• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻乙醇酸/甘油酸转运体OsPLGG1对光呼吸支路强化功能的探讨

崔丽丽 蔡秋华 邱洁瑜 高蓉蓉 赵永超 王颖姮 彭新湘 朱国辉 张建福

崔丽丽,蔡秋华,邱洁瑜,等. 水稻乙醇酸/甘油酸转运体OsPLGG1对光呼吸支路强化功能的探讨 [J]. 福建农业学报,2024,39(X):1−9
引用本文: 崔丽丽,蔡秋华,邱洁瑜,等. 水稻乙醇酸/甘油酸转运体OsPLGG1对光呼吸支路强化功能的探讨 [J]. 福建农业学报,2024,39(X):1−9
CUI L L, CAI Q H, QIU J Y, et al. OsPLGG1 enhanced function of photorespiratory bypass [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−9
Citation: CUI L L, CAI Q H, QIU J Y, et al. OsPLGG1 enhanced function of photorespiratory bypass [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−9

水稻乙醇酸/甘油酸转运体OsPLGG1对光呼吸支路强化功能的探讨

基金项目: 国家自然科学基金项目(32201733);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021019-SDS01);中央引导地方科技发展专项(2022L3018);福建省自然科学基金项目(2022J01453);福建省科技计划公益类专项(2023R1068、2020R1023008);福建省农业科学院科研项目(ZYTS202203、GJYS202301)
详细信息
    作者简介:

    崔丽丽(1986 —),女,博士,副研究员,主要从事水稻光合生理方面研究,E-mail:328849975@qq.com

    蔡秋华(1976 —),女,博士,副研究员,主要从事水稻分子育种方面研究,E-mail:57617933@qq.com

    通讯作者:

    张建福(1971 —),男,博士,研究员,主要从事水稻分子育种研究,E-mail:jianfzhang@163.com

  • 中图分类号: S511

OsPLGG1 enhanced function of photorespiratory bypass

  • 摘要:   目的  在已构建GOC(乙醇酸氧化酶OsGLO、草酸氧化酶OsOXO和过氧化物酶OsCAT)光呼吸支路的工程水稻中,敲除乙醇酸转运体编码基因OsPLGG1aOsPLGG1b,以优化光呼吸支路的改造,提高水稻光合效率。  方法  以GOC工程水稻为背景材料,通过CRISPR-Cas9技术分别敲除OsPLGG1aOsPLGG1b基因,通过抗性筛选和测序鉴定osplgg1a-GOC和osplgg1b-GOC纯合敲除株系,并测定光合速率。  结果  获得敲除OsPLGG1aOsPLGG1b的GOC代谢支路的纯合株系(osplgg1a-GOC和osplgg1b-GOC)。osplgg1a-GOC植株与ZH11背景中OsPLGG1a敲除突变体表型相似,均表现出黄化矮小生长抑制的表型;osplgg1b-GOC植株相比GOC水稻的净光合速率提高,说明OsPLGG1b突变有利于叶绿体中滞留乙醇酸,增加GOC支路的代谢通量,进一步提高叶绿体中的CO2浓度。  结论  相对于GOC水稻,osplgg1b-GOC部分株系的净光合速率和气孔导度增加,暗示敲除OsPLGG1b可用于光呼吸代谢支路的优化。
  • 图  1  osplgg1-Cas9-GOC的编辑位点

    核苷酸划线“(delete-Xbp)”代表删除X核苷酸;“……”表示与野生型相同的部分序列。靶点设置在“CCN”或“NGG”(PAM)。黑色数字表示编码区中ATG的核苷酸位置。

    Figure  1.  Edit site analysis of osplgg1-Cas9-GOC

    Nucleotide underscore "(delete-x bp)" stands for deleting X nucleotides; "......" represents the same partial wild-type sequence. The target was set at "CCN or NGG" (PAM). The black numbers indicate the nucleotide positions of ATG in ORF.

    图  2  osplgg1a-GOC和osplgg1b-GOC植株的幼苗期表型

    A、C:osplgg1a-GOC和osplgg1b-GOC表型;B、D:osplgg1a-GOC和osplgg1b-GOC株高;E:叶片灌浆期表型;F:叶绿素含量。A和C为osplgg1a-GOC和osplgg1b-GOC在空气环境条件下培养5周后的表型,在含有木村B营养液的培养箱内生长。根据Duncan法进行样本间差异显著性分析,不同小写字母表示不同植株之间差异显著(P < 0.05)。图34同。

    Figure  2.  Seedling phenotype of osplgg1a-GOC and osplgg1b-GOC mutations

    A, C: phenotype of osplgg1a-GOC and osplgg1b-GOC, plants grown under ambient for 5 weeks; B, D: plant height of osplgg1a-GOC and osplgg1b-GOC; E: phenotype; F: chlorophyll content. Plants were grown in the growth chamber in Kimura B nutrient solution. Means denoted by the same letter did not significantly differ at P < 0.05 according to Duncan’s multiple range tests. Same for Fig.3, 4.

    图  3  osplgg1b-GOC转基因植株的表型分析

    A:osplgg1b-GOC转基因植株在灌浆期植株表型观察与完熟期穗形态观察;B:株高、分蘖数、剑叶长形态指标分析;C:结实率;D:穗粒数; E:穗长,n=30。

    Figure  3.  Phenotypic analysis of osplgg1b-GOC transgenic plants

    A: phenotypic observation and panicle morphology observation of osplgg1b-GOC transgenic plants at grain filling stage; B: morphological index analysis of plant height, tiller number and length of flag leaf; C: seed setting rate; D: grain number of per panicle; E: panicle length, n=30.

    图  4  osplgg1b-GOC转基因植株的光合指标分析

    Figure  4.  Analysis of photosynthesis indicators in osplgg1b-GOC plants

    表  1  引物信息

    Table  1.   Primers used in this study

    引物名称
    Primer name
    引物序列(5′-3′)
    Primer sequence (5′-3′)
    目的
    Purpose
    Cas9-F GAACGGTCGTAAGAGGATGC 无标记检测
    Unmarked detection
    Cas9-R GGTGATGGACTGGTGGATGAG
    OsPLGG1a-pYLsgRNA-OsU6a-F1 CGTAGCGAGGCAATCATGCGTTTTAGAGCTAGAAAT 载体构建
    Carrier construction
    OsPLGG1a-pYLsgRNA-OsU6a-R1 GCATGATTGCCTCGCTACGCGGCAGCCAAGCCAGCA
    OsPLGG1a-pYLsgRNA-OsU6b-F2 TGCGACAAAGACAGCACCCCGTTTTAGAGCTAGAAAT
    OsPLGG1a-pYLsgRNA-OsU6b-R2 GGGGTGCTGTCTTTGTCGCACAACACAAGCGGCAGC
    OsPLGG1b-pYLsgRNA-OsU6a-F1 AGCCATGGGGACGGAATGCTGTTTTAGAGCTAGAAAT
    OsPLGG1b-pYLsgRNA-OsU6a-R1 AGCATTCCGTCCCCATGGCTCGGCAGCCAAGCCAGCA
    OsPLGG1b-pYLsgRNA-OsU6b-F2 CCCAGGCCCAGAATTCAAGGTTTTAGAGCTAGAAAT
    OsPLGG1b-pYLsgRNA-OsU6b-R2 CTTGAATTCTGGGCCTGGGCAACACAACGGCAGC
    M1:OsPLGG1a-Cas9-85F TCATCCACTGTCACTGCCACTG CRISPR/Cas9 突变位点检测
    Detection of CRISPR/Cas9
    mutation sites
    M2:OsPLGG1a-Cas9-2187R GCACTACCTTTCTCTGCTTGA
    M3:OsPLGG1b-Cas9-2F TGGAACAGTGACGGCAGTTG
    M4:OsPLGG1b-Cas9-1795R GAGGTAATCACCTGGACAACC
    下载: 导出CSV
  • [1] PETERHANSEL C, HORST I, NIESSEN M, et al. Photorespiration [J]. The Arabidopsis Book, 2010, 8: e0130. doi: 10.1199/tab.0130
    [2] KANGASJÄRVI S, NEUKERMANS J, LI S C, et al. Photosynthesis, photorespiration, and light signalling in defence responses [J]. Journal of Experimental Botany, 2012, 63(4): 1619−1636. doi: 10.1093/jxb/err402
    [3] SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field [J]. Science, 2019, 363(6422): eaat9077. doi: 10.1126/science.aat9077
    [4] SHIM S H, LEE S K, LEE D W, et al. Loss of function of rice plastidic glycolate/glycerate translocator 1 impairs photorespiration and plant growth [J]. Frontiers in Plant Science, 2020, 10: 1726. doi: 10.3389/fpls.2019.01726
    [5] CUI L L, ZHANG C L, LI Z C, et al. Two plastidic glycolate/glycerate translocator 1 isoforms function together to transport photorespiratory glycolate and glycerate in rice chloroplasts [J]. Journal of Experimental Botany, 2021, 72(7): 2584−2599. doi: 10.1093/jxb/erab020
    [6] SHEN B R, WANG L M, LIN X L, et al. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice [J]. Molecular Plant, 2019, 12(2): 199−214. doi: 10.1016/j.molp.2018.11.013
    [7] MA X L, ZHANG Q Y, ZHU Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Molecular Plant, 2015, 8(8): 1274−1284. doi: 10.1016/j.molp.2015.04.007
    [8] WANG L M, SHEN B R, LI B D, et al. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice [J]. Molecular Plant, 2020, 13(12): 1802−1815. doi: 10.1016/j.molp.2020.10.007
    [9] KEBEISH R, NIESSEN M, THIRUVEEDHI K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana [J]. Nature Biotechnology, 2007, 25(5): 593−599. doi: 10.1038/nbt1299
    [10] EISENHUT M, PLANCHAIS S, CABASSA C, et al. Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO2 levels [J]. The Plant Journal, 2013, 73(5): 836−849. doi: 10.1111/tpj.12082
    [11] CAVANAGH A P, SOUTH P F, BERNACCHI C J, et al. Alternative pathway to photorespiration protects growth and productivity at elevated temperatures in a model crop [J]. Plant Biotechnology Journal, 2022, 20(4): 711−721. doi: 10.1111/pbi.13750
    [12] WOO K C, FLÜGGE U I, HELDT H W. A two-translocator model for the transport of 2-oxoglutarate and glutamate in chloroplasts during ammonia assimilation in the light [J]. Plant Physiology, 1987, 84(3): 624−632. doi: 10.1104/pp.84.3.624
    [13] SOMERVILLE S C, OGREN W L. An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport [J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(5): 1290−1294.
    [14] PICK T R, BRÄUTIGAM A, SCHULZ M A, et al. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 3185−3190.
    [15] SOUTH P F, WALKER B J, CAVANAGH A P, et al. Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana [J]. The Plant Cell, 2017, 29(4): 808−823. doi: 10.1105/tpc.16.00775
    [16] PORCELLI V, VOZZA A, CALCAGNILE V, et al. Molecular identification and functional characterization of a novel glutamate transporter in yeast and plant mitochondria [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2018, 1859(11): 1249−1258. doi: 10.1016/j.bbabio.2018.08.001
    [17] MONNÉ M, DADDABBO L, GAGNEUL D, et al. Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates [J]. Journal of Biological Chemistry, 2018, 293(11): 4213−4227. doi: 10.1074/jbc.RA117.000771
    [18] EISENHUT M, HOCKEN N, WEBER A P M. Plastidial metabolite transporters integrate photorespiration with carbon, nitrogen, and sulfur metabolism [J]. Cell Calcium, 2015, 58(1): 98−104. doi: 10.1016/j.ceca.2014.10.007
    [19] CAMPBELL W J, OGREN W L. Glyoxylate inhibition of ribulosebisphosphate carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts [J]. Photosynthesis Research, 1990, 23(3): 257−268. doi: 10.1007/BF00034856
    [20] FLÜGEL F, TIMM S, ARRIVAULT S, et al. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis [J]. The Plant Cell, 2017, 29(10): 2537−2551. doi: 10.1105/tpc.17.00256
    [21] WEBER A P M, SCHWACKE R, FLÜGGE U I. Solute transporters of the plastid envelope membrane [J]. Annual Review of Plant Biology, 2005, 56: 133−164. doi: 10.1146/annurev.arplant.56.032604.144228
    [22] FLÜGGE U I. Transport in and out of plastids: Does the outer envelope membrane control the flow? [J]. Trends in Plant Science, 2000, 5(4): 135−137. doi: 10.1016/S1360-1385(00)01578-8
    [23] SOLL J, BÖLTER B, WAGNER R, et al. response: The chloroplast outer envelope: A molecular sieve? [J]. Trends in Plant Science, 2000, 5(4): 137−138. doi: 10.1016/S1360-1385(00)01579-X
    [24] BREUERS R K H. The plastid outer envelope–a highly dynamic interface between plastid and cytoplasm [J]. Frontiers in Plant Science, 2011, 2: 97.
    [25] DUNCAN O, VAN DER MERWE M J, DALEY D O, et al. The outer mitochondrial membrane in higher plants [J]. Trends in Plant Science, 2013, 18(4): 207−217. doi: 10.1016/j.tplants.2012.12.004
    [26] INOUE K. Emerging knowledge of the organelle outer membranes - research snapshots and an updated list of the chloroplast outer envelope proteins [J]. Frontiers in Plant Science, 2015, 6: 278.
    [27] HARSMAN A, SCHOCK A, HEMMIS B, et al. OEP40, a regulated glucose-permeable β-barrel solute channel in the chloroplast outer envelope membrane [J]. Journal of Biological Chemistry, 2016, 291(34): 17848−17860. doi: 10.1074/jbc.M115.712398
    [28] GUAN L, DENKERT N, EISA A, et al. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10568−10575.
    [29] FOWLER S, THOMASHOW M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J]. The Plant Cell, 2002, 14(8): 1675−1690. doi: 10.1105/tpc.003483
    [30] DREA S C, LAO N T, WOLFE K H, et al. Gene duplication, exon gain and neofunctionalization of OEP16-related genes in land plants [J]. Plant Journal, 2006, 46(5): 723−735. doi: 10.1111/j.1365-313X.2006.02741.x
    [31] ZANG X S, GENG X L, LIU K L, et al. Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants [J]. Plant Science, 2017, 258: 1−11. doi: 10.1016/j.plantsci.2017.01.011
    [32] AINSWORTH E A, ORT D R. How do we improve crop production in a warming world? [J]. Plant Physiology, 2010, 154(2): 526−530. doi: 10.1104/pp.110.161349
    [33] KEECH O, ZHOU W X, FENSKE R, et al. The genetic dissection of a short-term response to low CO2 supports the possibility for peroxide-mediated decarboxylation of photorespiratory intermediates in the peroxisome [J]. Molecular Plant, 2012, 5(6): 1413−1416. doi: 10.1093/mp/sss104
    [34] WALKER B J, SOUTH P F, ORT D R. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration [J]. Photosynthesis Research, 2016, 129(1): 93−103. doi: 10.1007/s11120-016-0277-3
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  27
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-24
  • 修回日期:  2024-07-06
  • 网络出版日期:  2024-11-06

目录

    /

    返回文章
    返回