Differentiations between Microbes in Cultivated and Wild Paris Polyphylla Field Soils
-
摘要:
目的 探明栽培与野生七叶一枝花土壤细菌群落组成的差异。 方法 采用illumina miseq 2×300 bp高通量测序对栽培与野生七叶一枝花土壤的细菌16S rRNA基因序列进行测序分析;同时,利用LDA Effect Size(LEfSE)软件对组间群落微生物丰富度的差异分析,比较栽培与野生七叶一枝花土壤细菌群落组成的差异,明确影响2种栽培模式的重要微生物门类。 结果 七叶一枝花土壤中的微生物组成中,野生七叶一枝花土壤细菌种类优于栽培七叶一枝花土壤。丰富度指数(Ace和Chao)和多样性指数(Shannon和Simpson)分析表明,野生七叶一枝花土壤细菌群落更具有更高的丰富性和多样性。在门水平,栽培和野生七叶一枝花土壤细菌群落具有显著差异的门包括Firmicutes、硝化螺旋菌门(Nitrospirae)和螺旋菌门(Spirochaetae);显著差异的属包括芽孢杆菌(Bacillus)、纤线杆菌属(Ktedonobacter)和类芽孢杆菌(Paenibacillus)等。利用LEfSE软件对组间群落微生物丰富度的差异分析发现,厚壁菌门(Firmicutes)和硝化螺旋菌门(Nitrospirae)是野生七叶一枝花土壤样本中的优势菌门,优势属包括芽孢杆菌(Bacillus)、类芽孢杆菌(Paenibacillus)、Tumebacillus、Mucilaginibacter、硝化螺菌属(Nitrospira)、Shimazuella和Singulisphaera;栽培七叶一枝花土壤样本中起到重要作用的门水平细菌群落是装甲菌门(Armatimonadetes),属水平细菌群落是Bryobacter、Aquicella和纤线杆菌属(Ktedonobacter)。相关性分析结果表明,土壤pH与土壤全钾是影响七叶一枝花土壤微生物群落多样性的主要因素。 结论 不同栽培模式和土壤养分影响七叶一枝花土壤微生物多样性,为七叶一枝花的栽培管理与维护提供参考。 Abstract:Objective Diversity of the microbial communities in soils of cultivated and wild Paris polyphylla var. chinensis fields were compared. Method Total DNA of the microbes on cultivated land grown P. polyphylla plants or at field of the plants in the wild were sequenced using high throughput Illumina Miseq (2×300 bp). Structure and abundance of the microbial communities in soils of the fields were comparatively analyzed by LDA Effect Size. Result The microbial diversity of the wild P. polyphylla lots was richer than the cultivated land. The Chao, Ace, Shannon, and Simpson indexes of the wildP. polyphylla soil were higher than the cultivated counterparts. The communities significantly differed on the abundant phyla of Firmicutes, Nitrospirae, and Spirochaetae, and on the genera of Bacillus, Ktedonobacter, and Paenibacillus. LDA Effect Size showed Firmicutes and Nitrospirae to be the predominant phyla, while Bacillus, Paenibacillus, Tumebacillus,Mucilaginibacter, Nitrospira, Shimazuella, and Singulisphaera the dominant genera in the wild. In the cultivated soil, the Armatimonadetes phylum and the Bryobacter, Aquicella, and Ktedonobacter genera predominated the community. pH and total potassium content of soil were the critical factors affecting the diversity of a microbial community. Conclusion Cultivation and soil nutrients significantly differentiated the microbial composition at a P. polyphylla field. -
Key words:
- Paris polyphylla var. chinensis /
- rhizosphere /
- soil /
- metagenomics /
- diversity
-
表 1 栽培和野生七叶一枝花土壤样本信息
Table 1. Information on cultivated and wild P. polyphylla soils
编号
Code采集地
Locality栽培模式
Transplanting modes栽培年限
Transplanting period/aYR1 福建省南平市建瓯吉阳镇郭岩山双龙庙 野生 — YNR1 福建省南平市建瓯吉阳镇郭岩山双龙庙 野生 — YR2 福建省南平市建瓯吉阳镇郭岩山双龙庙 野生 — YNR2 福建省南平市建瓯吉阳镇郭岩山双龙庙 野生 — ZR1 福建省南平市建瓯吉阳镇郭岩山双龙庙 栽培 5 ZNR1 福建省南平市建瓯吉阳镇郭岩山双龙庙 栽培 5 ZR2 福建省南平市政和县官湖村王坑陇 栽培 2 ZNR2 福建省南平市政和县官湖村王坑陇 栽培 2 YR和ZR分别代表野生和栽培的根际土壤,YNR和ZNR分别代表野生和栽培的非根际土壤。
YR and ZR represent wild and cultivated rhizosphere soils, respectively; YNR and ZNR represent wild and cultivated non-rhizosphere soils, respectively.表 2 栽培和野生七叶一枝花土壤养分含量
Table 2. Nutrient contents of cultivated and wild P. polyphylla soils
编号
CodepH 有机质
Organic matter/(g·kg−1)全氮
Total nitrogen/(g·kg−1)全磷
Total phosphorus/(g·kg−1)全钾
Total potassium/(g·kg−1)YR1 5.20±0.30ab 118.00±6.81a 2.60±0.15ab 0.70±0.04a 3.20±0.18a YNR1 5.30±0.31ab 105.30±6.08a 1.90±0.11de 0.50±0.03b 3.30±0.19a YR2 5.90±0.34ab 110.10±6.36a 1.40±0.08f 0.80±0.05a 1.50±0.09c YNR2 5.70±0.33ab 107.10±6.18a 1.40±0.08f 0.70±0.04a 1.90±0.11b ZR1 6.30±0.36a 60.70±3.50b 2.30±0.13bc 0.30±0.02c 1.50±0.09c ZNR1 6.30±0.36a 56.80±3.28b 2.70±0.16a 0.40±0.02bc 1.70±0.10bc ZR2 5.10±0.29b 70.30±4.06b 2.20±0.13cd 0.50±0.03b 1.00±0.06d ZNR2 5.30±0.31ab 39.70±2.29c 1.80±0.10e 0.40±0.02bc 1.10±0.06d 同列数据后不同小写字母代表处理间差异显著(P<0.05)。
Data with different lowercase letters on same column indicate significant differences ( P<0.05).表 3 栽培和野生七叶一枝花土壤的细菌分离数量
Table 3. Plate counts of cultivated and wild P. polyphylla soils
样品名称
Sample name细菌含量
Bacterial content /
(×106 cfu·g−1)样品名称
Sample name细菌含量
Bacterial content /
(×106 cfu·g−1)YR1 5.05 ZR1 3.50 YNR1 4.70 ZNR1 6.85 YR2 8.10 ZR2 5.50 YNR2 8.55 ZNR2 1.75 表 4 栽培和野生七叶一枝花土壤样本不同分类阶元细菌物种(OTU)数量
Table 4. Number of microbes (OTU) at different taxonomical levels of cultivated and wild P. polyphylla soils
样本
SampleOTU 门水平
Phylum level纲水平
Class level目水平
Order level科水平
Family level属水平
Genus level种水平
Species levelYR1 1173 19 31 44 73 114 125 YNR1 1049 21 30 46 77 123 131 YR2 1122 20 28 42 73 114 130 YNR2 1173 19 29 40 70 117 128 ZR1 1198 21 31 47 78 142 140 ZNR1 1417 21 31 48 81 138 149 ZR2 630 20 27 34 62 88 85 ZNR2 904 20 27 36 64 108 104 表 5 栽培和野生七叶一枝花土壤细菌物种的Alpha多样性指数
Table 5. Alpha diversity of microbes in cultivated and wild P. polyphylla soils
样本 Sample Chao指数
Chao indexAce指数
Ace indexShannon指数
Shannon indexSimpson 指数
Simpson index覆盖率
CoverageYR1 1383.4930 1353.6621 5.2116 0.0200 0.9929 YNR1 1252.7638 1229.8781 5.1894 0.0166 0.9933 YR2 1266.0820 1239.7667 5.4007 0.0143 0.9943 YNR2 1347.2803 1314.3759 5.1740 0.0303 0.9937 ZR1 1318.3147 1313.4214 5.5856 0.0112 0.9944 ZNR1 1544.8750 1515.2990 5.9857 0.0070 0.9944 ZR2 758.2692 708.8108 4.1124 0.0588 0.9967 ZNR2 1013.1720 995.5008 5.0457 0.0211 0.9956 表 6 门和属水平的微生物组间群落显著性的差异分析
Table 6. Differential abundant microbes at phylum and genus levels
分类水平
Classification level细菌名称
Bacterial name丰富度 Abundance P值
P value栽培 Transplanting 野生 Wild 门
Phylum厚壁菌门 Firmicutes 0.0047 ±0.0009b 0.0713 ±0.0066a 0.0001 硝化螺旋菌门 Nitrospirae 0.0071 ±0.0039a 0.0309 ±0.0052a 0.0107 绿弯菌门 Chloroflexi 0.0617 ±0.0045a 0.0446 ±0.0062a 0.0659 螺旋菌门 Spirochaetae 0.0002 ±0.0002b 0.0009 ±0.0001a 0.0133 属
Genus芽孢杆菌属 Bacillus 0.0015 ±0.0004b 0.0337 ±0.0022a 0.0000 Dyella 0.0022 ±0.0013a 0.0106 ±0.0038a 0.0797 类芽孢杆菌属 Paenibacillus 0.0015 ±0.0005b 0.0245 ±0.0049a 0.0033 Tumebacillus 0.0017 ±0.001b0.0101 ±0.0024a 0.0186 Shimazuella 0.0000 ±0.0000b 0.0028 ±0.0007a 0.0052 Mucilaginibacter 0.0016 ±0.0008a 0.0069 ±0.0023a 0.0689 Bryobacter 0.0195 ±0.0026a 0.0082 ±0.0008b 0.0064 硝化螺旋菌属 Nitrospira 0.0022 ±0.0013b 0.0068 ±0.001a0.0322 分枝杆菌属 Mycobacterium 0.0007 ±0.0001b 0.0013 ±0.0001a 0.0115 丰佑菌属 Opitutus 0.0030 ±0.0007a 0.0009 ±0.0002b 0.0315 中华单胞菌属 Sinomonas 0.0003 ±0.0002a 0.0000 ±0.0000a 0.0826 Dokdonella 0.0001 ±0.0001a 0.0004 ±0.0001a 0.0692 Candidatus_Entotheonella 0.0001 ±0.0001a 0.0005 ±0.0001a 0.0615 Bryocella 0.0006 ±0.0002a 0.0000 ±0.0000b 0.0400 Singulisphaera 0.0001 ±0.0000b 0.0002 ±0.0000a 0.0148 纤线杆菌属 Ktedonobacter 0.0003 ±0.0000a 0.0000 ±0.0000b 0.0015 表 7 七叶一枝花土壤微生物多样性与土壤理化性质的Pearson相关性分析
Table 7. Pearson correlation between microbial diversity and physicochemical properties of P. polyphylla soil
项目
ItemspH 有机质
Organic
matte全氮
Total
nitrogen全磷
Total
phosphorus全钾
Total
potassium细菌含量
Bacterial
contentChao指数
Chao
indexAce指数
Ace
indexShannon指数
Shannon
indexSimpson 指数
Simpson
index覆盖度
coveragepH 1 有机质 Organic matter 0.043 1 全氮 Total nitrogen 0.718 0.509 1 全磷 Total phosphorus −0.765 0.307 −0.110 1 全钾 Total potassium 0.969* 0.011 0.805 −0.618 1 细菌含量 Bacterial content 0.309 0.660 0.884 0.365 0.451 1 Chao指数 Chao index 0.946 −0.174 0.699 −0.664 0.983* 0.323 1 Ace指数 Ace index 0.950 −0.196 0.671 −0.696 0.978* 0.282 0.999** 1 Shannon 指数 Shannon index 0.912 −0.339 0.552 −0.742 0.934 0.145 0.982* 0.988* 1 Simpson 指数 Simpson index −0.832 0.519 −0.333 0.823 −0.824 0.100 −0.907 −0.923 −0.970* 1 覆盖度 Coverage −0.958* 0.242 −0.534 0.849 −0.928 −0.088 −0.959* −0.970* −0.976* 0.954* 1 *和**分别表示在0.05和0.01水平上相关性显著。
* and * * indicate significant correlation at 0.05 and 0.01 levels, respectively. -
[1] 国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020. [2] 程筵寿, 周国华, 赵中流, 等. 七叶一枝花无纺布容器栽培技术 [J]. 绿色科技, 2021, 23(3):67−68.CHENG Y S, ZHOU G H, ZHAO Z L, et al. Cultivation techniques for non-woven fabric containers of Paris Polyphylla [J]. Journal of Green Science and Technology, 2021, 23(3): 67−68. (in Chinese) [3] 李洪梅, 孙建辉, 康利平, 等. 重楼同属植物长柱重楼与药用重楼的药效学对比研究 [J]. 中国中药杂志, 2017, 42(18):3461−3464.LI H M, SUN J H, KANG L P, et al. Comparative pharmacodynamics study on Paris forrestii and pharmacopoeial Paridis Rhizoma [J]. China Journal of Chinese Materia Medica, 2017, 42(18): 3461−3464. (in Chinese) [4] 彭寿杰, 崔志莹, 王一博, 等. 七叶一枝花甾体皂苷种类及含量差异研究进展 [J]. 世界科学技术-中医药现代化, 2022, 24(5):2014−2025.PENG S J, CUI Z Y, WANG Y B, et al. Research progress on species and content differences of steroidal saponins in Paris Polyphylla Smith Var. Chinensis(Franch. ) Hara [J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2022, 24(5): 2014−2025. (in Chinese) [5] 彭政, 郭秀芝, 徐扬, 等. 药用植物与根际微生物互作的研究进展与展望 [J]. 中国中药杂志, 2020, 45(9):2023−2030.PENG Z, GUO X Z, XU Y, et al. Advances in interaction between medicinal plants and rhizosphere microorganisms [J]. China Journal of Chinese Materia Medica, 2020, 45(9): 2023−2030. (in Chinese) [6] ZHANG J Y, LIU P, NIE B T, et al. Effects of genotype and ecological environment on the community structure and function of symbiotic bacteria in rhizosphere of ginseng [J]. BMC Microbiology, 2022, 22(1): 235. doi: 10.1186/s12866-022-02649-0 [7] FANG X X, WANG H Y, ZHAO L, et al. Diversity and structure of the rhizosphere microbial communities of wild and cultivated ginseng [J]. BMC Microbiology, 2022, 22(1): 2. doi: 10.1186/s12866-021-02421-w [8] 王勇, 何舒, 熊冰杰, 等. 不同栽培模式对人参根际土壤微生物多样性的影响研究 [J]. 中草药, 2021, 52(17):5303−5310.WANG Y, HE S, XIONG B J, et al. Studied on microbial diversity of rhizosphere soil from different cultivated Panax ginseng [J]. Chinese Traditional and Herbal Drugs, 2021, 52(17): 5303−5310. (in Chinese) [9] GOODWIN P H. The rhizosphere microbiome of ginseng [J]. Microorganisms, 2022, 10(6): 1152. doi: 10.3390/microorganisms10061152 [10] 苏海兰, 郑梅霞, 陈宏, 等. 七叶一枝花林下仿生态栽培关键技术 [J]. 福建农业科技, 2020, 51(4):67−70.SU H L, ZHENG M X, CHEN H, et al. Key techniques of the underwood imitative ecological cultivation of Paris Polyphylla [J]. Fujian Agricultural Science and Technology, 2020, 51(4): 67−70. (in Chinese) [11] 苏海兰, 方少忠, 郑梅霞, 等. 七叶一枝花种苗繁育技术规程 [J]. 福建农业科技, 2020, 51(7):61−64.SU H L, FANG S Z, ZHENG M X, et al. Technical regulations for the seedling breeding of Paris Polyphylla Smith var. chinensis Franch [J]. Fujian Agricultural Science and Technology, 2020, 51(7): 61−64. (in Chinese) [12] 苏海兰, 郑梅霞, 朱育菁, 等. 不同种植模式七叶一枝花土壤芽胞杆菌多样性研究 [J]. 福建农业学报, 2019, 34(8):974−984.SU H L, ZHENG M X, ZHU Y J, et al. Bacillus spp. in soils at Paris polyphylla cultivation fields [J]. Fujian Journal of Agricultural Sciences, 2019, 34(8): 974−984. (in Chinese) [13] 戴雪雯. 野生变家种滇重楼品质评价及其植物根际土壤细菌的研究[D]. 大理: 大理大学, 2019.DAI X W. Quality evaluation of Paris polyphylla var. Yunnanensis and study on its rhizosphere soil bacteria[D]. Dali: Dali University, 2019. (in Chinese) [14] 冼康华, 苏江, 付传明, 等. 不同生长年限华重楼根际土壤微生物多样性研究 [J]. 广西植物, 2022, 42(12):2087−2098.XIAN K H, SU J, FU C M, et al. Microbial diversity in rhizosphere soil of Paris Polyphylla var. chinensis in different growth years [J]. Guihaia, 2022, 42(12): 2087−2098. (in Chinese) [15] 陈倩倩, 刘波, 刘国红, 等. 华重楼根际土芽胞杆菌多样性研究 [J]. 热带农业科学, 2015, 35(12):103−107,112.CHEN Q Q, LIU B, LIU G H, et al. Diversity of culturable Bacillus species from Paris Linnaeus rhizosphere soil [J]. Chinese Journal of Tropical Agriculture, 2015, 35(12): 103−107,112. (in Chinese) [16] 王子夜, 路晓月, 许露, 等. 不同种植年限桑树根际土壤真菌群落多样性研究 [J]. 蚕业科学, 2022, 48(1):25−33.WANG Z Y, LU X Y, XU L, et al. Fungal community composition and diversity in rhizospheric soil of mulberry trees at different planting years [J]. Acta Sericologica Sinica, 2022, 48(1): 25−33. (in Chinese) [17] 牛世全, 龙洋, 李海云, 等. 应用IlluminaMiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性 [J]. 微生物学通报, 2017, 44(9):2067−2078.NIU S Q, LONG Y, LI H Y, et al. Microbial diversity in saline alkali soil from Hexi Corridor analyzed by Illumina Mi Seq high-throughput sequencing system [J]. Microbiology China, 2017, 44(9): 2067−2078. (in Chinese) [18] 鲍士旦. 土壤农化分析[M]. 3 版. 北京: 中国农业出版社, 2000鲍士旦. 土壤农化分析[M]. 3 版. 北京: 中国农业出版社, 2000 [19] 郝海婷, 王若愚, 赵霞, 等. 基于高通量测序技术的堆肥对兰州百合根际微生物多样性的影响 [J]. 西北农业学报, 2017, 26(3):437−447.HAO H T, WANG R Y, ZHAO X, et al. Effect of compost on rhizosphere microbial community of Lanzhou-lily based on high throughput sequencing [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(3): 437−447. (in Chinese) [20] 张发根, 傅金贤. 浙西南地区华重楼杉木林下栽培技术[J]. 现代农业科技, 2019(14): 82, 84.ZHANG F G, FU J X. Cultivation techniques of Chinese fir in Paris polyphylla var. chinensis in southwest Zhejiang Province[J]. Modern Agricultural Science and Technology, 2019(14): 82, 84. (in Chinese) [21] 王佩瑶, 张璇, 袁文娟, 等. 土壤微生物多样性及其影响因素 [J]. 绿色科技, 2021, 23(8):163−164,167.WANG P Y, ZHANG X, YUAN W J, et al. Soil microbial diversity and its influencing factors [J]. Journal of Green Science and Technology, 2021, 23(8): 163−164,167. (in Chinese) [22] 丁娜, 林华, 张学洪, 等. 植物根系分泌物与根际微生物交互作用机制研究进展 [J]. 土壤通报, 2022, 53(5):1212−1219.DING N, LIN H, ZHANG X H, et al. Interaction mechanism between root secretion and rhizosphere microorganisms: A review [J]. Chinese Journal of Soil Science, 2022, 53(5): 1212−1219. (in Chinese) [23] 曹小青, 王亮, 孙孟瑶, 等. 不同年限毛竹-白及复合系统土壤微生物群落多样性特点 [J]. 中国土壤与肥料, 2022, (1):147−154.CAO X Q, WANG L, SUN M Y, et al. Soil microbial community diversity in Phyllostachys pubescens-Bletilla striata ecosystems with different intercropping years [J]. Soil and Fertilizer Sciences in China, 2022(1): 147−154. (in Chinese) [24] 夏北成. 植被对土壤微生物群落结构的影响 [J]. 应用生态学报, 1998, 9(3):296−300.XIA B C. Effect of vegetation on structure of soil microbial community [J]. Chinese Journal of Applied Ecology, 1998, 9(3): 296−300. [25] 徐筋燕, 何晓兰, 邵明灿, 等. 不同连作年限栝楼根际土壤微生物群落多样性分析 [J]. 江苏农业学报, 2023, 39(5):1140−1150.XU J Y, HE X L, SHAO M C, et al. Analysis of microbial community diversity in rhizosphere soil of continuous cropping Trichosanthes kirilowii [J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(5): 1140−1150. (in Chinese) [26] 周浓, 戚文华, 肖国生, 等. 滇重楼根际微生物分布与甾体皂苷含量的相关性 [J]. 中国中药杂志, 2015, 40(6):1055−1060.ZHOU N, QI W H, XIAO G S, et al. Correlation between distribution of rhizospheric microorganisms and contents of steroidal saponins of Paris Polyphylla var. Yunnanensis [J]. China Journal of Chinese Materia Medica, 2015, 40(6): 1055−1060. (in Chinese) [27] 张英英, 魏玉杰, 吴之涛, 等. 不同种植年限对特殊药材土壤化学性质和微生物多样性的影响 [J]. 干旱地区农业研究, 2023, 41(1):150−159.ZHANG Y Y, WEI Y J, WU Z T, et al. Effects of different cropping years on soil chemical properties of special medicine source plant [J]. Agricultural Research in the Arid Areas, 2023, 41(1): 150−159. (in Chinese) [28] 徐雷, 刘常丽, 郭兰萍. 不同种植模式下茯苓土壤细菌多样性和功能预测分析 [J]. 北方园艺, 2023, (11):91−97.XU L, LIU C L, GUO L P. Soil bacterial diversity and function prediction analysis of Poria cocos cultivating under different planting modes [J]. Northern Horticulture, 2023(11): 91−97. (in Chinese) [29] 黎巷汝, 陈丹妮, 洪永聪. 不同茶树品种土壤细菌群落结构和多样性特征 [J]. 茶叶学报, 2022, 63(2):107−113.LI X R, CHEN D N, HONG Y C. Community structure and diversity analysis of rhizosphere bacteria in different varieties of tea plants [J]. Acta Tea Sinica, 2022, 63(2): 107−113. (in Chinese) [30] 甘国渝, 陈佛文, 邹家龙, 等. 长期不同养分缺乏对冬油菜土壤微生物群落组成及多样性的影响 [J]. 中国土壤与肥料, 2022, (4):37−46. doi: 10.11838/sfsc.1673-6257.21007GAN G Y, CHEN F W, ZOU J L, et al. Effects of long-term different nutrient deficiency on the composition and diversity of soil microbial community in winter oilseed rape [J]. Soil and Fertilizer Sciences in China, 2022(4): 37−46. (in Chinese) doi: 10.11838/sfsc.1673-6257.21007 [31] 白雪花, 陈晓蓉, 陈新范, 等. 连作与非连作苎麻根际微生物的多样性研究 [J]. 中国麻业科学, 2021, 43(5):222−230.BAI X H, CHEN X R, CHEN X F, et al. Diversity of microorganism in the rhizosphere of continuous cropping and non-continuous cropping on ramie (Boehmeria nivea(L. ) Gaud. ) [J]. Plant Fiber Sciences in China, 2021, 43(5): 222−230. (in Chinese) [32] 潘红, 冯浩杰, 娄燕宏, 等. 农田土壤硝化微生物的生态学研究进展 [J]. 土壤通报, 2023, 54(3):750−756.PAN H, FENG H J, LOU Y H, et al. Advances in microbial ecology of nitrifying communities in agricultural soils [J]. Chinese Journal of Soil Science, 2023, 54(3): 750−756. (in Chinese) [33] 王舒淇, 任梦丽, 李鑫丰, 等. 地膜微塑料对农田土壤酶活性和细菌群落的影响 [J]. 中北大学学报(自然科学版), 2023, 44(4):437−446.WANG S Q, REN M L, LI X F, et al. The effect of mulch microplastics on soil enzyme activity and bacterial community in farmland [J]. Journal of North University of China (Natural Science Edition), 2023, 44(4): 437−446. (in Chinese) [34] 左梅, 谭军, 向必坤, 等. 不同芽孢杆菌对烟株根际土壤细菌群落及根结线虫防控效果的影响 [J]. 烟草科技, 2022, 55(3):8−15.ZUO M, TAN J, XIANG B K, et al. Effects of different Bacillus on bacterial community of tobacco rhizosphere soil and control of root-knot nematodes [J]. Tobacco Science & Technology, 2022, 55(3): 8−15. (in Chinese) [35] 张骕, 缪卫国, 韦明德, 等. 豇豆叶片生防细菌的鉴定及其拮抗作用测定 [J]. 分子植物育种, 2018, 16(23):7760−7774.ZHANG S, MIAO W G, WEI M D, et al. Identification of biological control bacteria from cowpea leaves and determination of antagonism [J]. Molecular Plant Breeding, 2018, 16(23): 7760−7774. (in Chinese) [36] 冉聪. 川芎内生细菌的分离鉴定及其促生研究[D]. 雅安: 四川农业大学, 2019.RAN C. Isolation, identification and growth promotion of endophytic bacteria from Ligusticum chuanxiong Hort[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese) [37] 杜思瑶, 于淼, 刘芳华, 等. 设施种植模式对土壤细菌多样性及群落结构的影响 [J]. 中国生态农业学报, 2017, 25(11):1615−1625.DU S Y, YU M, LIU F H, et al. Effect of facility management regimes on soil bacterial diversity and community structure [J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1615−1625. (in Chinese) [38] 何庆海, 方茹, 张燕琴, 等. 林下不同菌种皱环球盖菇产量与环境因子相关性分析 [J]. 菌物学报, 2022, 41(5):759−768.HE Q H, FANG R, ZHANG Y Q, et al. The correlation of yield of various Stropharia rugosoannulata cultivated strains with forest environmental factors [J]. Mycosystema, 2022, 41(5): 759−768. (in Chinese) [39] 赵东岳. 人参自毒物质降解菌的筛选及其降解特性研究[D]. 北京: 北京协和医学院, 2013.ZHAO D Y. Screening and degradation characteristics of autotoxic substances degrading bacteria from ginseng[D]. Beijing: Peking Union Medical College, 2013. (in Chinese) [40] 高林, 张继光, 吴元华, 等. 镉污染对烤烟根际土壤细菌和真菌群落结构的影响 [J]. 土壤通报, 2015, 46(3):628−632.GAO L, ZHANG J G, WU Y H, et al. Effect of Cd contamination on soil bacteria and fungi community structure in flue-cured tobacco rhizosphere [J]. Chinese Journal of Soil Science, 2015, 46(3): 628−632. (in Chinese) [41] 卢瑞朋, 徐文江, 李安峰, 等. 内循环比对反硝化除磷工艺处理效果和群落结构的影响 [J]. 环境科学研究, 2022, 35(8):1845−1853.LU R P, XU W J, LI A F, et al. Effect of internal return system on removal performance and microbial community structure of novel denitrifying phosphorus removal process [J]. Research of Environmental Sciences, 2022, 35(8): 1845−1853. (in Chinese) [42] 包涛涛, 李丝雨, 王一, 等. 根系-菌根-土壤微生物对毛竹林土壤氮矿化过程的贡献 [J]. 生态学杂志, 2024, 43(5):1234−1242.BAO T T, LI S Y, WANG Y, et al. Contribution of roots-mycorrhizae-free-living microorganisms to soil nitrogen mineralization in moso bamboo forest [J]. Chinese Journal of Ecology, 2024, 43(5): 1234−1242. (in Chinese) [43] 吴宇澄, 张彩霞, 王保战, 等. 长期施肥稻田土壤原核生物群落的高通量测序分析[C]. 中国土壤学会海峡两岸土壤肥料学术交流研讨会, 2012: 941.