Citation: | HOU E H, CHEN Q Y, WU X M, et al. Fluorescent RT-RAA for Diagnosing Epidemic Diarrhea in Pigs [J]. Fujian Journal of Agricultural Sciences,2024,39(10):1146−1151. DOI: 10.19303/j.issn.1008-0384.2024.10.005 |
A rapid fluorescence RT-RAA to detect porcine epidemic diarrhea virus (PEDV) was developed and tested for field application.
Primers and probes were designed for the conserved region of PEDV-S gene fragment, and a standard plasmid was constructed. Through condition optimization followed by tests for assay specificity, sensitivity, and repeatability, a recombinant enzyme-mediated chain replacement nucleic acid amplification fluorescence RT-RAA for detecting PEDV was established.
Under a constant temperature of 42 ℃ for 20 min, the assay detected PEDV as positive, while negative on the porcine transmissible gastroenteritis virus (TGEV), classical swine fever virus (CSFV), porcine pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (PoRV) and other porcine viruses. It had a minimum detection limit of 4.43×102 standard plasmid copies·μL−1, a reproducibility showing little difference between the standard plasmids of the same concentration, and a positive rate of 7.5% (3 out of 40) on PEDV specimens comparable to that obtained by RT-qPCR.
The newly developed fluorescence RT-RAA for PEDV detection was considered appropriate for rapid diagnosis of epidemic diarrhea in pigs.
[1] |
JUNG K, SAIF L J, WANG Q H. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control [J]. Virus Research, 2020, 286: 198045. DOI: 10.1016/j.virusres.2020.198045
|
[2] |
LEE C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus [J]. Virology Journal, 2015, 12: 193.
|
[3] |
ZHOU Z J, QIU Y, GE X Y. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order [J]. Animal Diseases, 2021, 1(1): 5. DOI: 10.1186/s44149-021-00005-9
|
[4] |
ZHANG Y Z, CHEN Y W, ZHOU J, et al. Porcine epidemic diarrhea virus: An updated overview of virus epidemiology, virulence variation patterns and virus-host interactions [J]. Viruses, 2022, 14(11): 2434. DOI: 10.3390/v14112434
|
[5] |
WU X H, LIU Y J, GAO L G, et al. Development and application of a reverse-transcription recombinase-aided amplification assay for porcine epidemic diarrhea virus [J]. Viruses, 2022, 14(3): 591.
|
[6] |
PEWLAOO S, PHANTHONG S, KONG-NGOEN T, et al. Development of a rapid reverse transcription-recombinase polymerase amplification couple nucleic acid lateral flow method for detecting porcine epidemic diarrhoea virus [J]. Biology, 2022, 11(7): 1018. DOI: 10.3390/biology11071018
|
[7] |
LI G, WU M L, LI J H, et al. Rapid detection of porcine deltacoronavirus and porcine epidemic diarrhea virus using the duplex recombinase polymerase amplification method [J]. Journal of Virological Methods, 2021, 292: 114096. DOI: 10.1016/j.jviromet.2021.114096
|
[8] |
MAO L J, YING J X, SELEKON B, et al. Development and characterization of recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of monkeypox virus [J]. Viruses, 2022, 14(10): 2112. DOI: 10.3390/v14102112
|
[9] |
NIE M C, ZHOU Y C, LI F Q, et al. Epidemiological investigation of swine Japanese encephalitis virus based on RT-RAA detection method [J]. Scientific Reports, 2022, 12(1): 9392. DOI: 10.1038/s41598-022-13604-4
|
[10] |
ZHAO S, ZHANG Q Q, WANG X Y, et al. Development and performance of recombinase-aided amplification (RAA) assay for detecting Schistosoma haematobium DNA in urine samples [J]. Heliyon, 2023, 9(12): e23031. DOI: 10.1016/j.heliyon.2023.e23031
|
[11] |
REN J, ZU C C, LI Y, et al. Establishment and application of a TaqMan-based multiplex real-time PCR for simultaneous detection of three porcine diarrhea viruses [J]. Frontiers in Microbiology, 2024, 15: 1380849.
|
[12] |
NIU J W, LI J H, GUAN J L, et al. Development of a multiplex RT-PCR method for the detection of four porcine enteric coronaviruses [J]. Frontiers in Veterinary Science, 2022, 9: 1033864. DOI: 10.3389/fvets.2022.1033864
|
[13] |
LIANG W, ZHOU D N, GENG C, et al. Isolation and evolutionary analyses of porcine epidemic diarrhea virus in Asia [J]. PeerJ, 2020, 8: e10114. DOI: 10.7717/peerj.10114
|
[14] |
ZHANG H L, HAN F F, YAN X G, et al. Prevalence and phylogenetic analysis of spike gene of porcine epidemic diarrhea virus in Henan province, China in 2015-2019 [J]. Infection, Genetics and Evolution, 2021, 88: 104709. DOI: 10.1016/j.meegid.2021.104709
|
[15] |
LI Z W, MA Z Q, LI Y, et al. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines [J]. Microbial Pathogenesis, 2020, 149: 104553. DOI: 10.1016/j.micpath.2020.104553
|
[16] |
俞正玉, 逄凤娇, 孙冰, 等. 猪流行性腹泻病毒变异株RT-PCR检测方法的建立 [J]. 江苏农业科学, 2018, 46(1):116−118.
YU Z Y, PANG F J, SUN B, et al. Establishment of RT-PCR method for detection of porcine epidemic diarrhea virus mutant [J]. Jiangsu Agricultural Sciences, 2018, 46(1): 116−118. (in Chinese)
|
[17] |
SONG W B, FENG Y X, ZHANG J L, et al. Development of a multiplex reverse transcription-quantitative PCR (qPCR) method for detecting common causative agents of swine viral diarrhea in China [J]. Porcine Health Management, 2024, 10(1): 12. DOI: 10.1186/s40813-024-00364-y
|
[18] |
LI C H, LIANG J L, YANG D, et al. Visual and rapid detection of porcine epidemic diarrhea virus (PEDV) using reverse transcription loop-mediated isothermal amplification method [J]. Animals, 2022, 12(19): 2712. DOI: 10.3390/ani12192712
|
[19] |
WANG Y S, NIE M C, DENG H D, et al. Establishment of a reverse transcription recombinase-aided amplification detection method for porcine group a rotavirus [J]. Frontiers in Veterinary Science, 2022, 9: 954657. DOI: 10.3389/fvets.2022.954657
|
[20] |
XIA W L, CHEN Y, DING X, et al. Rapid and visual detection of type 2 porcine reproductive and respiratory syndrome virus by real-time fluorescence-based reverse transcription recombinase-aided amplification [J]. Viruses, 2022, 14(11): 2526. DOI: 10.3390/v14112526
|
[21] |
WANG S C, ZHUANG Q Y, JIANG N, et al. Reverse transcription recombinase-aided amplification assay for avian influenza virus [J]. Virus Genes, 2023, 59(3): 410−416.
|
[1] | YUAN Linkai, MA Chonghuan, LI Dingshan, CHEN Zhiwei, JIANG Xiaofeng, DING Xinlun, ZHANG Jie, WU Zujian. A Multiplex RT-PCR Assay for Detecting Three Pathogens Infecting Citrus Plants[J]. Fujian Journal of Agricultural Sciences, 2024, 39(3): 339-344. DOI: 10.19303/j.issn.1008-0384.2024.03.011 |
[2] | ZHAO Runtao, Temuerbagen, GUO Yu, WU Yanan, WANG Xufen, HOU Lin, ZHANG He, ZHAO Yang, ZHANG Zhidan, ZHOU Weiguang. TaqMan qRT-PCR Assay for Detecting Bovine Kobuvirus[J]. Fujian Journal of Agricultural Sciences, 2023, 38(7): 851-856. DOI: 10.19303/j.issn.1008-0384.2023.07.011 |
[3] | ZHANG Kang, GUO Zhiting, QIU Zhengying, ZHANG Jingyan, WANG Lei, ZHANG Kai, Wang Guibo, LIANG Fenfen, MA Qian, LI Jianxi. A RT-PCR Assay for Quantitative Detection of Bovine Viral Diarrhea Virus[J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1042-1047. DOI: 10.19303/j.issn.1008-0384.2021.09.007 |
[4] | FU Guang-hua, CHEN Cui-teng, FU Qiu-ling, LIU Rong-chang, CHENG Long-fei, SHI Shao-hua, WAN Chun-he, CHEN Hong-mei, HUANG Yu. Establishment of One-step RT-PCR for Batai Virus Detection in Ducks[J]. Fujian Journal of Agricultural Sciences, 2017, 32(11): 1193-1196. DOI: 10.19303/j.issn.1008-0384.2017.011.005 |
[5] | BAI Quan-yang, XU Lei, FU Guang-hua, ZENG Liang-ming, CHENG Long-fei, HUANG Yu. Establishment and Monitoring Analysis of Fluorescence RT-PCR for Detection of Bovine Viral Diarrhea Virus in Swine[J]. Fujian Journal of Agricultural Sciences, 2017, 32(8): 828-832. DOI: 10.19303/j.issn.1008-0384.2017.08.004 |
[6] | FAN Rong-hui, HUANG Min-ling, ZHONG Huai-qin, WU Jian-she, LUO Yuan-hua. Multiplex RT-PCR for Simultaneous Detection of Three Viruses in Oncidium[J]. Fujian Journal of Agricultural Sciences, 2015, 30(7): 697-700. DOI: 10.19303/j.issn.1008-0384.2015.07.015 |
[7] | FAN Rong-hui, HUANG Min-ling, ZHONG Huai-qin, WU Jian-she, LIN Bing. Development of Multiplex RT-PCR for Simultaneous Detection of Three Viruses in Bulbous Iris[J]. Fujian Journal of Agricultural Sciences, 2015, 30(2): 172-175. DOI: 10.19303/j.issn.1008-0384.2015.02.013 |
[8] | FU Guang-hua, HUANG Yu, CHENG Long-fei, CHEN Cui-teng, WAN Chun-he, CHEN Hong-mei, PENG Chun-xiang, SHI Shao-hua, LIN Jian-sheng. Development and Application of Ligase-dependent RT-PCR Assay for Detection of Avian Tembusu Virus[J]. Fujian Journal of Agricultural Sciences, 2013, 28(7): 639-643. DOI: 10.19303/j.issn.1008-0384.2013.07.004 |
[9] | ZHUANG Xiang-sheng, CHE Yong-liang, CHEN Shao-ying, WANG Long-bai, WEI Hong, ZHOU Lun-jiang, CHEN Shi-long. RT-PCR detection of porcine reproductive and respiratory syndrome virus[J]. Fujian Journal of Agricultural Sciences, 2007, 22(1): 35-38. |
[10] | CHE Yong-liang, CHEN Shao-ying, WEI Hong, WANG Long-bai, CHEN Shi-long, ZHOU Lun-jiang, ZHUANG Xiang-sheng. Development of RT-PCR method for detecting swine janpanese encephalitis virus[J]. Fujian Journal of Agricultural Sciences, 2006, 21(3): 228-230. |