Citation: | ZHENG C L, GUAN H Z, ZHAO J X, et al. Identification and Sequencing of Gene Related to Length of Rice Grain [J]. Fujian Journal of Agricultural Sciences,2024,39(11):1213−1217. DOI: 10.19303/j.issn.1008-0384.2024.11.001 |
The gene that regulates the length of a rice grain, which directly relates to crop yield, was identified and sequenced for breed improvement.
Through map-based cloning, 499 recombinant inbred lines derived from the interspecific cross between Jiafuzhan (indica) and Nipponokin (japonica) were employed to identify the quantitative trait loci associated with the phenotypic trait.
A major plasmid length of GS3 was 1851 kb, detected in the recombinant inbred line population located approximately within the physical distance 16310–18161 kb. Since only the 48th base of the second exon was mutated from C to A between the genes of Jiafuzhan and Nipponbare, protein translation was no longer necessary. Further analysis on Jiazao No. 1 and Jiafuxiangzhan bred using the GS3 showed no significant difference than the wild type Jiafuzhan in grain length, width, or length-width ratio.
The long-grain gene GS3 could be detected in the recombinant inbred lines of Jiafuzhan × Nipponbare, and could be stably inherited and applied. The information on GS3 obtained in this study was of value for future studies to genetically improve rice production.
[1] |
KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030 [J]. Plant Molecular Biology, 2005, 59(1): 1−6. DOI: 10.1007/s11103-005-2159-5
|
[2] |
伍豪, 高利军, 黄娟, 等. 水稻粒长粒重主效基因GS3的功能标记开发与利用 [J]. 西南农业学报, 2019, 32(6):1211−1215.
WU H, GAO L J, HUANG J, et al. Development and application of functional molecular marker of grain length and grain weight major gene GS3 in rice [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(6): 1211−1215. (in Chinese)
|
[3] |
XIE X B, SONG M H, JIN F X, et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon [J]. Theoretical and Applied Genetics, 2006, 113(5): 885−894. DOI: 10.1007/s00122-006-0348-5
|
[4] |
林荔辉, 吴为人. 水稻粒型和粒重的QTL定位分析 [J]. 分子植物育种, 2003, 1(3):337−342. DOI: 10.3969/j.issn.1672-416X.2003.03.007
LIN L H, WU W R. Mapping of QTLs underlying grain shape and grain weight in rice [J]. Molecular Plant Breeding, 2003, 1(3): 337−342. (in Chinese) DOI: 10.3969/j.issn.1672-416X.2003.03.007
|
[5] |
石春海. 水稻植株农艺性状与稻米碾磨品质的遗传相关性分析 [J]. 浙江农业大学学报, 1997, 23(3):331.
SHI C H. Genetic correlation analysis between agronomic characters of rice plants and milling quality of rice [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 1997, 23(3): 331. (in Chinese)
|
[6] |
张静, 李晨, 潘大建, 等. 水稻粒长遗传及其功能基因研究进展 [J]. 广东农业科学, 2021, 48(3):1−10.
ZHANG J, LI C, PAN D J, et al. Advances in inheritance of grain length and its functional genes in rice [J]. Guangdong Agricultural Sciences, 2021, 48(3): 1−10. (in Chinese)
|
[7] |
HUANG R Y, JIANG L R, ZHENG J S, et al. Genetic bases of rice grain shape: So many genes, so little known [J]. Trends in Plant Science, 2013, 18(4): 218−226. DOI: 10.1016/j.tplants.2012.11.001
|
[8] |
邢永忠, 谈移芳, 徐才国, 等. 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因 [J]. 植物学报, 2001, 43(8):840−845.
XING Y Z, TAN Y F, XU C G, et al. Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population [J]. Journal of Integrative Plant Biology, 2001, 43(8): 840−845. (in Chinese)
|
[9] |
LIN S J, LIU Z P, ZHANG K, et al. GL9 from Oryza glumaepatula controls grain size and chalkiness in rice [J]. The Crop Journal, 2023, 11(1): 198−207. DOI: 10.1016/j.cj.2022.06.006
|
[10] |
HU Z J, LU S J, WANG M J, et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice [J]. Molecular Plant, 2018, 11(5): 736−749. DOI: 10.1016/j.molp.2018.03.005
|
[11] |
YING J Z, MA M, BAI C, et al. TGW3, a major QTL that negatively modulates grain length and weight in rice [J]. Molecular Plant, 2018, 11(5): 750−753. DOI: 10.1016/j.molp.2018.03.007
|
[12] |
XIA D, ZHOU H, LIU R J, et al. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice [J]. Molecular Plant, 2018, 11(5): 754−756. DOI: 10.1016/j.molp.2018.03.006
|
[13] |
FAN C C, XING Y Z, MAO H L, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J]. TAG Theoretical and Applied Genetics Theoretische und Angewandte Genetik, 2006, 112(6): 1164−1171. DOI: 10.1007/s00122-006-0218-1
|
[14] |
KAN Y, MU X R, ZHANG H, et al. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis [J]. Nature Plants, 2022, 8(1): 53−67.
|
[15] |
郑跃滨, 李智, 赵海燕, 等. 水稻粒长QTL定位与主效基因的遗传分析 [J]. 西北植物学报, 2020, 40(4):598−604. DOI: 10.7606/j.issn.1000-4025.2020.04.0598
ZHENG Y B, LI Z, ZHAO H Y, et al. Mapping quantitative trait loci associated with grain length and genetic analysis of major quantitative loci in rice [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(4): 598−604. (in Chinese) DOI: 10.7606/j.issn.1000-4025.2020.04.0598
|
[16] |
杨德卫, 曾美娟, 卢礼斌, 等. 一个水稻矮秆突变体的遗传分析及基因定位 [J]. 植物学报, 2011, 46(6):617−624. DOI: 10.3724/SP.J.1259.2011.00617
YANG D W, ZENG M J, LU L B, et al. Genetic analysis and mapping of rice dwarf mutant Ds1 [J]. Chinese Bulletin of Botany, 2011, 46(6): 617−624. (in Chinese) DOI: 10.3724/SP.J.1259.2011.00617
|
[17] |
HEANG D, SASSA H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice [J]. PLoS One, 2012, 7(2): e31325. DOI: 10.1371/journal.pone.0031325
|
[18] |
LIU D P, YU Z K, ZHANG G X, et al. Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice [J]. Plant Physiology, 2021, 187(4): 2563−2576. DOI: 10.1093/plphys/kiab394
|
[19] |
石春海, 申宗坦. 早籼粒形的遗传和改良 [J]. 中国水稻科学, 1995, 9(1):27−32. DOI: 10.3321/j.issn:1001-7216.1995.01.006
SHI C H, SHEN Z T. Inheritance and improvement of grain shape in indica rice [J]. Chinese Journal of Rice Science, 1995, 9(1): 27−32. (in Chinese) DOI: 10.3321/j.issn:1001-7216.1995.01.006
|
[20] |
周清元, 安华, 张毅, 等. 水稻子粒形态性状遗传研究 [J]. 西南农业大学学报, 2000, 22(2):102−104. DOI: 10.3969/j.issn.1673-9868.2000.02.002
ZHOU Q Y, AN H, ZHANG Y, et al. Study on heredity of morphological characters of rice grain [J]. Journal of Southwest Agricultural University, 2000, 22(2): 102−104. (in Chinese) DOI: 10.3969/j.issn.1673-9868.2000.02.002
|
[21] |
贾小丽, 叶江华, 苗利国, 等. 水稻粒长主效QTL的分子遗传效应分析 [J]. 中国农学通报, 2013, 29(36):69−73. DOI: 10.11924/j.issn.1000-6850.2013-1538
JIA X L, YE J H, MIAO L G, et al. Molecular analysis on genetic effect of major QTL for grain length in rice(Oryza sativa L. ) [J]. Chinese Agricultural Science Bulletin, 2013, 29(36): 69−73. (in Chinese) DOI: 10.11924/j.issn.1000-6850.2013-1538
|
[1] | YUAN Linkai, MA Chonghuan, LI Dingshan, CHEN Zhiwei, JIANG Xiaofeng, DING Xinlun, ZHANG Jie, WU Zujian. A Multiplex RT-PCR Assay for Detecting Three Pathogens Infecting Citrus Plants[J]. Fujian Journal of Agricultural Sciences, 2024, 39(3): 339-344. DOI: 10.19303/j.issn.1008-0384.2024.03.011 |
[2] | ZHAO Runtao, Temuerbagen, GUO Yu, WU Yanan, WANG Xufen, HOU Lin, ZHANG He, ZHAO Yang, ZHANG Zhidan, ZHOU Weiguang. TaqMan qRT-PCR Assay for Detecting Bovine Kobuvirus[J]. Fujian Journal of Agricultural Sciences, 2023, 38(7): 851-856. DOI: 10.19303/j.issn.1008-0384.2023.07.011 |
[3] | ZHANG Kang, GUO Zhiting, QIU Zhengying, ZHANG Jingyan, WANG Lei, ZHANG Kai, Wang Guibo, LIANG Fenfen, MA Qian, LI Jianxi. A RT-PCR Assay for Quantitative Detection of Bovine Viral Diarrhea Virus[J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1042-1047. DOI: 10.19303/j.issn.1008-0384.2021.09.007 |
[4] | FU Guang-hua, CHEN Cui-teng, FU Qiu-ling, LIU Rong-chang, CHENG Long-fei, SHI Shao-hua, WAN Chun-he, CHEN Hong-mei, HUANG Yu. Establishment of One-step RT-PCR for Batai Virus Detection in Ducks[J]. Fujian Journal of Agricultural Sciences, 2017, 32(11): 1193-1196. DOI: 10.19303/j.issn.1008-0384.2017.011.005 |
[5] | BAI Quan-yang, XU Lei, FU Guang-hua, ZENG Liang-ming, CHENG Long-fei, HUANG Yu. Establishment and Monitoring Analysis of Fluorescence RT-PCR for Detection of Bovine Viral Diarrhea Virus in Swine[J]. Fujian Journal of Agricultural Sciences, 2017, 32(8): 828-832. DOI: 10.19303/j.issn.1008-0384.2017.08.004 |
[6] | FAN Rong-hui, HUANG Min-ling, ZHONG Huai-qin, WU Jian-she, LUO Yuan-hua. Multiplex RT-PCR for Simultaneous Detection of Three Viruses in Oncidium[J]. Fujian Journal of Agricultural Sciences, 2015, 30(7): 697-700. DOI: 10.19303/j.issn.1008-0384.2015.07.015 |
[7] | FAN Rong-hui, HUANG Min-ling, ZHONG Huai-qin, WU Jian-she, LIN Bing. Development of Multiplex RT-PCR for Simultaneous Detection of Three Viruses in Bulbous Iris[J]. Fujian Journal of Agricultural Sciences, 2015, 30(2): 172-175. DOI: 10.19303/j.issn.1008-0384.2015.02.013 |
[8] | FU Guang-hua, HUANG Yu, CHENG Long-fei, CHEN Cui-teng, WAN Chun-he, CHEN Hong-mei, PENG Chun-xiang, SHI Shao-hua, LIN Jian-sheng. Development and Application of Ligase-dependent RT-PCR Assay for Detection of Avian Tembusu Virus[J]. Fujian Journal of Agricultural Sciences, 2013, 28(7): 639-643. DOI: 10.19303/j.issn.1008-0384.2013.07.004 |
[9] | ZHUANG Xiang-sheng, CHE Yong-liang, CHEN Shao-ying, WANG Long-bai, WEI Hong, ZHOU Lun-jiang, CHEN Shi-long. RT-PCR detection of porcine reproductive and respiratory syndrome virus[J]. Fujian Journal of Agricultural Sciences, 2007, 22(1): 35-38. |
[10] | CHE Yong-liang, CHEN Shao-ying, WEI Hong, WANG Long-bai, CHEN Shi-long, ZHOU Lun-jiang, ZHUANG Xiang-sheng. Development of RT-PCR method for detecting swine janpanese encephalitis virus[J]. Fujian Journal of Agricultural Sciences, 2006, 21(3): 228-230. |