Effects of Abscisic Acid Spray on Hormone Metabolism of Camellia reticulata Seedlings under Drought Stress
-
摘要:
目的 探究喷施外源脱落酸(abscisic acid, ABA)对干旱胁迫下两年生云南山茶紫袍 (Camellia reticulata ‘Zipao’)幼苗根和叶内源激素的影响。 方法 采用100 mg·L−1脱落酸对云南山茶幼苗叶面喷施,并用PEG_6000模拟干旱法进行干旱胁迫,研究在干旱胁迫及复水处理下外源ABA对云南山茶根和叶的渗透调节物质和内源激素代谢组的影响。 结果 干旱及复水处理下渗透调节的关键部位是在叶。干旱胁迫下云南山茶幼苗根部促进ABA、赤霉素(gibberellins, GA)、细胞分裂素(cytokinins, CKs)含量,降低生长素(auxin, IAA)含量,而叶部促进ABA、茉莉酸(jasmonates, JA)、水杨酸(salicylic acid, SA)、IAA、CKs含量的积累。复水处理下云南山茶幼苗根部ABA、GA、CKs各激素水平逐渐下降,IAA含量逐渐上升,而叶部通过积累JA、SA、IAA、CKs含量进行调控。差异显著代谢物KEGG富集分析表明,根部代谢物显著富集在二萜生物合成通路中,叶部显著富集在植物激素信号转导途径和玉米素生物合成通路中。渗透调节物质与内源激素的相关性分析表明二者之间存在显著正相关。施用外源ABA在干旱胁迫下可分别提升云南山茶根部可溶性蛋白、可溶性糖、ABA、GA、CKs和叶部游离脯氨酸、ABA、JA的含量,进而提高耐旱力;在复水期可分别降低根部CKs和叶部JA的含量,促进根部和叶部IAA的合成,进而促进植株的恢复。 结论 云南山茶幼苗根和叶对干旱胁迫及复水处理的响应存在差异,施用外源ABA可提高云南山茶的耐旱力。 Abstract:Objective Effects of ABA spray on endogenous hormones in Camellia reticulata seedlings under drought stress were studied. Methods An ABA solution in the concentration of 100 mg·L−1 was sprayed on the leaves of 2-year-old C. reticulata Zipao seedlings grown in potting soil under a simulated drought stress using PEG_6000. Osmoregulatory substances and hormone metabolome in the roots and leaves of the plants were measured under the treatment and subsequent rehydration. Results Osmotic regulation of the seedlings took place mainly in the leaves. Under drought stress, ABA, JA , SA ,IAA, and CKs accumulated in the leaves, while ABA, GA , and CKs increased but IAA decreased in the roots. Upon rehydration, ABA, GA, and CKs in the roots gradually declined, while IAA rose, meanwhile, the leaves started regulating with the stored JA, SA, IAA, and CKs. The KEGG enrichment analysis showed that the diterpene biosynthesis pathway in the roots and the hormone signal transduction and zein biosynthesis pathways in the leaves were significantly enhanced. There was a significant correlation between the osmoregulatory substances and endogenous hormones. The ABA spray boosted the contents of soluble protein, soluble sugar, ABA, GA, and CKs in the roots as well as those of free proline, ABA, and JA in the leaves improving the drought tolerance of the plant. With replenished water, CKs in the roots and JA in the leaves were reduced to encourage IAA synthesis, which in turn, aided the recovery of plant functions. Conclusion The responses of the roots and leaves of C. reticulata seedlings to the imposed drought and the subsequent rehydration were different. Application of foliar ABA spray could improve the draught resistance of the plants. -
Key words:
- Camellia reticulata /
- roots /
- leaves /
- drought stress /
- abscisic acid /
- osmoregulatory substances /
- endogenous hormones
-
图 1 云南山茶根和叶渗透调节物质含量
不同小写字母表示云南山茶根和叶不同时间处理间的差异显著性(P<0.05)。不同大写字母表示同一时间云南山茶根和叶处理间的差异显著性(P<0.05)。图5同。
Figure 1. Contents of osmoregulatory substances in roots and leaves of C. reticulata
Data with different lowercase letters indicate significant differences at sampling times (P<0.05); those with different capital letters indicate significant differences at same sampling time (P<0.05). Same for Fig. 5.
图 4 差异代谢物的KEGG富集
横坐标表示每个通路对应的富集因子,纵坐标为通路名称,点的颜色为P值,越红表示富集越显著。点的大小代表富集到的差异代谢物的个数多少。a:G0 hA_vs_G72 hA,b:Y0 hA_vs_Y72 hA,c:G72 hA_vs_GR72 hA,d:Y72 hA_vs_YR72 hA。
Figure 4. KEGG enrichment map of differential metabolites
Horizontal coordinate: rich factor corresponding to each pathway; vertical coordinate: path name; dot color: P value, the deeper the red color, the more significant the enrichment; dot size: number of differentiated metabolites enriched; a: G0hA_vs_G72hA; b: Y0hA_vs_Y72hA; c: G72hA_vs_GR72hA; d: Y72hA_vs_YR72hA.
图 6 胁迫期及复水期3种赤霉素含量变化及茉莉酸热图
上下调图中蓝色柱状为D1组,红色柱状为D2组,蓝色方框框选的代谢物为D1组和D2组共有的差异代谢物,未框选的即为特有差异代谢物,下同。a、b、c:3种赤霉素含量变化;d:胁迫期叶片中茉莉酸热图,e:复水期叶片中茉莉酸热图。
Figure 6. GA and JA heat map of plant under stress and after rehydration
In upper and lower diagrams, blue bar: Group D1; red bar: Group D2; metabolites in blue box: differential metabolites shared by D1 and D2; unselected metabolites: unique differential metabolites. Same for below. a, b, c: contents of 3 kinds of GA; d: heat map of JA in leaves under stress; e: heat map of JA in leaves after rehydration.
图 7 胁迫期及复水期生长素、细胞分裂素热图及上下调图
a:胁迫期根系中生长素热图,b:胁迫期根系中细胞分裂素热图,c:胁迫期叶片中生长素热图,d:胁迫期叶片中细胞分裂素热图,e:复水期期根系中生长素热图,f:复水期根系中细胞分裂素热图,g:复水期叶片中生长素热图,h:复水期叶片中细胞分裂素热图。
Figure 7. Heat and up-down maps of IAA and cytokinin in plant under stress and after rehydration
a: IAA heat map in roots under stress; b: cytokinin heat map in roots under stress; c: IAA heat map in leaves under stress; d: cytokinin heat map in leaves under stress; e: IAA heat map in roots after rehydration; f: cytokinin heat map in roots after rehydration; g: IAA heat map in leaves after rehydration; h: cytokinin heat map in leaves after rehydration.
表 1 试验处理组别代表符号
Table 1. Symbols for various treatments
处理组
Treatment group组织部位
Tissue site干旱胁迫时长
Drought stress duration复水后24 h(R24 h)
24 h after rehydration复水后72 h(R72 h)
72 h after rehydration0 h 24 h 48 h 72 h D1 根(G1) G0 h G24 h G48 h G72 h GR24 h GR72 h 叶(Y1) Y0 h Y24 h Y48 h Y72 h YR24 h YR72 h D2 根(G2) G0 hA G24 hA G48 hA G72 hA GR24 hA GR72 hA 叶(Y2) Y0 hA Y24 hA Y48 hA Y72 hA YR24 hA YR72 hA 表 2 云南山茶幼苗根部生理指标、内源激素的相关系数
Table 2. Correlation coefficient of physiological indexes and endogenous hormones of C. reticulata roots
生理指标/激素
Physiological indicators/Hormone生理指标/激素
Physiological indicators/Hormone相关性
CorrelationSP IAA 0.948** SP GA 0.831* SP SA 0.976** SP SS 0.954* SS IAA 0.917* SS GA 0.844* SS SA 0.907* IAA GA 0.917* IAA SA 0.875* **表示极显著相关(P<0.01),*表示显著相关(P<0.05)。下同。
**: extremely significant correlation at P<0.01; *: significant correlation at P<0.05. Same for below.表 3 云南山茶幼苗叶部生理指标、内源激素间的相关系数
Table 3. Correlation coefficient between physiological indexes and endogenous hormones of C. reticulata leaves
生理指标/激素
Physiological indicators/Hormone生理指标/激素
Physiological indicators/Hormone相关性
CorrelationSS IAA 0.902* SS CKs 0.914* SS GA 0.944** SS JA 0.886* SS SA 0.958** IAA CKs 0.841* IAA GA 0.899* IAA JA 0.944** GA CKs 0.936** GA JA 0.915* GA SA 0.896* CKs SA 0.879* -
[1] 廖初琴, 缪绅裕. 山茶属植物传统及现代分类的研究进展 [J]. 热带农业科学, 2023, 43(7):37−45.LIAO C Q, MIAO S Y. Advances in the traditional and modern classification of Camellia [J]. Chinese Journal of Tropical Agriculture, 2023, 43(7): 37−45. (in Chinese) [2] 杨桂英, 何瀚, 曹子林, 等. 3种不同倍性滇山茶的耐寒性研究 [J]. 云南大学学报(自然科学版), 2016, 38(2):335−343. doi: 10.7540/j.ynu.20150409YANG G Y, HE H, CAO Z L, et al. A study on cold resistance in diploid, tetraploid and hexaploid of Camellia reticulata (Theaceae) [J]. Journal of Yunnan University (Natural Sciences Edition), 2016, 38(2): 335−343. (in Chinese) doi: 10.7540/j.ynu.20150409 [3] 李振勤. 浅谈滇山茶杂交育种 [J]. 特种经济动植物, 2021, 24(5):57−58,64. doi: 10.3969/j.issn.1001-4713.2021.05.026LI Z Q. Discussion on hybrid breeding of Camellia yunnanensis [J]. Special Economic Animals and Plants, 2021, 24(5): 57−58,64. (in Chinese) doi: 10.3969/j.issn.1001-4713.2021.05.026 [4] 杨明艳, 普惠娟, 张宝琼, 等. 云南山茶花文化挖掘与发展研究 [J]. 热带农业科学, 2020, 40(9):110−115.YANG M Y, PU H J, ZHANG B Q, et al. Exploration and development of Camellia reticulata culture in Yunnan [J]. Chinese Journal of Tropical Agriculture, 2020, 40(9): 110−115. (in Chinese) [5] 王炜. 滇山茶多倍化的转录组变异分析[D]. 昆明: 昆明理工大学, 2018.WANG W. Transcriptome variation analysis of polyploidy Camellia reticulata[D]. Kunming: Kunming University Of Science and Technology, 2018. (in Chinese) [6] 夏英, 李婕婷, 唐婧, 等. 山茶和西洋杜鹃花瓣及叶片的栓塞脆弱性比较 [J]. 西北植物学报, 2023, 43(1):79−87. doi: 10.7606/j.issn.1000-4025.2023.01.0079XlA Y, LI J T, TANG J, et al. Comparative Study on Embolism Vulnerability in Petals and Leaves of Camellia japonica and Rhododendron hybridum [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(1): 79−87. (in Chinese) doi: 10.7606/j.issn.1000-4025.2023.01.0079 [7] 曾松, 欧静, 田奥, 等. 干旱胁迫对马缨杜鹃生长和光合生理特征的影响 [J]. 西南农业学报, 2024, 2(20):1−9.ZENG S, OU J, TIAN A, et al. Effects of drought stress on growth and photosynthetic physiological characteristics of Rhododendron delavayi [J]. Southwest China Journal of Agricultural Sciences, 2024, 2(20): 1−9. (in Chinese) [8] 陈虎, 管荣, 刘长英, 等. 脱落酸信号调控植物干旱胁迫响应的研究进展 [J]. 成都大学学报(自然科学版), 2023, 42(1):23−27,39.CHEN H, GUAN R, LIU C Y, et al. Research progress of abscisic acid signaling regulating drought stress responses in plants [J]. Journal of Chengdu University (Natural Science Edition), 2023, 42(1): 23−27,39. (in Chinese) [9] 农倩, 谢金兰, 林丽, 等. 干旱胁迫下外源ABA对甘蔗幼苗生理特性和基因表达的影响 [J]. 热带作物学报, 2023, 44(3):553−561. doi: 10.3969/j.issn.1000-2561.2023.03.012NONG Q, XIE J L, LIN L, et al. Effects of exogenous ABA on physiological characteristics and gene expression in sugarcane seedlings under drought stress [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 553−561. (in Chinese) doi: 10.3969/j.issn.1000-2561.2023.03.012 [10] WANG F B, WAN C Z, NIU H F, et al. OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice [J]. Journal of Integrative Agriculture, 2023, 22(2): 341−359. doi: 10.1016/j.jia.2022.08.077 [11] 林先玉, 柏松, 李美玉, 等. 外源脱落酸对干旱胁迫下云南山茶光合与荧光指标的影响[J/OL]. 分子植物育种, 1-12[2024-07-23]. http://kns.cnki.net/kcms/detail/46.1068.S.20230524.1453.018.html.LIN X Y, BAI S, LI M Y, et al. Effects of Exogenous Abscisic Acid on Photosynthetic and Fluorescence lndexes of Camellia reticulataunder Drought Stress [J/OL]. Molecular Plant Breeding, 1-12[2024-07-23]. http://kns.cnki.net/kcms/detail/46.1068.S.20230524.1453.018.html. (in Chinese) [12] 林先玉, 李紫倩, 柏松, 等. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析 [J]. 浙江农业学报, 2023, 35(11):2611−2620.LIN X Y, LI Z Q, BAI S, et al. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611−2620. (in Chinese) [13] 郭安红, 刘庚山, 任三学, 等. 玉米根、茎、叶中脱落酸含量和产量形成对土壤干旱的响应 [J]. 作物学报, 2004, 30(9):888−893. doi: 10.3321/j.issn:0496-3490.2004.09.008GUO A H, LIU G S, REN S X, et al. The response of yield formation and abscisic acid content in root, stem, and leaf of maize to soil drying [J]. Acta Agronomica Sinica, 2004, 30(9): 888−893. (in Chinese) doi: 10.3321/j.issn:0496-3490.2004.09.008 [14] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [15] LI Y, ZHOU C X, YAN X J, et al. Simultaneous analysis of ten phytohormones in Sargassum horneri by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry [J]. Journal of Separation Science, 2016, 39(10): 1804−1813. doi: 10.1002/jssc.201501239 [16] FLOKOVÁ K, TARKOWSKÁ D, MIERSCH O, et al. UHPLC-MS/MS based target profiling of stress-induced phytohormones [J]. Phytochemistry, 2014, 105: 147−157. doi: 10.1016/j.phytochem.2014.05.015 [17] XIAO H M, CAI W J, YE T T, et al. Spatio-temporal profiling of abscisic acid, indoleacetic acid and jasmonic acid in single rice seed during seed germination [J]. Analytica Chimica Acta, 2018, 1031: 119−127. doi: 10.1016/j.aca.2018.05.055 [18] ŠIMURA J, ANTONIADI I, ŠIROKÁ J, et al. Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics [J]. Plant Physiology, 2018, 177(2): 476−489. doi: 10.1104/pp.18.00293 [19] 生弘杰, 卢素文, 郑暄昂, 等. 基于广泛靶向代谢组学的葡萄种子代谢物鉴定与比较分析 [J]. 中国农业科学, 2023, 56(7):1359−1376. doi: 10.3864/j.issn.0578-1752.2023.07.013SHENG H J, LU S W, ZHENG X A, et al. Identification and comparative analysis of metabolites in grape seed based on widely targeted metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359−1376. (in Chinese) doi: 10.3864/j.issn.0578-1752.2023.07.013 [20] 季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响 [J]. 草业学报, 2014, 23(3):144−151. doi: 10.11686/cyxb20140316JI Y, ZHANG X Q, PENG Y, et al. Effects of drought stress on lipid peroxidation, osmotic adj ustment and activities of protective enzymes in the roots and leaves of orchardgrass [J]. Acta Prataculturae Sinica, 2014, 23(3): 144−151. (in Chinese) doi: 10.11686/cyxb20140316 [21] 倪渊嵘, 翟妍, 刘大丽, 等. 外源ABA处理下甜菜BvDofs家族全基因组序列鉴定与表达分析[J/OL]. 分子植物育种, 1-11[2024-07-23]. http://kns.cnki.net/kcms/detail/46.1068.S.20231008.1015.002.html.NI Y R, ZHAI Y, LIU D L, et al. Genome-wide ldentification and Expression Analysis of BvDofs family in Sugar Beet Under Exogenous ABA Treatment[J/OL]. Molecular Plant Breeding, 1-11[2024-07-23]. http://kns.cnki.net/kcms/detail/46.1068.S.20231008.1015.002.html. (in Chinese) [22] 项洪涛, 李琬, 何宁, 等. 外源脱落酸(ABA)调节植物抗旱机制的研究进展 [J]. 东北农业科学, 2022, 47(5):37−41.XIANG H T, LI W, HE N, et al. Research progress on exogenous abscisic acid(ABA)regulating plant drought resistance [J]. Journal of Northeast Agricultural Sciences, 2022, 47(5): 37−41. (in Chinese) [23] 任敏, 何金环. 自然干旱胁迫下紫花苜蓿叶片和根部ABA的代谢变化 [J]. 安徽农业科学, 2010, 38(4):1771−1772. doi: 10.3969/j.issn.0517-6611.2010.04.046REN M, HE J H. Changes of ABA metabolism in leaves and roots of alfalfa under natural drought stress [J]. Journal of Anhui Agricultural Sciences, 2010, 38(4): 1771−1772. (in Chinese) doi: 10.3969/j.issn.0517-6611.2010.04.046 [24] 路萍. 水分胁迫对丹参苗期生理特性和内源激素含量的影响[D]. 雅安: 四川农业大学, 2012: 37-39.LU P. Effects of water stress on physiological characteristics and endogenous hormone content of Salvia miltiorrhiza at seedling stage[D]. Yaan: Sichuan Agricultural University, 2012: 37-39. (in Chinese) [25] 胡晓健, 杨春霞, 谭世才, 等. 干旱胁迫对不同种源马尾松幼苗中脯氨酸及内源激素含量的影响 [J]. 南方林业科学, 2020, 48(6):24−28,53.HU X J, YANG C X, TAN S C, et al. Effects of drought stress on proline and endogenous hormones content in Pinus massoniana seedlings from different provenances [J]. South China Forestry Science, 2020, 48(6): 24−28,53. (in Chinese) [26] 唐子贻, 杜玥, 杨宏斌, 等. 高温和干旱胁迫下茶树叶片内源激素含量变化及其相关基因的表达分析 [J]. 茶叶科学, 2023, 43(4):489−500. doi: 10.3969/j.issn.1000-369X.2023.04.005TANG Z Y, DU Y, YANG H B, et al. Changes of endogenous hormone contents and expression analysis of related genes in leaves of tea plants under heat and drought stresses [J]. Journal of Tea Science, 2023, 43(4): 489−500. (in Chinese) doi: 10.3969/j.issn.1000-369X.2023.04.005 [27] 康书瑜, 庞春花, 张永清, 等. 干旱胁迫下外源水杨酸对藜麦生理效应及产量的影响 [J]. 干旱区资源与环境, 2022, 36(12):151−157.KANG S Y, PANG C H, ZHANG Y Q, et al. Effects of spraying salicylic acid on drought-resistance and yield of quinoa [J]. Journal of Arid Land Resources and Environment, 2022, 36(12): 151−157. (in Chinese) [28] 孙雨桐, 刘德帅, 齐迅, 等. 茉莉酸调控植物生长发育和胁迫的研究进展 [J]. 生物技术通报, 2023, 39(11):99−109.SUN Y T, LIU D S, QI X, et al. Advances in jasmonic acid regulating plant growth and development as well as stress [J]. Biotechnology Bulletin, 2023, 39(11): 99−109. (in Chinese) [29] 王荣荣, 谢冰莹, 王海琪, 等. 滴灌春小麦根系形态特征及内源激素含量对花期干旱及复水的响应 [J]. 麦类作物学报, 2023, 43(9):1174−1186.WANG R R, XIE B Y, WANG H Q, et al. Response of root morphology and endogenous hormones of drip irrigated spring wheat to drought stress and rewatering at anthesis stage [J]. Journal of Triticeae Crops, 2023, 43(9): 1174−1186. (in Chinese) [30] 牛俊义, 闫志利, 林瑞敏, 等. 干旱胁迫及复水对豌豆叶片内源激素含量的影响 [J]. 干旱地区农业研究, 2009, 27(6):154−159.NIU J Y, YAN Z L, LIN R M, et al. Effect of drought stress and water recovery on endogenous hormone content in leaves of pea [J]. Agricultural Research in the Arid Areas, 2009, 27(6): 154−159. (in Chinese) [31] 王晓凌, 李晓倩, 赵威, 等. 细胞分裂素调控的玉米旱后复水补偿性生长机制研究 [J]. 水土保持研究, 2016, 23(4):300−305,312.WANG X L, LI X Q, ZHAO W, et al. Study on the compensatory growth mechamism adjusted by cytokinin after corn seedling re-watering [J]. Research of Soil and Water Conservation, 2016, 23(4): 300−305,312. (in Chinese) [32] 魏晓芸. 干旱胁迫下红砂幼苗的生理和转录组学分析[D]. 兰州: 甘肃农业大学, 2021: 29-31.WEI X Y. Physiological and transcriptional analysis of red sand seedlings under drought stress[D]. Lanzhou: Gansu Agricultural University, 2021: 29-31. (in Chinese) [33] 黎运. 油茶对干旱胁迫的生理响应及转录组分析[D]. 长沙: 中南林业科技大学, 2021: 40-43.LI Y. Physiological response and transcriptome analysis of Camellia oleifera to drought stress[D]. Changsha: Central South University of Forestry & Technology, 2021: 40-43. (in Chinese) [34] KOSHITA Y, TAKAHARA T. Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin (Citrus unshiu Marc. ) [J]. Scientia Horticulturae, 2004, 99(3/4): 301−307. [35] 张丽杰, 寇靓, 闫冬函, 等. PEG模拟干旱处理对欧洲垂枝桦幼苗内源激素含量变化的影响 [J]. 沈阳农业大学学报, 2023, 54(5):537−546. doi: 10.3969/j.issn.1000-1700.2023.05.004ZHANG L J, KOU J, YAN D H, et al. PEG simulates the effect of drought treatment on endogenous hormone content changes in Betula pendula Roth. Seedlings [J]. Journal of Shenyang Agricultural University, 2023, 54(5): 537−546. (in Chinese) doi: 10.3969/j.issn.1000-1700.2023.05.004 [36] 李安, 舒健虹, 刘晓霞, 等. 干旱胁迫下枯草芽孢杆菌对玉米苗期叶片的生理生化调节 [J]. 西北农业学报, 2023, 32(12):1964−1977. doi: 10.7606/j.issn.1004-1389.2023.12.010LI A, SHU J H, LIU X X, et al. Physiological and biochemical regulation of Bacillus subtilis spores on leaves at seedling stage of maize under drought stress [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(12): 1964−1977. (in Chinese) doi: 10.7606/j.issn.1004-1389.2023.12.010 [37] 涂田莉. 细胞分裂素信号传导和生长素生物合成协同调控砷酸盐诱导的根生长抑制[D]. 泰安: 山东农业大学, 2021: 13-17.TU T L. Synergistic regulation of cytokinin signaling and auxin biosynthesis on arsenate-induced root growth inhibition[D]. Taian: Shandong Agricultural University, 2021: 13-17. (in Chinese) [38] 涂米雪, 周宏丹, 罗晓萍, 等. 水杨酸与硫化氢交互作用提高植物胁迫耐性的研究进展[J/OL]. 分子植物育种, 1-17[2024-07-23]. http://kns.cnki.net/kcms/detail/46.1068.S.20231212.1639.004.html.TU M X, ZHOU H D, LUO X P, et al. Advance in Interaction Between Salicylic Acid and Hydrogen Sulfide lmproves Plant Stress Tolerance[J/OL]. Molecular Plant Breeding, 1-17[2024-07-23]. http://kns.cnki.net/kcms/detail/46.1068.S.20231212.1639.004.html. (in Chinese) [39] 王霞, 候平, 尹林克, 等. 土壤缓慢水分胁迫下柽柳植物内源激素的变化 [J]. 新疆农业大学学报, 2000, (4):41−43.WANG X, HOU P, YIN L K, et al. Change of Hormone of Tamarix under Slow Soil Water Stress [J]. Journal of Xinjiang Agricultural University, 2000(4): 41−43. (in Chinese) [40] 张冠初, 张智猛, 慈敦伟, 等. 干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响 [J]. 华北农学报, 2018, 33(3):176−181. doi: 10.7668/hbnxb.2018.03.026ZHANG G C, ZHANG Z M, CI D W, et al. Effects of drought and salt stress on osmotic regulator and antioxidase activities [J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 176−181. (in Chinese) doi: 10.7668/hbnxb.2018.03.026 [41] 谢静静, 王笑, 蔡剑, 等. 苗期外源脱落酸和茉莉酸缓减小麦花后干旱胁迫的效应及其生理机制 [J]. 麦类作物学报, 2018, 38(2):221−229. doi: 10.7606/j.issn.1009-1041.2018.02.14XIE J J, WANG X, CAI J, et al. Effect of exogenous application of abscisic acid and jasmonic acid at seedling stage on post-anthesis drought stress and physiological mechanisms in wheat [J]. Journal of Triticeae Crops, 2018, 38(2): 221−229. (in Chinese) doi: 10.7606/j.issn.1009-1041.2018.02.14 [42] 张建生. PEG模拟干旱胁迫下南酸枣幼苗对外源ABA的生长生理响应 [J]. 安徽林业科技, 2022, 48(3):3−7. doi: 10.3969/j.issn.2095-0152.2022.03.002ZHANG J S. Growth and physiological responses of Choerospondias axillaris seedlings to exogenous ABA under PEG simulated drought stress [J]. Anhui Forestry Science and Technology, 2022, 48(3): 3−7. (in Chinese) doi: 10.3969/j.issn.2095-0152.2022.03.002 [43] 黄小珍. 细胞分裂素与脱落酸信号通路拮抗调控拟南芥逆境应答的分子机制[D]. 北京: 中国农业大学, 2017: 106-109.HUANG X Z. Molecular mechanism of cytokinin and abscisic acid signaling pathway antagonism regulating Arabidopsis thaliana stress response[D]. Beijing: China Agricultural University, 2017: 106-109. (in Chinese) [44] 吴萍民, 冷艳, 程斌, 等. 外源ABA对镉胁迫下绿豆幼苗生长及内源激素的影响 [J]. 环境科学学报, 2023, 43(7):391−400.WU P M, LENG Y, CHENG B, et al. Effects of exogenous ABA on the growth and contents of endogenous hormones in mung bean seedlings under cadmium stress [J]. Acta Scientiae Circumstantiae, 2023, 43(7): 391−400. (in Chinese) [45] 马超. 外源茉莉酸甲酯对干旱胁迫下小麦抗旱响应的调控效应研究[D]. 郑州: 河南农业大学, 2013: 109-112.MA C. Effect of exogenous methyl jasmonate on drought resistance of wheat under drought stress[D]. Zhengzhou: Henan Agricultural University, 2013: 109-112. (in Chinese) [46] 葛云侠, 姚允聪, 许雪峰, 等. 干旱胁迫下杏叶片中茉莉酸积累的作用 [J]. 园艺学报, 2007, 34(3):575−578. doi: 10.3321/j.issn:0513-353x.2007.03.008GE Y X, YAO Y C, XU X F, et al. The role of jasmonic acid induced by dought stress in apricot leaves [J]. Acta Horticulturae Sinica, 2007, 34(3): 575−578. (in Chinese) doi: 10.3321/j.issn:0513-353x.2007.03.008