Effects of coffee waste mulching on photosynthesis and water use efficiency of coffee seedlings
-
摘要:
目的 探究不同咖啡枯落物与果皮等废弃物覆盖对咖啡幼苗生长与光合的影响,为咖啡废弃物资源化利用和咖啡生产过程节本增效提供论基础。 方法 以1年生咖啡幼苗为试验材料,采用随机区组设计,设置对照(C)、咖啡枯落物覆盖(L)、果皮覆盖(P)以及枯落物与果皮混合覆盖(LP)4个盆栽试验处理,探究不同覆盖措施对咖啡叶片光合特性与碳水利用效率的影响。 结果 咖啡枯落物覆盖显著提高咖啡比叶面积45.46%,却不影响土壤微环境以及植株叶片光合速率等指标;咖啡果皮覆盖显著降低咖啡株高12.11%,并且通过降低土壤温度以及提高土壤速效钾含量显著提升咖啡叶片净光合速率78.33%、呼吸速率109.34%、总光合速率91.72%、净水分利用效率80.54%以及总水分利用效率104.95%,但是咖啡果皮覆盖对咖啡叶片气孔导度、蒸腾速率、碳利用效率等光合指标的影响较小;不同咖啡废弃物覆盖下的咖啡叶片光合能力综合评价为P>LP>L>C。 结论 咖啡果皮单独覆盖下咖啡幼苗的生长以及其光合能力高于其他处理。咖啡果皮废弃物覆盖有助于促进咖啡植株健康生长以及咖啡生产环节的节本增效。 Abstract:Objective The effects of coffee peel and litter on the growth and photosynthesis of coffee seedlings were investigated to determine a suitable ecological cycle cultivation a suitable of coffee. Method One-year-old seedlings of seedlings were used as experimental materials. A randomized block design was used to study the effects of coffee peel and litter on their leaf photosynthesis and water use efficiency. Conventional mulching group was set up: C (control), L (litter mulching cultivation), P (peel mulching cultivation) and LP (litter and peel mulching cultivation). Result Coffee litter mulching significantly increased the specific leaf area of coffee by 45.46%, while coffee peel mulching significantly decreased the plant height by 12.11%. Coffee peel mulching significantly increased net photosynthesis, leaf respiration, total photosynthesis, net water use efficiency and total water use efficiency by 78.33%, 109.34%, 91.72%, 80.54% and 104.95%, but did not affect stomatal conductance, transpiration rate and carbon use efficiency. The comprehensive evaluation of coffee photosynthesis under coffee waste mulching treatment was P>LP>L>C. Conclusion Coffee peel mulching was better than other mulching treatments in promoting the growth and photosynthetic capacity of coffee seedlings. The suitable coffee ecological cycle cultivation with the peel amount of 239.05 g m-2 could to realize cost saving and efficiency increase in coffee planting process. -
Key words:
- Conservation tillage /
- Coffee peel /
- Coffee litter /
- Photosynthetic rate /
- Water use efficiency /
- Carbon use efficiency
-
表 1 不同覆盖模式对土壤微环境及理化性质的影响
Table 1. The effect of different mulching patterns on soil microclimate, physical and chemical properties
种植方式 含水量
SM/%温度
ST/℃酸碱度
pH容重
SBD/N m−3有机质
SOM/g kg−1速效钾
SAK/mg kg−1速效磷
SOP/mg kg−1碱解氮
SAN/mg kg−1C 8.20±0.86 27.55±0.06 5.65±0.32 1.59±0.08 21.99±1.56 36.28±5.66 29.64±6.90 86.72±1041 L 8.33±0.88 27.33±0.05 5.57±0.30 1.61±0.10 22.10±2.77 46.42±4.78 27.74±4.81 90.84±13.97 P 7.26±0.62 27.28±0.07 5.55±0.18 1.57±0.09 21.33±3.36 33.01±7.86 28.09±8.50 91.70±17.45 P×L 8.53±1.23 27.18±0.07 5.76±0.23 1.60±0.09 21.28±2.84 54.93±10.10 33.48±9.76 90.15±13.32 注:表中数据为平均值±标准误。
Note: The data is mean ± standard errors.表 2 不同覆盖模式对土壤微环境及理化性质的双因素方差分析结果(F值)
Table 2. Results of two-way ANOVA on s microclimate, physical and chemical properties under different mulching patterns (F value)
种植方式 含水量
SM/%温度
ST/℃酸碱度
pH容重
SBD/N m−3有机质
SOM/g kg−1速效钾
SAK/mg kg−1速效磷
SOP/mg kg−1碱解氮SAN/mg kg−1 P 0.16 10.40** 0.07 0.08 0.00 0.13 0.05 0.01 L 0.58 6.66* 0.02 0.05 0.07 4.70* 0.07 0.02 P×L 0.38 0.82 0.31 0.00 0.00 0.64 0.22 0.04 注:表中“*”表示P<0.05, “**”表示P<0.01。
Note: “*” represent P<0.05, “**” represent P<0.01.表 3 环境与性状对咖啡光合生理指标的贡献及其显著性
Table 3. The contributions and significances of environmental variables to soil microbial community compositions
环境与咖啡性状
Environment and coffee properties贡献率%
Contribution rate%F值 P值 土壤温度/ST 16 4.2 0.01 速效钾含量/SAK 7.3 1.7 0.06 叶绿素相对含量/SPAD 6.7 1.6 0.09 株高/Height 6.0 1.4 0.11 土壤湿度/SM 4.5 1.0 0.37 酸碱度/pH 3.6 0.8 0.45 有机质含量/SOM 2.2 0.5 0.6 比叶面积/SLA 2.4 0.5 0.62 叶面积指数/LAI 1.6 0.3 0.75 容重/SBD 1.1 0.3 0.84 碱解氮含量/SAN 1.0 0.2 0.87 速效磷含量/SOP 0.5 0.1 0.92 表 4 咖啡废弃物覆盖对咖啡光合生理指标影响综合评价
Table 4. Comprehensive evaluation of effects coffee waste cover on coffee photosynthetic indexes
处理 Treatment 株高 Height 叶面积指数 LAI 比叶面积 SLA 叶绿素含量 SPAD 气孔导度 Gs 蒸腾速率 Tr 净光合速率 Pn 呼吸速率 R C 0.59 0.00 0.07 1.00 0.00 0.00 0.00 0.00 L 0.00 1.00 0.00 0.11 1.00 1.00 0.77 0.10 P 1.00 0.24 0.56 0.32 0.90 0.63 1.00 1.00 LP 0.26 0.13 1.00 0.00 0.19 0.11 0.88 0.68 处理
Treatment总光合速率
Pg碳利用效率
CUE净水分利用效率
WUEn总水分利用效率
WUEg隶属度平均值
Average membership排名
RankingC 0.00 0.00 0.00 0.00 0.14 4 L 0.49 1.00 0.62 0.25 0.53 3 P 1.00 0.57 1.00 0.85 0.76 1 LP 0.80 0.62 0.95 1.00 0.55 2 -
[1] 张明达, 王睿芳, 李艺, 等. 云南省小粒咖啡种植生态适宜性区划 [J]. 中国生态农业学报, 2020, 28(2):168−178.ZHANG M D, WANG R F, LI Y, et al. Ecological suitability zoning of Coffea arabica L. in Yunnan Province [J]. Chinese Journal of Eco-Agriculture, 2020, 28(2): 168−178.(in Chinese) [2] GOMES L C, BIANCHI F J J A, CARDOSO I M, et al. Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil [J]. Agriculture, Ecosystems & Environment, 2020, 294: 106858. [3] 赵青云, 普浩杰, 王秋晶, 等. 咖啡果皮不同堆沤处理养分含量及其对咖啡植株生长的影响 [J]. 热带作物学报, 2020, 41(4):633−639. doi: 10.3969/j.issn.1000-2561.2020.04.001ZHAO Q Y, PU H J, WANG Q J, et al. Nutrient content of coffee peel with different composting treatments and its effects on coffee plant growth [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 633−639.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.04.001 [4] BERG B. Litter decomposition and organic matter turnover in northern forest soils [J]. Forest Ecology and Management, 2000, 133(1/2): 13−22. [5] 赵青云, 邢诒彰, 林兴军, 等. 施用咖啡果皮对咖啡幼苗生长及土壤理化性状的影响 [J]. 热带农业科学, 2017, 37(8):54−59.ZHAO Q Y, XING Y Z, LIN X J, et al. Effects of coffee fruit peel application on coffee seedlings growth and soil physiochemical characteristics [J]. Chinese Journal of Tropical Agriculture, 2017, 37(8): 54−59.(in Chinese) [6] BABLA M H, TISSUE D T, CAZZONELLI C I, et al. Effect of high light on canopy-level photosynthesis and leaf mesophyll ion flux in tomato [J]. Planta, 2020, 252(5): 80. doi: 10.1007/s00425-020-03493-0 [7] EGUCHI T, TANAKA H, MORIUCHI D, et al. Temperature effects on the photosynthesis by the medicinal plant Pinellia ternata breit [J]. Environment Control in Biology, 2020, 58(2): 49−50. doi: 10.2525/ecb.58.49 [8] VICO G, WAY D A, HURRY V, et al. Can leaf net photosynthesis acclimate to rising and more variable temperatures? [J]. Plant, Cell & Environment, 2019, 42(6): 1913−1928. [9] 邢钰媛, 娄运生, 王坤, 等. 施用生物炭和硅肥对增温水稻叶片光合及荧光特性的影响 [J]. 农业环境科学学报, 2021, 40(2):451−463. doi: 10.11654/jaes.2020-0879XING Y Y, LOU Y S, WANG K, et al. Effects of biochar and silicate supply on photosynthetic and fluorescence characteristics of rice leaves under nighttime warming [J]. Journal of Agro-Environment Science, 2021, 40(2): 451−463.(in Chinese) doi: 10.11654/jaes.2020-0879 [10] EGEA G, VERHOEF A, VIDALE P L. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models [J]. Agricultural and Forest Meteorology, 2011, 151(10): 1370−1384. doi: 10.1016/j.agrformet.2011.05.019 [11] 苗玉, 高冠龙, 李伟. 黄土高原苹果树叶片气孔导度的环境响应与模拟 [J]. 干旱区地理, 2021, 44(2):525−533. doi: 10.12118/j.issn.10006060.2021.02.23MIAO Y, GAO G L, LI W. Environmental response and modeling of stomatal conductance of apple trees on the Loess Plateau [J]. Arid Land Geography, 2021, 44(2): 525−533.(in Chinese) doi: 10.12118/j.issn.10006060.2021.02.23 [12] 艾雪莹, 吴奇, 周宇飞, 等. 干旱-复水条件下氮素对高粱光合特性及抗氧化代谢的影响 [J]. 干旱地区农业研究, 2019, 37(5):99−105,113. doi: 10.7606/j.issn.1000-7601.2019.05.15AI X Y, WU Q, ZHOU Y F, et al. Effects of nitrogen on photosynthesis and antioxidant enzyme activities of Sorghum under drought stress and re-watering [J]. Agricultural Research in the Arid Areas, 2019, 37(5): 99−105,113.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.05.15 [13] LIU G Y, DU Q J, LI J M. Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings [J]. Scientia Horticulturae, 2017, 214: 41−50. doi: 10.1016/j.scienta.2016.09.006 [14] ZHANG Y Q, WANG J D, GONG S H, et al. Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat [J]. Agricultural Water Management, 2017, 179: 277−287. doi: 10.1016/j.agwat.2016.08.007 [15] 杨珊珊, 王茜, 胡庭兴, 等. 3种农作物(玉米、黄瓜、豇豆)对银木凋落叶化感作用的生理响应 [J]. 应用与环境生物学报, 2018, 24(2):292−298.YANG S S, WANG Q, HU T X, et al. Physiological responses to allelopathy of decomposing Cinnamomum septentrionale leaf litter of three crops(corn, cucumber, and cowpea) [J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 292−298.(in Chinese) [16] DILLAWAY D N, KRUGER E L. Trends in seedling growth and carbon-use efficiency vary among broadleaf tree species along a latitudinal transect in eastern North America [J]. Global Change Biology, 2014, 20(3): 908−922. doi: 10.1111/gcb.12427 [17] 连亚妮, 杨可伟, 牟洪香, 等. 农田防护林系统植物水分利用效率研究 [J]. 林业与生态科学, 2021, 36(3):229−235.LIAN Y N, YANG K W, MU H X, et al. Study on the plant water use efficiency (WUE) of farmland shelterbelts system [J]. Forestry and Ecological Sciences, 2021, 36(3): 229−235.(in Chinese) [18] BRADFORD M A, CROWTHER T W. Carbon use efficiency and storage in terrestrial ecosystems [J]. New Phytologist, 2013, 199(1): 7−9. doi: 10.1111/nph.12334 [19] 刘洋洋, 王倩, 杨悦, 等. 2000—2013年中国植被碳利用效率(CUE)时空变化及其与气象因素的关系 [J]. 水土保持研究, 2019, 26(5):278−286,2.LIU Y Y, WANG Q, YANG Y, et al. Spatiotemporal dynamic of vegetation carbon use efficiency and its relationship with climate factors in China during the period 2000-2013 [J]. Research of Soil and Water Conservation, 2019, 26(5): 278−286,2.(in Chinese) [20] DELUCIA E H, DRAKE J E, THOMAS R B, et al. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? [J]. Global Change Biology, 2007, 13(6): 1157−1167. doi: 10.1111/j.1365-2486.2007.01365.x [21] MARTHEWS T R, MALHI Y, GIRARDIN C A J, et al. Simulating forest productivity along a neotropical elevational transect: Temperature variation and carbon use efficiency [J]. Global Change Biology, 2012, 18(9): 2882−2898. doi: 10.1111/j.1365-2486.2012.02728.x [22] FRANTZ J M, BUGBEE B. Acclimation of plant populations to shade: Photosynthesis, respiration, and carbon use efficiency [J]. Journal of the American Society for Horticultural Science, 2005, 130(6): 918−927. doi: 10.21273/JASHS.130.6.918 [23] VICCA S, LUYSSAERT S, PEÑUELAS J, et al. Fertile forests produce biomass more efficiently [J]. Ecology Letters, 2012, 15(6): 520−526. doi: 10.1111/j.1461-0248.2012.01775.x [24] 韩艳红, 于沐, 石彦召, 等. 基于隶属函数法对13个花生品种品质的综合评价 [J]. 中国农学通报, 2022, 38(2):7−11. doi: 10.11924/j.issn.1000-6850.casb2021-0979HAN Y H, YU M, SHI Y Z, et al. Comprehensive evaluation of the quality of 13 peanut varieties by membership function method [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 7−11.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2021-0979 [25] 高应敏, 苏艳. 普洱市生态咖啡园管理农艺措施 [J]. 云南农业科技, 2019(3):39−41. doi: 10.3969/j.issn.1000-0488.2019.03.016GAO Y M, SU Y. Agronomic measures of ecological coffee garden management in Pu'er City [J]. Yunnan Agricultural Science and Technology, 2019(3): 39−41.(in Chinese) doi: 10.3969/j.issn.1000-0488.2019.03.016 [26] 郑雅婷, 王学春, 胡瑶, 等. 秸秆还田对梓潼江流域土壤肥力及粮食生产的影响 [J]. 西南农业学报, 2021, 34(7):1510−1514.ZHENG Y T, WANG X C, HU Y, et al. Effects of straw returning on soil fertility and grain production in Zitong River Basin [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(7): 1510−1514.(in Chinese) [27] CASTRO-DÍEZ P, ALONSO Á, ROMERO-BLANCO A. Effects of litter mixing on litter decomposition and soil properties along simulated invasion gradients of non-native trees [J]. Plant and Soil, 2019, 442(1/2): 79−96. [28] 陈毅青, 陈宗铸, 陈小花, 等. 海南岛东南沿海地区不同森林类型林地凋落物现存量和养分特征 [J]. 热带作物学报, 2021, 42(4):1159−1165. doi: 10.3969/j.issn.1000-2561.2021.04.036CHEN Y Q, CHEN Z Z, CHEN X H, et al. Stock and nutrient characteristics of litter at different forest types in the southeast coast of Hainan Island [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 1159−1165.(in Chinese) doi: 10.3969/j.issn.1000-2561.2021.04.036 [29] JANISSEN B, HUYNH T. Chemical composition and value-adding applications of coffee industry by-products: A review [J]. Resources, Conservation and Recycling, 2018, 128: 110−117. doi: 10.1016/j.resconrec.2017.10.001 [30] 杨晶晶, 周正立, 吕瑞恒, 等. 干旱生境下3种植物叶凋落物分解动态特征 [J]. 干旱区研究, 2019, 36(4):916−923.YANG J J, ZHOU Z L, LYU R H, et al. Dynamic decomposition of foliar litters of three plant species in arid habitats [J]. Arid Zone Research, 2019, 36(4): 916−923.(in Chinese) [31] 曾锋, 邱治军, 许秀玉. 森林凋落物分解研究进展 [J]. 生态环境学报, 2010, 19(1):239−243. doi: 10.3969/j.issn.1674-5906.2010.01.044ZENG F, QIU Z J, XU X Y. Review on forest litter decomposition [J]. Ecology and Environmental Sciences, 2010, 19(1): 239−243.(in Chinese) doi: 10.3969/j.issn.1674-5906.2010.01.044 [32] 王金悦, 邓羽松, 林立文, 等. 南亚热带5种典型人工林凋落物水文效应 [J]. 水土保持学报, 2020, 34(5):169−175.WANG J Y, DENG Y S, LIN L W, et al. Study on the hydrological effects of the litters layer from five typical plantations in south subtropics of China [J]. Journal of Soil and Water Conservation, 2020, 34(5): 169−175.(in Chinese) [33] STOY P C, EL-MADANY T S, FISHER J B, et al. Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities [J]. Biogeosciences, 2019, 16(19): 3747−3775. doi: 10.5194/bg-16-3747-2019 [34] 韦婷婷, 杨再强, 王明田, 等. 高温与空气湿度交互对花期番茄植株水分生理的影响 [J]. 中国农业气象, 2019, 40(5):317−326. doi: 10.3969/j.issn.1000-6362.2019.05.006WEI T T, YANG Z Q, WANG M T, et al. Effects of high temperature and different air humidity on water physiology of flowering tomato seedlings [J]. Chinese Journal of Agrometeorology, 2019, 40(5): 317−326.(in Chinese) doi: 10.3969/j.issn.1000-6362.2019.05.006 [35] WAGNER Y, POZNER E, BAR-ON P, et al. Rapid stomatal response in lemon saves trees and their fruit yields under summer desiccation, but fails under recurring droughts [J]. Agricultural and Forest Meteorology, 2021, 307: 108487. doi: 10.1016/j.agrformet.2021.108487 [36] 杨天乐, 吴峰峰, 刘涛, 等. 作物气孔的作用及其影响因素的研究进展 [J]. 北方园艺, 2020(3):143−148.YANG T L, WU F F, LIU T, et al. Research progress on the role of crop stomata and its influencing factors [J]. Northern Horticulture, 2020(3): 143−148.(in Chinese) [37] HUSSAIN A, ARSHAD M, AHMAD Z, et al. Potassium fertilization influences growth, physiology and nutrients uptake of maize (Zea mays L. ) [J]. Cercetari Agronomice in Moldova, 2015, 48(1): 37−50. doi: 10.1515/cerce-2015-0015 [38] 孙燕, 董云萍, 龙宇宙, 等. 施氮量对咖啡生长及光合特征的影响 [J]. 热带作物学报, 2019, 40(2):215−220.SUN Y, DONG Y P, LONG Y Z, et al. Growth and photosynthetic characteristics of coffee under different nitrogen level [J]. Chinese Journal of Tropical Crops, 2019, 40(2): 215−220.(in Chinese) [39] DAMATTA F M, GODOY A G, MENEZES-SILVA P E, et al. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: Disentangling the contributions of stomatal, mesophyll, and biochemical limitations [J]. Journal of Experimental Botany, 2015, 67(1): 341−352. [40] BARBOSA S M, SILVA B M, DE OLIVEIRA G C, et al. Deep furrow and additional liming for coffee cultivation under first year in a naturally dense inceptisol [J]. Geoderma, 2020, 357: 113934. doi: 10.1016/j.geoderma.2019.113934 [41] 罗明霞, 胡宗达, 刘兴良, 等. 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性 [J]. 生态学报, 2021, 41(14):5632−5642.LUO M X, HU Z D, LIU X L, et al. Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China [J]. Acta Ecologica Sinica, 2021, 41(14): 5632−5642.(in Chinese) [42] 沈立明, 钟惠, 朱雅婷, 等. 温度胁迫下4种广义虾脊兰属植物的光合特性 [J]. 森林与环境学报, 2021, 41(1):60−65.SHEN L M, ZHONG H, ZHU Y T, et al. Photosynthetic characteristics of four Calanthe s. L. species under temperature stress [J]. Journal of Forest and Environment, 2021, 41(1): 60−65.(in Chinese) [43] SONG Y P, CHEN Q Q, CI D, et al. Effects of high temperature on photosynthesis and related gene expression in poplar [J]. BMC Plant Biology, 2014, 14: 111. doi: 10.1186/1471-2229-14-111 [44] LU Z F, XIE K L, PAN Y H, et al. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy [J]. Plant, Cell & Environment, 2019, 42(7): 2231−2244. [45] 王双成, 黄华梨, 张露荷, 等. 不同时期根施钾肥对沿黄灌区‘骏枣’光合特性及其产量和品质的影响 [J]. 西北植物学报, 2020, 40(6):1022−1030.WANG S C, HUANG H L, ZHANG L H, et al. Effect of root application of potassium fertilizer in different periods on photosynthetic characteristics, yield and quality of Junzao in irrigation area along the Yellow River [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(6): 1022−1030.(in Chinese) [46] KUBIEN D S, SAGE R F. The temperature response of photosynthesis in tobacco with reduced amounts of Rubisco [J]. Plant, Cell & Environment, 2008, 31(4): 407−418. [47] 周敏, 曾蓓, 赵玉华, 等. 钾对刺葡萄光合作用的影响 [J]. 湖南农业大学学报(自然科学版), 2017, 43(2):156−160.ZHOU M, ZENG B, ZHAO Y H, et al. Effects of potassium on the photosynthesis of Vitis davidii foёx [J]. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(2): 156−160.(in Chinese) [48] PIAO S L, LUYSSAERT S, CIAIS P, et al. Forest annual carbon cost: A global-scale analysis of autotrophic respiration [J]. Ecology, 2010, 91(3): 652−661. doi: 10.1890/08-2176.1 [49] JONES D L, OLIVERA-ARDID S, KLUMPP E, et al. Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert [J]. Soil Biology and Biochemistry, 2018, 117: 68−71. doi: 10.1016/j.soilbio.2017.10.026 [50] TJOELKER M G. The role of thermal acclimation of plant respiration under climate warming: Putting the brakes on a runaway train? [J]. Plant, Cell & Environment, 2018, 41(3): 501−503. [51] CHU Z Y, LU Y J, CHANG J, et al. Leaf respiration/photosynthesis relationship and variation: An investigation of 39 woody and herbaceous species in east subtropical China [J]. Trees, 2011, 25(2): 301−310. doi: 10.1007/s00468-010-0506-x [52] HUNTINGFORD C, ATKIN O K, MARTINEZ-DE LA TORRE A, et al. Implications of improved representations of plant respiration in a changing climate [J]. Nature Communications, 2017, 8(1): 1602. doi: 10.1038/s41467-017-01774-z [53] WEI D, QI Y H, MA Y M, et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau[J]. PNAS, 2021, 118(33). Doi: 10.1073/pnas.2015283118.