18): 1725−1727. DOI: 10.1016/0006-2952(75)90013-1
    [11]
    GRABSTEIN K H, EISENMAN J, SHANEBECK K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor [J]. Science, 1994, 264(5161): 965−968. DOI: 10.1126/science.8178155
    [12]
    GILBERT R P, BAILEY D R, SHANNON N H. Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets [J]. Journal of Animal Science, 1993, 71(7): 1712−1720. DOI: 10.2527/1993.7171712x
    [13]
    LI W Y, LIU Y, GAO C F, et al. A novel duplicated insertion/deletion (InDel) of the CPT1a gene and its effects on growth traits in goat [J]. Animal Biotechnology, 2021, 32(3): 343−351. DOI: 10.1080/10495398.2019.1698433
    [14]
    吴贤锋, 王金宝, 刘远, 等. 基于转录组测序的ITGAD基因InDel位点鉴定及其与山羊生长性状的关联性分析 [J]. 农业生物技术学报, 2022, 30(9):1763−1770. DOI: 10.3969/j.issn.1674-7968.2022.09.010

    WU X F, WANG J B, LIU Y, et al. Identification of InDel locus of ITGAD gene based on transcriptome sequencing and its association with goat (Capra hircus) growth traits [J]. Journal of Agricultural Biotechnology, 2022, 30(9): 1763−1770. (in Chinese) DOI: 10.3969/j.issn.1674-7968.2022.09.010
    [15]
    WU X F, LIU Y, ZHAN J S, et al. A novel splice variant of goat CPT1a gene and their diverse mRNA expression profiles [J]. Animal Biotechnology, 2023, 34(7): 2571−2581. DOI: 10.1080/10495398.2022.2106573
    [16]
    KLINKENBERG E, ONWONA-AGYEMAN K A, MCCALL P J, et al. Cohort trial reveals community impact of insecticide-treated nets on malariometric indices in urban Ghana [J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2010, 104(7): 496−503. DOI: 10.1016/j.trstmh.2010.03.004
    [17]
    WU X F, LIU Y, WANG Y G, et al. A novel 22-bp InDel within FGF7 gene is significantly associated with growth traits in goat [J]. Animal Biotechnology, 2024, 35(1): 2262537. DOI: 10.1080/10495398.2023.2262537
    [18]
    SVINKA J, MIKULITS W, EFERL R. STAT3 in hepatocellular carcinoma: New perspectives [J]. Hepatic Oncology, 2014, 1(1): 107−120. DOI: 10.2217/hep.13.7
    [19]
    MOHRI T, IWAKURA T, NAKAYAMA H, et al. JAK-STAT signaling in cardiomyogenesis of cardiac stem cells [J]. JAK-STAT, 2012, 1(2): 125−130. DOI: 10.4161/jkst.20296
    [20]
    LI J L. JAK-STAT and bone metabolism [J]. Jak-Stat, 2013, 2(3): e23930.
    [21]
    CORRY K A, ZHOU H K, BRUSTOVETSKY T, et al. Stat3 in osteocytes mediates osteogenic response to loading [J]. Bone Reports, 2019, 11: 100218.
    [22]
    PISTILLI E E, BOGDANOVICH S, GARTON F, et al. Loss of IL-15 receptor α alters the endurance, fatigability, and metabolic characteristics of mouse fast skeletal muscles [J]. Journal of Clinical Investigation, 2011, 121(8): 3120−3132.
    [23]
    LORO E, RAMASWAMY G, CHANDRA A, et al. IL15RA is required for osteoblast function and bone mineralization [J]. Bone, 2017, 103: 20−30.
    [24]
    LORO E, BISETTO S, KHURANA T S. Mitochondrial ultrastructural adaptations in fast muscles of mice lacking IL15RA [J]. Journal of Cell Science, 2018, 131(21): jcs218313.
    [25]
    KORNSUTHISOPON C, MANOKAWINCHOKE J, SONPOUNG O, et al. Interleukin 15 participates in Jagged1-induced mineralization in human dental pulp cells [J]. Archives of Oral Biology, 2021, 128: 105163.
    [26]
    LIU Y, WU X F, XU Q, et al. Temporal transcriptome dynamics of Longissimus dorsi reveals the mechanism of the differences in muscle development and IMF deposition between Fuqing goats and Nubian goats [J]. Animals, 2024, 14(12): 1770.
    [27]
    刘远, 李文杨, 吴贤锋, 等. 福清山羊快长品系的世代选育及生产性能测定分析 [J]. 福建农业学报, 2021, 36(3):305−311.

    LIU Y, LI W Y, WU X F, et al. Growth and reproduction of newly bred fast-growing Fuqing goats in two generations [J]. Fujian Journal of Agricultural Sciences, 2021, 36(3): 305−311. (in Chinese)
    [28]
    曹艳红. 利用高通量测序解析隆林山羊与努比亚山羊的遗传差异及表达差异[D]. 杨凌: 西北农林科技大学, 2019.

    CAO Y H. Analysis of genetic differences and expression differences between Longlin goat and Nubian goat by high-throughput sequencing[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
    [29]
    MAQUAT L E. Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics [J]. Nature Reviews Molecular Cell Biology, 2004, 5(2): 89−99. DOI: 10.1038/nrm1310
    [30]
    LU S H, CULLEN B R. Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells [J]. RNA, 2003, 9(5): 618−630. DOI: 10.1261/rna.5260303
    [31]
    NOTT A, MEISLIN S H, MOORE M J. A quantitative analysis of intron effects on mammalian gene expression [J]. RNA, 2003, 9(5): 607−617. DOI: 10.1261/rna.5250403
    [32]
    刘玉, 张林林, 房义, 等. 湖羊STAT5a基因第10内含子多态性及其与泌乳性状的关联分析 [J]. 中国畜牧兽医, 2023, 50(9):3680−3687.

    LIU Y, ZHANG L L, FANG Y, et al. Polymorphism of STAT5a gene intron 10 and its association with lactation traits in hu sheep [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(9): 3680−3687. (in Chinese)
    [33]
    李志斌. 简州大耳羊ENO3TBC1D7基因多态性及其与生长性状的关联分析[D]. 成都:西南民族大学, 2023.

    LI Z B. Association analysis of ENO3 and TBC1D7 genetic polymorphisms with growth traits in Jianzhou Da'er goat[D]. Chengdu: Southwest Minzu University, 2023. (in Chinese)
    [34]
    ZHOU S L, SHI X Y, SONG C C, et al. SNP discovery of PRKAB1 gene and their associations with growth traits in goats [J]. Animal Biotechnology, 2022, 33(7): 1613−1619. DOI: 10.1080/10495398.2021.1920426
    [35]
    阮涌, 陈祥, 田贵刚, 等. F3代波杂山羊XKR4 基因多态性与生长性状的关联分析 [J]. 南方农业学报, 2022, 53(6):1752−1758.

    RUAN Y, CHEN X, TIAN G G, et al. Correlation analysis of XKR4 gene polymorphism and growth traits in F3 generation Boza goats [J]. Journal of Southern Agriculture, 2022, 53(6): 1752−1758. (in Chinese)
    [36]
    杨韩, 张阳海, 王敏, 等. 陕北白绒山羊POU1F1基因3’-UTR多态性及其与生长性状的相关分析 [J]. 农业生物技术学报, 2019, 27(7):1224−1232.

    YANG H, ZHANG Y H, WANG M, et al. Polymorphisms of 3'-UTR of POU1F1 gene and its association with growth traits in shaanbei white Cashmere goats(Capra hircus) [J]. Journal of Agricultural Biotechnology, 2019, 27(7): 1224−1232. (in Chinese)
  • Related Articles

    [1]SONG Xingchao, WANG Yunyan, WANG Shasha, FANG Yue, BA Jiawen, MEI Jie, LIANG Zhengqi. SNPs and Correlation of TYRP1b with Color of Zebrafish[J]. Fujian Journal of Agricultural Sciences, 2024, 39(4): 387-397. DOI: 10.19303/j.issn.1008-0384.2024.04.003
    [2]ZHANG Wenping, ZHANG Shiyong, LIU Hongyan, XU Siqi, WANG Minghua, ZHONG Liqiang, BIAN Wenji, ZHU Ming, CHEN Xiaohui. Variation Sites on EGFL9 Associated with Growth of Channel Catfish[J]. Fujian Journal of Agricultural Sciences, 2023, 38(3): 253-261. DOI: 10.19303/j.issn.1008-0384.2023.03.001
    [3]WU Xianfeng, LIU Yuan, WANG Yinggang, ZHANG Fu, LI Wenyang. Relationship between InDel Polymorphism of FN1 Gene and Growth Traits of Goats[J]. Fujian Journal of Agricultural Sciences, 2023, 38(1): 1-6. DOI: 10.19303/j.issn.1008-0384.2023.01.001
    [4]SHI Taoxiong, LI Ruiyuan, PAN Fan, HUANG Juan, ZHU Liwei, WANG Yan, LIANG Chenggang. Correlation Between Flavonoids Content and SSR Markers of Tartary Buckwheat[J]. Fujian Journal of Agricultural Sciences, 2021, 36(8): 884-891. DOI: 10.19303/j.issn.1008-0384.2021.08.003
    [5]WANG Xiao-hui, YU Hai-liang, ZOU Wen-bin, MI Chang-hao, DAI Guo-jun, ZHANG Tao, ZHANG Gen-xi, XIE Kai-zhou, WANG Jin-yu, SHI Hui-qiang. Correlation between Single Nucleotide Polymorphism in 5' Regulation Region of IL-8 and Coccidiosis-Resistance of Jinghai Yellow Chicken[J]. Fujian Journal of Agricultural Sciences, 2019, 34(11): 1262-1269. DOI: 10.19303/j.issn.1008-0384.2019.11.004
    [6]JIAO Yun, SHU Qiao-yun, LIU Zhu-qin. Single Nucleotide Polymorphism (SNP) Analysis of the Endopolygalacturonase Gene in Chinese Bayberry (Myrica rubra)[J]. Fujian Journal of Agricultural Sciences, 2016, 31(5): 465-470. DOI: 10.19303/j.issn.1008-0384.2016.05.005
    [7]LI Wen-yang, LIU Yuan, CHEN Xin-zhu, ZHANG Xiao-pei, GAO Cheng-fang, DONG Xiao-ning. Growth and Development Indices Measuring and the Growth Curve Fitting Analysis of Fuqing Goats[J]. Fujian Journal of Agricultural Sciences, 2015, 30(6): 545-548. DOI: 10.19303/j.issn.1008-0384.2015.06.003
    [8]LIU Bo, HU Gui-ping, TANG Wei-qi. Characteristic of Average Nucleotide Identity(ANI)Based on the Whole Genomes from Bacillus Species in Bacillus-like Genus[J]. Fujian Journal of Agricultural Sciences, 2013, 28(9): 833-843. DOI: 10.19303/j.issn.1008-0384.2013.09.001
    [9]YANG Jin-xia, RUAN Chuan-qing, LIU Bo, CHEN Jian-li. Comparative evaluation on different methods to extract endophytic bacteria DNA from Diaphorina citri Kuwayama[J]. Fujian Journal of Agricultural Sciences, 2013, 28(4): 361-365. DOI: 10.19303/j.issn.1008-0384.2013.04.012
    [10]LUO Tao, WENG Bo-qi, YING Zhao-yang, HUANG Dong-feng. Growth status evaluation and grey correlation analysis on forage with different planting time in hilly red soil of Southern China[J]. Fujian Journal of Agricultural Sciences, 2004, 19(4): 232-237.
  • Cited by

    Periodical cited type(2)

    1. 李佳思,刘迎庆,张永恒,张迎澳,肖烨子,刘露,余有本. 茶树CsNCED2启动子互作转录因子筛选及在非生物胁迫中的响应. 茶叶科学. 2023(03): 325-334 .
    2. 赵彩良,张洁,唐锐敏,贾小云. 甘薯块根cDNA酵母文库的构建及IbNCED3启动子互作蛋白的筛选鉴定. 山西农业大学学报(自然科学版). 2022(04): 19-27 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (67) PDF downloads (18) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return