• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
YANG H Q, HE S, ZHANG J B. Changes on Organic Acids in Chinese Fir Seedlings under Simulated Al-stress [J]. Fujian Journal of Agricultural Sciences,2021,36(8):942−947. DOI: 10.19303/j.issn.1008-0384.2021.08.011
Citation: YANG H Q, HE S, ZHANG J B. Changes on Organic Acids in Chinese Fir Seedlings under Simulated Al-stress [J]. Fujian Journal of Agricultural Sciences,2021,36(8):942−947. DOI: 10.19303/j.issn.1008-0384.2021.08.011

Changes on Organic Acids in Chinese Fir Seedlings under Simulated Al-stress

More Information
  • Received Date: May 10, 2021
  • Revised Date: June 20, 2021
  • Available Online: August 09, 2021
  •   Objective  Effect of aluminum (Al)-stress on organic acids in seedlings of Chinese fir, Cunninghamia lanceolata (Lamb.) Hook, was examined in a simulated study.
      Method   Nutrient culture solutions containing Al in varied concentrations were used to cultivate the seedlings. Organic acids in the plant tissues (i.e., needles and roots) and secreted from the root-tips of the seedlings grown in the media were determined to analyze the effect of Al-stress by a correlation analysis.
      Result   Six organic acids including oxalic acid, tartaric acid, L-malate, ascorbic acid, citric acid, and fumaric acid were found in the needles and roots of the Chinese fir seedlings. Among them, ascorbic acid had the highest content in the needles, while ascorbic acid and oxalic acid in the roots. Under Al-stress, tartaric acid, L-malate, ascorbic acid, citric acid, and fumaric acid increased initially and followed by a decline in the needles, but the oxalic acid on a constant increase trend. At Al concentration of 1 mmol·L−1, L-malic acid and fumaric acid significantly increased, with no significant changes on the other acids, in the needles. The contents of the 6 organic acids in roots of the plants under varied Al-stresses were significantly lower than those of control. Aside from minute amounts of L-malate, ascorbic acid, and lactic acid, oxalic acid was the major organic acids found in the root-tip exudate. It was significantly reduced by the imposition of Al-stress.
      Conclusion  The responses of Chinese fir seedlings to the simulated Al-stress varied with respect to the organic acid contents in the needles or roots and the root-tip secretion. Significant effects were observed on L-malic acid and fumaric acid in the needles and on all 6 organic acids in the roots, as well as oxalic acid exudated from the root-tips. Al-stress appeared to exert greater harm to the roots than the needles on a fir plant.
  • [1]
    夏丽丹, 于姣妲, 邓玲玲, 等. 杉木人工林地力衰退研究进展 [J]. 世界林业研究, 2018, 31(2):37−42.

    XIA L D, YU J D, DENG L L, et al. Researches on soil decline of Chinese fir plantation [J]. World Forestry Research, 2018, 31(2): 37−42.(in Chinese)
    [2]
    任继鹏, 张逸, 钱诚, 等. 南方酸性森林土壤中铝的形态分布与活化机理 [J]. 环境化学, 2011, 30(6):1131−1135.

    REN J P, ZHANG Y, QIAN C, et al. Fraction distribution and release mechanism of aluminum in acidic forest soils of southern China [J]. Environmental Chemistry, 2011, 30(6): 1131−1135.(in Chinese)
    [3]
    SIECIŃSKA J, NOSALEWICZ A. Aluminium toxicity to plants as influenced by the properties of the root growth environment affected by other co-stressors: A Review [J]. Reviews of Environmental Contamination and Toxicology, 2017, 243: 1−26. DOI: 10.1007/398_2016_15
    [4]
    RIAZ M, YAN L, WU X W, et al. Boron increases root elongation by reducing aluminum induced disorganized distribution of HG epitopes and alterations in subcellular cell wall structure of trifoliate orange roots [J]. Ecotoxicology and Environmental Safety, 2018, 165: 202−210. DOI: 10.1016/j.ecoenv.2018.09.004
    [5]
    滕建晒, 陈健, 彭亮, 等. 水杨酸调控内源H2S缓解黑大豆铝胁迫的作用机理研究 [J]. 西北植物学报, 2019, 39(1):121−130.

    TENG J S, CHEN J, PENG L, et al. Mechanism of salicylic acid regulating endogenous H2S alleviating aluminum stress in the root of black soybean [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(1): 121−130.(in Chinese)
    [6]
    闫磊. 硼对柑橘枳砧根系铝毒缓解效应及机理研究[D]. 武汉: 华中农业大学, 2020.

    YAN L. Ameliorative role and mechanism of boron on aluminum toxicity in trifoliate orange roots[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese).
    [7]
    梅映学. 碱蓬内生菌高Y1-1对镉和/或铝胁迫下水稻幼苗内源激素及有机酸含量的影响[D]. 沈阳: 沈阳师范大学, 2017.

    MEI Y X. Effect of endophyte Gao Y1-1 infection on endogenous hormones and organic acids of rice seedlings under Cd and/or Al stress[D]. Shenyang: Shenyang Normal University, 2017. (in Chinese).
    [8]
    YANG J L, FAN W, ZHENG S J. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots [J]. Journal of Zhejiang University-Science B, 2019, 20(6): 513−527. DOI: 10.1631/jzus.B1900188
    [9]
    MA J F, RYAN P R, DELHAIZE E. Aluminium tolerance in plants and the complexing role of organic acids [J]. Trends in Plant Science, 2001, 6(6): 273−278. DOI: 10.1016/S1360-1385(01)01961-6
    [10]
    RANGEL A F, RAO I M, BRAUN H P, et al. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices [J]. Physiologia Plantarum, 2010, 138(2): 176−190. DOI: 10.1111/j.1399-3054.2009.01303.x
    [11]
    庞叔薇, 康德梦, 王玉保, 等. 化学浸提法研究土壤中活性铝的溶出及形态分布 [J]. 环境化学, 1986, 5(3):68−76.

    PANG S W, KANG D M, WANG Y B, et al. Studies on the leaching of active aluminum from soil and the distribution of aluminum species by chemical extraction [J]. Environmental Chemistry, 1986, 5(3): 68−76.(in Chinese)
    [12]
    孙宝利, 赤杰, 范中南, 等. 土壤及植物复合体系中有机酸的测定 [J]. 环境科学与技术, 2010, 33(9):130−134.

    SUN B L, CHI J, FAN Z N, et al. Determination of organic acids from integrated system of soil and plant [J]. Environmental Science & Technology, 2010, 33(9): 130−134.(in Chinese)
    [13]
    戴勤. 铝诱导不同耐铝型速生桉无性系有机酸分泌及其代谢调控[D]. 南宁: 广西大学, 2014.

    DAI Q. The correspond regulation on Al-induced exudation and metabolism of organic acids of Al-resistance of Fast-growing in different Aluminum-resistant types of Eucalyptus Clones[D]. Nanning: Guangxi University, 2014. (in Chinese).
    [14]
    刘玉民. 酸铝环境马尾松根系分泌物特性及其缓解铝毒的根际效应[D]. 重庆: 西南大学, 2018.

    LIU Y M. The characteristics and rhizosphere effects in alleviating Al-toxicity of Pinus massoniana root exudation in acid-aluminum environment[D]. Chongqing: Southwest University, 2018. (in Chinese).
    [15]
    汪建飞, 沈其荣. 有机酸代谢在植物适应养分和铝毒胁迫中的作用 [J]. 应用生态学报, 2006, 17(11):2210−2216. DOI: 10.3321/j.issn:1001-9332.2006.11.041

    WANG J F, SHEN Q R. Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress [J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2210−2216.(in Chinese) DOI: 10.3321/j.issn:1001-9332.2006.11.041
    [16]
    宋松泉. 植物线粒体的物质运输 [J]. 长沙水电师院(自然科学学报), 1988, 3(4):95−102.

    SONG S Q. Material transport in plant mitochondria [J]. Journal of Changsha Normal University of Water Resources and Electric Power(Natural Science Edition), 1988, 3(4): 95−102.(in Chinese)
    [17]
    娄成后, 张蜀秋. 高等植物生长发育中同化物的转移 [J]. 科学通报, 2011, 56(30):2446−2460. DOI: 10.1360/csb2011-56-30-2446

    LOU C H, ZHANG S Q. Transfer of assimilates during growth and development of higher plants [J]. Chinese Science Bulletin, 2011, 56(30): 2446−2460.(in Chinese) DOI: 10.1360/csb2011-56-30-2446
    [18]
    MA J F. Role of organic acids in detoxification of aluminum in higher plants [J]. Plant and Cell Physiology, 2000, 41(4): 383−390. DOI: 10.1093/pcp/41.4.383
    [19]
    马士成. 铝对茶树氟吸收、累积、分布特性的影响及其机理研究[D]. 杭州: 浙江大学, 2012.

    MA S C. Effects of aluminum on uptake, distribution and accumulation of fluorine in tea plants and its mechanism[D]. Hangzhou: Zhejiang University, 2012. (in Chinese).
    [20]
    钱莲文, 李清彪, 孙境蔚, 等. 铝胁迫下常绿杨根系有机酸和氨基酸的分泌 [J]. 厦门大学学报(自然科学版), 2018, 57(2):221−227.

    QIAN L W, LI Q B, SUN J W, et al. Root secretion of organic acids and amino acids of evergreen poplar under aluminum stress [J]. Journal of Xiamen University (Natural Science Edition), 2018, 57(2): 221−227.(in Chinese)
    [21]
    李东芹. 铝通过有机酸途径缓解氟对茶树的影响[D]. 南京: 南京农业大学, 2017.

    LI D Q. Research on aluminum relieves the effect of fluorine by organic acid in tea plant[Camellia sinensis(L.) kuntze][D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese).
    [22]
    田聪, 张烁, 粟畅, 等. 铝胁迫下大豆根系有机酸积累的特性 [J]. 大豆科学, 2017, 36(2):256−261.

    TIAN C, ZHANG S, SU C, et al. Effects of aluminum (Al) on organic acid accumulation in soybean roots [J]. Soybean Science, 2017, 36(2): 256−261.(in Chinese)
  • Related Articles

    [1]LIU Changfeng, DUAN Shixin, ZHANG Xiaoyu, WANG Ye, WANG Tianchu. Research Advances on Plant Root Exudates in Response to Heavy Metal Stress[J]. Fujian Journal of Agricultural Sciences, 2021, 36(12): 1506-1514. DOI: 10.19303/j.issn.1008-0384.2021.12.016
    [2]WANG Pei, ZHANG Jia-jun, LIU Cui, MA Zhi-hui, CHEN Yu, LIN Si-zu. Physiological Response of Chinese Fir (Cunninghamia lanceolata) Seedlings Under Acid and/or Aluminum Stresses[J]. Fujian Journal of Agricultural Sciences, 2019, 34(7): 852-857. DOI: 10.19303/j.issn.1008-0384.2019.07.015
    [3]PAN Sheng-wang, LIU Can, HUANG Fang-yu. Effect of Exudates from Ryegrass Roots on Organochlorine Degradation by Rhizospheric Microbes[J]. Fujian Journal of Agricultural Sciences, 2016, 31(8): 876-880. DOI: 10.19303/j.issn.1008-0384.2016.08.016
    [4]QU Xiao-hua, ZHAO Xiao-yan, MA Jie, TAN Fei, WANG Jing-guo. Effect of Soybean Root Exudates on Microbial Biomass and Activity in Soil[J]. Fujian Journal of Agricultural Sciences, 2015, 30(3): 298-302. DOI: 10.19303/j.issn.1008-0384.2015.03.018
    [5]JING Yan-qiu, LIU Xiao-di, XUE Li-xin, JIN Lei, LU Ping, LI Huai-qi. Effect of Different Air-curing Humidity on Organic Acid Content of Burley Tobacco[J]. Fujian Journal of Agricultural Sciences, 2013, 28(5): 452-456. DOI: 10.19303/j.issn.1008-0384.2013.05.009
    [6]YANG Dao-fu, LIN Qi-hua, XIE Hong-gen, CAI Qiu-ying, CHEN Yuan, ZHUO Yu-hui. Soluble Sugars and Organic Acids of Pitaya Fruits during Development[J]. Fujian Journal of Agricultural Sciences, 2012, 27(10): 1076-1080. DOI: 10.19303/j.issn.1008-0384.2012.10.010
    [7]QI Fang-bin, CHEN Fa-xing, LAI Zhong-xiong. Path Analysis on Organic Acids and Acidity of Loquat Fruit[J]. Fujian Journal of Agricultural Sciences, 2012, 27(5): 507-512.
    [8]ZHAI Huan-chen, SHI Huai, SONG Ya-na, ZHENG Wei-wen. Simultaneous determination of seven organic acids in Prunus mume with reverse-phase high performance liquid chromatography[J]. Fujian Journal of Agricultural Sciences, 2007, 22(4): 414-417.
    [9]ZHANG Ze-huang, SHI Huai, XU Jia-hui, Lin Qi-hua. Organic acid metabolism of wampee (Clausena lansium) fruits during ripening and low temperature storage[J]. Fujian Journal of Agricultural Sciences, 2006, 21(4): 375-378.
    [10]GUO Gen-he, PAN Wei, SU De-sen, LAO Qiu-hua, HE Zhi-gang, CHEN Han-zhen. Determination of some organic acids in the fruits of loquat by RP-HPLC[J]. Fujian Journal of Agricultural Sciences, 2005, 20(3): 198-201.
  • Cited by

    Periodical cited type(2)

    1. 周柏屹,曾雅玲,孙麟钧,江宇,朱嘉宁,范福金,李明,吴鹏飞,马祥庆. 不同发育阶段杉木树皮伤口分泌物数量和成分的比较. 福建农林大学学报(自然科学版). 2025(02): 209-216 .
    2. 廖雨梦,李祖然,祖艳群,刘才鑫. 植物对重金属迁移途径及其影响因素的研究进展. 中国农学通报. 2022(24): 63-69 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (818) PDF downloads (35) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return