Crop Yield, Kernel Sugar, and Three Ear-leaves of Waxy Maize
-
摘要:
目的 研究糯玉米棒三叶产量和糖度的遗传规律,分析棒三叶性状与产量、糖度的相关性,评价棒三叶性状对鲜籽粒糖度的贡献,为探究棒三叶性状对品质性状的影响机制和高糖度鲜食玉米选育与提供参考。 方法 以6个自交系为测验种,以15份糯玉米骨干自交系为被测种进行不完全双列杂交(NCII设计),测定杂交组合在采收期(授粉后21 d)果穗产量、籽粒可溶性糖含量(糖度),棒三叶的叶长、叶宽、叶面积,以及其他10个穗部和植株相关性状。其中穗重和糖度是主要关注的产量和品质性状,用以评价棒三叶对产量和品质的贡献;其他性状作为参考性状,用以衡量棒三叶对产量和品质的重要性。分析果穗产量、糖度的一般配合力(GCA)和特殊配合力(SCA),研究棒三叶性状与产量品质性状的关系。 结果 棒三叶性状中叶片长度与果穗产量呈极显著正相关;而叶宽与糖度呈显著正相关;叶长和果穗产量狭义遗传力占比较低,以特殊配合力为主,其中穗下叶长与穗重SCA相关性强;叶宽和糖度性状狭义遗传力占比高,以一般配合力为主,而穗上叶宽的与糖度GCA相关性强。 结论 棒三叶,尤其穗上叶宽可以作为选择糯玉米自交系和组配优质杂交种的依据;而叶长性状不宜作为选择高产杂交种的依据。 Abstract:Objective Genetic inheritance of crop yield and kernel sugar content relating to measurements of three leaves nearby an ear on a waxy maize plant was examined for correlation to facilitate breeding and quality prediction. Methods Six inbred waxy maize lines were cross-bred with 15 key inbred lines based on an incomplete diallel hybridization of NCII design. At harvest, yield of ears, soluble sugar content of kernels, dimensions of the three leaves closest to an ear, and 10 additional traits of the hybrids were measured 21 d after pollination. Ear yield by weight and kernel sweetness by Brix were obtained. Dimensions of the leaves located above, at, and below an ear on a plant were measured to correlate with the general combining ability (GCA) and special combining ability (SCA) on kernel yield and sweetness of the hybrids passed on from their parents. Results Correlations were found between the leaf length and the ear yield and between the leaf width and the kernel sugar content. However, the narrow heritability of leaf length and ear yield was relatively low, mostly shown by the SCA on length of lower ear-leaf and weight of corn-on-the-cob. On the other hand, that of leaf width and sugar content was significant and mainly the GCA on width of upper ear-leaf and kernel sugar. Conclusion The width of upper ear-leaf grown next to an ear significantly reflected the sweetness of the kernels born on a waxy maize plant. Thus, the measurement could potentially be used as a visual, easily assessable indicator for cultivars selection in breeding and/or quality estimation in forecasting a harvest. -
Key words:
- waxy maize /
- yield /
- brix /
- combining ability /
- correlation analysis
-
表 1 双列杂交的自交系
Table 1. Inbred lines for diallel crossing
株系类型
Type of lines株系编号
ID of lines测验种 Test lines TL1,TL2,TL3,TL4,TL5,TL6 被测种 Lines tested BF2003,BF2010,BF2001,BF2002,BF2006,BF2008,BF2009,BF2012,BF2017,BF2020,BF2022,BF2029,BF2032,BF2041,BF2042 表 2 调查的性状
Table 2. Properties for research
性状类型
Type of traits性状
Traits产量性状
Yield trait穗重 Ear weight 品质性状
Quality trait糖度 Brix 穗部性状
Ear traits穗长 Ear length,穗粗 Ear diameter,穗行数 Rows per ear,行粒数 Kernel numbers per row,秃尖长 Barren tip length 农艺性状
Agronomic trait株高 Plant height, 穗位高 Ear height, 穗位系数 Ear height coefficient, 生育期 Growth period, 穗下叶宽 Lower ear leaf width, 穗下叶长 Lower ear leaf length,穗位叶宽 Ear leaf width, 穗位叶长 Ear leaf length, 穗上叶宽 Upper ear leaf width, 穗上叶长 Upper ear leaf length, 棒三叶宽 Ears three leaf width, 棒三叶长 Ears three leaf length, 穗下叶面积 Lower ear leaf area, 穗位叶面积 Ear leaf area, 穗上叶面积 Upper ear leaf area,棒三叶面积 Ear three leaf area, 穗上叶夹角 Upper ear angle 表 3 穗重和糖度与其他性状的相关系数
Table 3. Correlation coefficients between yield, quality characters and other characters
性状
Properties穗重
Ear weight性状
Properties糖度
Brix穗长
Ear length0.478** 生育期
Growth period0.349** 行粒数
Kernel numbers per row0.451** 穗下叶宽
Lower ear leaf width0.314** 穗粗
Ear diameter0.410** 棒三叶宽
Ears three leaf width0.288** 穗下叶长
Lower ear leaf length0.271** 穗位叶宽
Ear leaf width0.283** 棒三叶长
Ears three leaf length0.223** 穗位
Ear height0.271** 株高
Plant height0.219* 穗位系数
Ear height coefficient0.260** 穗位叶长
Ear leaf length0.212* 株高
plant height0.217* 穗上叶长
Upper ear leaf length0.181* 穗上叶宽
Upper ear leaf width0.213* 穗位叶面积
Ear leaf area0.180* 穗下叶面积
Lower ear leaf area0.180 棒三叶面积
Ear three leaf area0.180* 穗行数
Rows per ear0.156 穗下叶面积
Lower ear leaf area0.176* 棒三叶面积
Ear three leaf area0.140 穗位
Ear height0.121 穗位叶面积
Ear leaf area0.135 穗位叶宽
Ear Leaf width0.120 穗上叶面积
Upper ear leaf area0.079 穗上叶面积
Upper ear leaf area0.159 秃尖长
Barren tip length0.072 棒三叶宽
Ears three leaf width0.116 穗下叶长
Lower ear leaf length0.048 穗上叶宽
Upper ear leaf width0.113 穗位叶长
Ear leaf length0.041 穗下叶宽
Lower ear leaf width0.097 棒三叶长
Ears three leaf length0.041 穗位系数
Ear height coefficient0.075 穗上叶夹角
Upper ear angle0.041 秃尖长
Barren tip length0.062 穗上叶长
Upper ear leaf length0.033 穗上叶夹角
Upper ear angle0.042 穗粗
Ear diameter−0.025 生育期
Growth period0.021 穗长
Ear length−0.187* 穗行数
Rows per ear−0.089 行粒数
Kernel numbers per row−0.229* 糖度
Brix−0.394** 穗重
Ear weight−0.394** *表示显著相关(P<0.05), **表示极显著相关(P<0.01)。表4~6同。
* means significant difference at 0.05 level, ** means very significant difference at 0.01 level. Same for Table 4–6.表 4 方差分析表
Table 4. Analysis of variance
变异来源
Source of
variation穗重
Ear
weight糖度
Brix生育期
Growth
period株高
Plant
height穗位
Ear
height穗位系数
Ear height
coefficient穗下叶长
Lower ear
leaf length穗下叶宽
Lower ear
Leaf width穗位叶长
Ear leaf
length穗位叶宽
Ear leaf
width穗上叶长
Upper ear
leaf length穗上叶宽
Upper ear
leaf width组合
Combination2.64** 5.86** 10.16** 4.06** 12.34** 7.90** 6.45** 6.03** 8.56** 3.94** 9.41** 5.05** P1 1.19 4.84** 1.52 2.92** 2.68** 2.08* 1.60 3.23** 2.18* 2.77** 2.87** 1.99* P2 3.80** 8.68** 2.34 5.53** 7.84** 10.63** 1.51 10.47** 2.87* 6.16** 4.28** 8.28** P1×P2 2.23** 2.88** 8.78** 2.61** 7.49** 4.62** 5.74** 3.20** 6.63** 2.51** 6.36** 3.23** 变异来源
Source of
variation棒三叶长
Ears three
leaf length棒三叶宽
Ears three
leaf width穗下叶面积
Lower ear
leaf area穗位叶面积
Ear
leaf area穗上叶面积
Upper ear
leaf area棒三叶面积
Ear three
leaf area穗上叶夹角
Upper ear
angle穗长
Ear
length穗粗
Ear
diameter穗行数
Rows
per ear行粒数
Kernel numbers
per row秃尖长
Barren tip
length组合
Combination8.78** 5.50** 3.50** 2.81** 2.89** 2.99** 14.78** 26.99** 7.16** 10.47** 4.58** 3.27** P1 2.21* 2.82** 1.99* 2.08* 2.05* 2.00* 1.67 1.08 1.76 3.63** 1.19 1.63 P2 2.80* 8.31** 2.20 1.56 3.91* 1.91 10.85** 20.36** 8.27** 29.92 ** 7.63** 9.63** P1×P2 6.79** 3.24** 2.85** 2.34** 2.17** 2.47* 8.91** 12.85** 4.69** 3.44** 3.27** 2.07** P1:测验种;P2:被测种。
P1: test lines; P2: lines tested.表 5 穗重和糖度一般配合力与其他性状的相关系数
Table 5. Correlation coefficients between GCAs of yield,quality characters and other
性状
Properties穗重
Ear weight性状
Properties糖度
Brix行粒数
Kernel numbers per row0.5299 *株高
Plant height0.3825 穗长
Ear length0.4893 *生育期
Growth period0.3774 穗粗
Ear diameter0.3384 穗上叶宽
Upper ear leaf width0.3573 穗上叶夹角
Upper ear angle0.0578 穗位叶宽
Ear leaf width0.3562 穗位系数
Ear height coefficient0.0416 穗位
Ear height0.3531 穗位
Ear height0.0266 棒三叶宽
Ears three leaf width0.3471 株高
Plant height− 0.0072 棒三叶面积
Ear three leaf area0.3290 秃尖长
Barren tip length− 0.0133 穗位叶面积
Ear leaf area0.3289 穗下叶宽
Lower ear leaf width− 0.0304 穗上叶面积
Upper ear leaf area0.3160 生育期
Growth period− 0.0313 穗位系数
Ear height coefficient0.3115 棒三叶宽
Ears three leaf width− 0.0549 穗下叶宽
Lower ear leaf width0.2959 穗位叶宽
Ear leaf width− 0.0623 穗下叶面积
Lower ear
leaf area0.2919 穗上叶宽
Upper ear leaf width− 0.0712 穗下叶长
Lower ear leaf length0.2202 穗下叶长
Lower ear leaf length− 0.1616 棒三叶长
Ears three leaf length0.2158 棒三叶长
Ears three leaf length− 0.1734 穗位叶长
Ear leaf length0.2130 穗位叶长
Ear leaf length− 0.1736 穗上叶长
Upper ear leaf length0.2081 穗上叶长
Upper ear leaf length− 0.1764 穗行数
Rows per ear0.1957 穗下叶面积
Lower ear leaf area− 0.1986 秃尖长
Barren tip length0.1593 棒三叶面积
Ear three leaf area− 0.2629 穗上叶夹角
Upper ear angle0.0831 穗位叶面积
Ear leaf area− 0.2671 穗粗
Ear diameter− 0.1397 穗行数
Rows per ear− 0.2818 穗长
Ear length− 0.2144 穗上叶面积
Upper ear leaf area− 0.2879 行粒数
Kernel numbers per row− 0.4604 *糖度
Brix− 0.6080 **穗重
Ear weight− 0.6080 **表 6 穗重和糖度特殊配合力与其他性状的相关系数
Table 6. Correlation coefficients between SCAs of yield,quality characters and other characters
性状
Properties穗重
Ear weight性状
Properties糖度
Brix穗粗
Ear diameter0.6156 **生育期
Growth period0.4913 **穗下叶长
Lower ear leaf
length0.4994 **秃尖长
Barren tip length0.1690 棒三叶长
Ears three leaf length0.4612 **穗下叶宽
Lower ear leaf
width0.1551 穗位叶长
Ear leaf length0.4443 **棒三叶宽
Ears three leaf width0.1437 行粒数
Kernel numbers
per row0.4339 **穗位叶宽
Ear leaf width0.1405 穗上叶长
Upper ear leaf
length0.4145 **株高
Plant height0.1125 穗长
Ear length0.4035 **穗上叶宽
Upper ear leaf
width0.1085 穗位叶面积
Ear leaf area0.3990 **穗上叶长
Upper ear leaf
length0.0751 棒三叶面积
Ear three leaf area0.3946 **穗位叶长
Ear leaf length0.0579 穗下叶面积
Lower ear leaf area0.3849 **穗长
Ear length0.0548 穗上叶面积
Upper ear leaf area0.3644 **棒三叶长
Ears three leaf
length0.0531 株高
Plant height0.2940 **穗上叶夹角
Upper ear angle0.0319 穗行数
Rows per ear0.2560 *穗位
Ear height0.0277 穗位
Ear height0.2484 *穗下叶长
Lower ear leaf
length0.0235 穗位系数
Ear height coefficient0.2167 *穗位叶面积
Ear leaf area0.0209 穗位叶宽
Ear leaf width0.1896 棒三叶面积
Ear three leaf area0.0156 穗下叶宽
Lower ear leaf
width0.1876 穗下叶面积
Lower ear leaf area0.0130 棒三叶宽
Ears three leaf
width0.1824 穗上叶面积
Upper ear leaf area0.0114 穗上叶宽
Upper ear leaf
width0.1365 穗粗
Ear diameter0.0038 秃尖长
Barren tip length0.0861 穗行数
Rows per ear− 0.0148 生育期
Growth period0.0002 穗位系数
Ear height coefficient− 0.0400 穗上叶夹角
Upper ear angle− 0.0478 行粒数
Kernel numbers
per row− 0.0573 糖度
Brix− 0.2503 *穗重
Ear weight− 0.2503 *表 7 部分自交系一般配合力
Table 7. GCAs of selected lines
序号
No.穗重
Ear weight序号
No.糖度
Brix序号
No.穗下叶长
Lower ear leaf length序号
No.穗下叶宽
Lower ear leaf width序号
No.穗上叶宽
Upper ear leafwidth自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 自交系
Inbred lineGCA 1 BF2002 8.5578 1 BF2022 19.8197 1 BF2029 4.3609 1 BF2017 8.5541 1 BF2017 5.7608 2 TL4 6.7162 2 TL5 13.5624 2 BF2003 4.2357 2 BF2003 6.5657 2 TL4 4.5754 3 TL6 3.9301 3 BF2008 13.2500 3 BF2022 3.3910 3 TL5 5.9072 3 BF2003 3.2518 4 BF2006 3.0874 4 BF2020 9.6581 4 BF2032 2.2961 4 TL3 2.3816 4 BF2020 3.1181 5 BF2012 2.8835 5 TL3 8.6495 5 TL2 2.0835 5 BF2012 2.0052 5 TL3 2.1195 6 BF2041 2.2720 6 BF2032 7.0346 6 BF2017 1.6393 6 BF2042 1.7301 6 BF2012 1.4628 7 BF2003 1.6604 7 BF2029 6.3003 7 TL1 1.4453 7 BF2020 1.6190 7 BF2022 1.3019 8 BF2001 1.3206 8 BF2017 5.0624 8 TL3 0.8071 8 TL6 1.2984 8 TL5 0.9561 9 BF2022 0.2333 9 BF2009 3.3535 9 BF2042 0.6070 9 BF2009 0.4304 9 BF2009 0.7941 10 BF2017 − 0.1065 10 BF2012 2.7058 10 BF2008 0.6069 10 TL4 0.2703 10 BF2042 0.2344 表 8 糖度排名前十位组合GCA和SCA排名
Table 8. Top ten combinations of GCA and SCA in sugar content ranking
亲本1
P1GCA排名
GCA ranking亲本2
P2GCA排名
GCA ranking糖度
BrixSCA SCA排名
SCA rankingTL5 2 BF2017 8 13.6665 26.2870 1 TL5 2 BF2008 3 12.45 5.2003 27 TL3 5 BF2017 8 12.417 17.9510 5 TL6 11 BF2022 1 12.35 11.9733 12 TL3 5 BF2022 1 12.25 1.4229 41 TL3 5 BF2020 4 12.0835 9.8190 16 TL3 5 BF2029 7 12.083 13.1715 11 TL5 2 BF2006 16 11.8165 19.4399 3 TL5 2 BF2022 1 11.7835 - 8.4366 74 TL5 2 BF2032 6 11.6165 2.5778 35 表 9 穗重前十位组合GCA和SCA排名
Table 9. Top 10 combinations of GCA and SCA on ear weight
亲本1
P1GCA排名
GCA ranking亲本2
P2GCA排名
GCA ranking穗重
Ear weightSCA SCA排名
SCA rankingTL4 2 BF2009 14 0.311 21.1453 2 TL2 16 BF2017 10 0.295 22.0423 1 TL6 3 BF2001 8 0.295 15.0293 3 TL6 3 BF2002 1 0.2825 2.6955 33 TL4 2 BF2017 10 0.282 8.3698 14 TL6 3 BF2010 11 0.279 10.0010 10 TL6 3 BF2029 12 0.279 10.6802 6 TL4 2 BF2042 13 0.278 7.5543 15 TL2 16 BF2006 4 0.274 10.2861 8 TL6 3 BF2012 5 0.273 4.4963 26 表 10 部分性状遗传力分析表
Table 10. Heritability analysis table of Part of traits
(单位:%) 配合力方差估计
Variance estimation of combining ability穗重
Ear weight穗下叶长
Lower ear leaf length糖度
Brix穗下叶宽
Lower ear leaf width穗上叶宽
Upper ear leaf width一般配合力方差 Variance of GCA 28.30 13.96 63.84 59.30 48.50 特殊配合力方差 Variance of SCA 71.70 86.04 36.16 40.70 51.50 广义遗传力 h2B 46.06 73.38 72.22 73.03 68.41 狭义遗传力 hN 13.04 10.25 46.10 43.31 33.18 -
[1] 赵久然, 卢柏山, 史亚兴, 等. 我国糯玉米育种及产业发展动态 [J]. 玉米科学, 2016, 24(4):67−71.ZHAO J R, LU B S, SHI Y X, et al. Development trends of waxy corn breeding and industry in China [J]. Journal of Maize Sciences, 2016, 24(4): 67−71. (in Chinese) [2] 史振声. 鲜食玉米品种品质评价及标准的探讨 [J]. 玉米科学, 2006, 14(6):69−70. doi: 10.3969/j.issn.1005-0906.2006.06.018SHI Z S. Evaluation of fresh food corn varieties and quality standards [J]. Journal of Maize Sciences, 2006, 14(6): 69−70. (in Chinese) doi: 10.3969/j.issn.1005-0906.2006.06.018 [3] GONG K J, CHEN L R. Characterization of carbohydrates and their metabolizing enzymes related to the eating quality of postharvest fresh waxy corn [J]. Journal of Food Biochemistry, 2013, 37(5): 619−627. doi: 10.1111/jfbc.12015 [4] 王綦. 鲜食糯玉米食用品质评价及影响机制研究[D]. 无锡: 江南大学, 2022WANG Q. Study on the evaluation and influence mechanism of edible quality of fresh waxy corn[D]. Wuxi: Jiangnan University, 2022. (in Chinese) [5] 史振声, 李昆, 朱敏. 鲜食糯玉米的果皮性状研究 [J]. 玉米科学, 2014, 22(5):47−51. doi: 10.3969/j.issn.1005-0906.2014.05.009SHI Z S, LI K, ZHU M. Pericarp characteristics of fresh waxy corn [J]. Journal of Maize Sciences, 2014, 22(5): 47−51. (in Chinese) doi: 10.3969/j.issn.1005-0906.2014.05.009 [6] 李昊, 刘景圣, 王浩, 等. 鲜食糯玉米贮藏过程中可溶性糖含量变化的研究[J]. 中国食物与营养, 2014, 20(3): 23-27.LI H, LIU J S, WANG H, et al. Changes of soluble sugar content in fresh corn in the process of storage[J]. Food and Nutrition in China, 2014, 20(3): 23-27. (in Chinese) 2014, 20(3): 23−27. (in Chinese) [7] 许海涛, 许波, 王友华, 等. 棒三叶对夏玉米光合生理特性、 籽粒发育和产量性状的影响 [J]. 陕西农业科学, 2018, 64(7):6−10. doi: 10.3969/j.issn.0488-5368.2018.07.002XU H T, XU B, WANG Y H, et al. Effects of three ear-leaves on photosynthetic physiological characteristic, grain development and yield characters in summer maize [J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(7): 6−10. (in Chinese) doi: 10.3969/j.issn.0488-5368.2018.07.002 [8] 陆卫平, 陈国平, 郭景伦, 等. 不同生态条件下玉米产量源库关系的研究[J]. 作物学报, 1997, 23(6): 727−733.LU W P, CHEN G P, GUO J L, et al. Study on the source and sink in relation to grain yield under different ecological areas in maize (Zea mays L. ) [J]. Acta Agronomica Sinica, 1997, 23(6): 727−733. (in Chinese) [9] 任梦云, 杜龙岗, 王美兴, 等. 糯玉米可溶性糖组分特征与采后品质特性 [J]. 浙江农业学报, 2022, 34(6):1133−1140. doi: 10.3969/j.issn.1004-1524.2022.06.04REN M Y, DU L G, WANG M X, et al. Characteristics of soluble sugar components in waxy corn and its postharvest quality [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1133−1140. (in Chinese) doi: 10.3969/j.issn.1004-1524.2022.06.04 [10] 于凤义, 张萍, 周洪杰, 等. 玉米功能叶片碳同化物在果穗不同部位籽粒中的分配 [J]. 核农学报, 1996, 10(1):35−38.YU F Y, ZHANG P, ZHOU H J, et al. Distribution of carbon assimilates in functional leaves of maize in different parts of ear [J]. Journal of Nuclear Agricultural Sciences, 1996, 10(1): 35−38. (in Chinese) [11] WANG B B, ZHU Y B, ZHU J J, et al. Identification and fine-mapping of a major maize leaf width QTL in a re-sequenced large recombinant inbred lines population [J]. Frontiers in Plant Science, 2018, 9: 101. doi: 10.3389/fpls.2018.00101 [12] 徐伟, 季索菲. DPS数据处理系统在生物统计分析中的应用 [J]. 榆林学院学报, 2014, 24(4):24−27. doi: 10.3969/j.issn.1008-3871.2014.04.006XU W, JI S F. Applications of DPS (data processing system) in biostatistical analysis [J]. Journal of Yulin University, 2014, 24(4): 24−27. (in Chinese) doi: 10.3969/j.issn.1008-3871.2014.04.006 [13] 周驰燕, 李国辉, 许轲, 等. 不同类型水稻品种茎叶维管束与同化物运转特征 [J]. 作物学报, 2022, 48(8):2053−2065.ZHOU C Y, LI G H, XU K, et al. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053−2065. (in Chinese) [14] KETTHAISONG D, SURIHARN B, TANGWONGCHAI R, et al. Changes in physicochemical properties of waxy corn starches at different stages of harvesting [J]. Carbohydrate Polymers, 2013, 98(1): 241−248. doi: 10.1016/j.carbpol.2013.06.016 [15] HUANG H B, DANAO M G C, RAUSCH K D, et al. Diffusion and production of carbon dioxide in bulk corn at various temperatures and moisture contents [J]. Journal of Stored Products Research, 2013, 55: 21−26. doi: 10.1016/j.jspr.2013.07.002 [16] CHO S H, YOO S C, ZHANG H T, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development [J]. The New Phytologist, 2013, 198(4): 1071−1084. doi: 10.1111/nph.12231 [17] 吕游, 农彩燕. 甜玉米自交系可溶性糖含量配合力及遗传参数分析[J]. 农业研究与应用, 2015(5): 8-12.LYU Y, NONG C Y. Study on combining ability and genetic parameters of soluble sugar concentration in sweet corn inbred lines[J]. Agricultural Research and Application, 2015(5): 8-12. (in Chinese) [18] 姚文华, 张帮洪, 尹兴福, 等. 超甜玉米可溶性糖含量配合力分析 [J]. 西南农业学报, 2018, 31(6):1116−1121.YAO W H, ZHANG B H, YIN X F, et al. Genetic combining ability analysis of soluble sugar content in super-sweet corn [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(6): 1116−1121. (in Chinese) [19] YOU J, XIAO W W, ZHOU Y, et al. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice [J]. The Plant Cell, 2022, 34(11): 4313−4328. doi: 10.1093/plcell/koac232 [20] 王婷, 饶春富, 王友德, 等. 减源缩库与玉米产量关系的研究 [J]. 玉米科学, 2000, 8(2):67−69. doi: 10.3969/j.issn.1005-0906.2000.02.021WANG T, RAO C F, WANG Y D, et al. Study on relationships between grain yield and reduced source and pool in maize [J]. Journal of Maize Sciences, 2000, 8(2): 67−69. (in Chinese) doi: 10.3969/j.issn.1005-0906.2000.02.021 [21] 白明兴, 陆晏天, 庄泽龙, 等. 玉米棒三叶叶型性状的全基因组关联分析 [J]. 分子植物育种, 2022, 20(8):2463−2477.BAI M X, LU Y T, ZHUANG Z L, et al. Genome-wide association analysis of three ear leaves leaf type traits in maize [J]. Molecular Plant Breeding, 2022, 20(8): 2463−2477. (in Chinese)