Transcriptome and Metabolome Analysis of Tea Leaves in Response to Tea Blister Blight
-
摘要:
目的 探明茶树对茶饼病菌的抗性分子机制,挖掘抗病相关基因,为茶树抗性育种提供依据。 方法 通过转录组测序和代谢组分析,比较茶树健康叶片(CK)和感染茶饼病的叶片(TB)中的差异表达基因(DEGs)和差异代谢物(DAMs)。 结果 转录组数据显示,样品CK和TB之间共有 1009 个 DEGs;GO 富集分析表明,差异基因参与了细胞壁代谢及调控几丁质酶活性、氧化还原酶活性和木葡聚糖:木葡基转移酶活性;KEGG 代谢途经分析表明,DEGs显著富集在“类黄酮生物合成”“苯丙素生物合成”“氨基糖和核苷糖代谢”“甘油酯代谢”和“芪类,二芳基庚烷和姜酚生物合成”途径;DEGs 中包含47个转录因子,分属21个转录因子家族,主要包括bHLH、SBP、AP2/ERF-AP2和MYB等,这些转录因子可能是茶树抵御茶饼病侵染过程中重要的调控基因。利用广泛靶向代谢组学技术分析,共发现353个DAMs,DAMs主要富集于“类黄酮生物合成”“赖氨酸生物合成”和“丙氨酸、天门冬氨酸和谷氨酸代谢”途径。利用转录组联合代谢组分析发现,显著共同富集的途径是“类黄酮生物合成”“苯丙素生物合成”和“芪类,二芳基庚烷和姜酚生物合成”;筛选了与苯丙素类及类黄酮生物合成途径相关的20个DEGs和15个DAMs,其中,CSS0011741(4CL)、CSS0002940(DFR)、CSS0015968(DFR)和CSS0010687(ANS)等DEGs在感病叶中上调表达,根皮素、根皮苷、4-羟基苯乙烯、对香豆酰喹啉酸、二氢杨梅素、表没食子儿茶素和芍药素-3-O葡萄糖苷等DAMs在感病叶中积累。结论 “苯丙素类生物合成”和“类黄酮生物合成”等代谢途径中的 DEGs在茶树响应茶饼病侵染中发挥重要作用,根皮素、根皮苷以及表没食子儿茶素等DAMs可能是茶树抵御茶饼病侵染的重要次生代谢产物。 Abstract:Objective To explore the resistance molecular mechanism of tea plants to the pathogen of tea blister blight, and to explore the resistance-related genes, so as to provide a basis for resistance breeding of tea plants. Methods Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were compared between healthy leaves (CK) and leaves infected with blister blight disease (TB) by transcriptome sequencing and metabolome analysis. Results Transcriptome data showed that there were 1009 DEGs between CK and TB, and GO enrichment analysis indicated that the DEGs were involved in cell wall metabolism and the regulation of chitinase activity, oxidoreductase activity, and xyloglucan:xyloglucanosyltransferase activity. KEGG metabolic pathway analysis showed that the DEGs were significantly enriched in pathways of "Flavonoid biosynthesis", "Phenylpropanoid biosynthesis", "Amino sugar and nucleotide sugar metabolism", "Glycerolipid metabolism", and "Stilbenoid, diarylheptanoid and gingerol biosynthesis". 47 transcription factors in DEGs belonging to 21 transcription factor families, mainly including bHLH, SBP, AP2/ERF-AP2 and MYB, etc., which may be important regulatory genes in the process of tea plant to blister blight disease. A total of 353 DAMs were identified using widely targeted metabolomics, and the DAMs were mainly enriched in the pathways of "Flavonoid biosynthesis", "Lysine biosynthesis", and "Alanine, aspartate and glutamate metabolism". Integrative analysis of transcriptome and metabolome revealed that the pathways with significant co-enrichment were "Flavonoid biosynthesis", "Phenylpropanoid biosynthesis", "Stilbenoid, diarylheptanoid and gingerol biosynthesis". A total of 20 DEGs and 15 DAMs related to the phenylpropanoids and flavonoids biosynthesis pathways were screened out. Among them, DEGs such as CSS0011741(4CL)、CSS0002940(DFR)、CSS0015968(DFR)and CSS0010687(ANS)were up-regulated in susceptible leaves. DAMs such as phloretin, phlorizin, 4-Hydroxystyrene, p-Coumaroyl quinic acid, dihydromyricetin, epigallocatechin and peonidin 3-O-glucoside were accumulated in susceptible leaves.Conclusion DEGs in the pathways of "Phenylpropanoid biosynthesis" and "Flavonoid biosynthesis" play important roles in the response of tea plant to tea blister blight disease infestation, and DAMs such as phloretin, phlorizin, and epigallocatechin may be important secondary metabolites for tea plant resistance to blister blight disease. -
图 1 样本相关性热图及各样本间的主成分分析
A. 转录组样本相关性热图;B. 转录组各样本间的主成分分析;C. 代谢组样本相关性热图;D. 代谢组各样本间的主成分分析。
Figure 1. Heatmap of the Pearson correlation between samples and principal component analysis plots of samples
A. Heatmap of the Pearson correlation between samples in transcriptome; B. Principal component analysis plots of samples in transcriptome; C. Heatmap of the Pearson correlation between samples in metabolome; D. Principal component analysis plots of samples in metabolome.
图 9 转录-代谢KEGG共有富集通路气泡图
A. Venn 图;B. 代谢通路分析。圆点代表DEGs, 三角形代表DAMs。-lg (P value) 越大,富集可信度越高。
Figure 9. Bubble diagram of enriched pathways shared by transcriptome and metabolome through KEGG analysis
A. Venn diagram; B. Metabolic pathway analysis. Triangles are DEGs and dots are DAMs. The bigger the -lg (P value) is, the more reliable the enrichment is.
表 1 qRT-PCR基因及引物
Table 1. Genes and primers for qRT-PCR
基因
Gene正向引物
Forward primer (5'-3')反向引物
Reverse primer (5'-3')CSS0007745 CCAAGAGTGTGGAAGGGTATG CAGAGGGAGGCCAAATCTTATG CSS0013831 CATTGCTTCTTGGCCCTACTA TGACAGTGCCATCACCATAAA CSS0038049 GATGCCATGGCTTATGGATTTG GACCTATGCGGTAGACAGTTTC CSS0008562 AGTGCCTCATCAACCATCAC AGGAAGAAGAAGAGGAGGTAGAG CSS0042430 GAGACTCAGAGGACTCGAAAGA CAGACTCGGACGCCTTTATG CSS0005594 AATATGGGTGCCGGGTATTG TCTTCTCCTCCGATGGTACTT CsEF1(KA280301.1) TTGGACAAGCTCAAGGCTGAACG ATGGCCAGGAGCATCAATGACAGT 表 2 样本测序数据的质量控制分析
Table 2. Analysis of quality control for transcriptome sequencing data
样本
Sample过滤序列
Clean reads过滤碱基
Clean bases/GQ20/% Q30/% GC含量
GC Content /%匹配序列(比对效率/%)
Mapped reads (Efficiency/%)CK1 40107608 6.00 98.87 96.51 45.31 35374239 (88.20)CK2 40805448 6.10 98.72 96.33 45.11 35890315 (87.95)CK3 40738514 6.10 98.48 95.89 44.84 35837746 (87.97)TB1 41033002 6.14 98.77 96.24 45.42 36088623 (87.95)TB2 40766338 6.10 98.87 96.54 45.25 35886380 (88.03)TB3 41144588 6.16 98.71 96.28 45.21 36124713 (87.80)总计 Total 244595498 36.59 表 3 显著差异的黄酮类物质
Table 3. Flavonoids with significant differences
编号
code代谢物名称
Compound差异倍数
Fold_changeP值
P-value变量重要性投影
VIP差异类型
TypeNEG_q122 二氢杨梅素 Dihydromyricetin 1.10 0.00 1.33 上调 Up NEG_q260 对香豆酰奎宁酸 P-Coumaroyl quinic Acid 1.22 0.00 1.38 NEG_q264 根皮素 Phloretin 1.56 0.02 1.27 NEG_q265 根皮苷 Phlorizin 1.29 0.04 1.28 POS_q141 (-)-表没食子儿茶素 Epigallocatechin 1.05 0.02 1.29 NEG_q79 芹菜素 Apigenin 0.65 0.01 1.37 下调 Down NEG_q94 儿茶素没食子酸酯 Catechin Gallate 0.95 0.03 1.30 NEG_q160 没食子儿茶素没食子酸酯 Gallocatechin Gallate 0.95 0.02 1.30 NEG_q145 表儿茶素没食子酸酯 (-)-Epicatechin Gallate 0.73 0.01 1.27 NEG_q92 儿茶素 Catechin 0.65 0.00 1.38 NEG_q98 绿原酸 Chlorogenic Acid 0.68 0.00 1.36 NEG_q120 二氢山奈酚 Dihydrokaempferol 0.57 0.00 1.35 NEG_q158 (+)-没食子儿茶素 Gallocatechin 0.91 0.01 1.32 NEG_q240 柚皮素查耳酮 Naringenin Chalcone 0.66 0.00 1.38 NEG_q241 柚皮苷 Naringin 0.76 0.00 1.32 NEG_q307 花旗松素 Taxifolin 0.80 0.00 1.35 -
[1] 孙云南, 许燕, 冉隆珣, 等. 茶树叶片响应茶饼病侵染的转录组分析 [J]. 茶叶科学, 2020, 40(1):113−124.SUN Y N, XU Y, RAN L X, et al. Transcriptome analysis of the tea leaves (Camellia sinensis var. assamica) infected by tea blister blight [J]. Journal of Tea Science, 2020, 40(1): 113−124. (in Chinese) [2] NISHA S N, PRABU G, MANDAL A K A. Biochemical and molecular studies on the resistance mechanisms in tea[Camellia sinensis (L. ) O. Kuntze]against blister blight disease [J]. Physiology and Molecular Biology of Plants, 2018, 24(5): 867−880. doi: 10.1007/s12298-018-0565-9 [3] 张瑾, 孙晓玲, 肖强. 茶树嫩叶上的“白馒头”: 茶饼病 [J]. 中国茶叶, 2021, 43(4):32−34.ZHANG J, SUN X L, XIAO Q. The white bread shaped blister in tea plantation—Blister blight disease [J]. China Tea, 2021, 43(4): 32−34. (in Chinese) [4] 杨运良, 李建勋, 马革农. 基于转录组测序的火龙果果肉不同发育时期淀粉和蔗糖代谢途径相关基因差异表达分析 [J]. 热带作物学报, 2021, 42(6):1520−1530.YANG Y L, LI J X, MA G N. Differential expression analysis of genes related to starch and sucrose metabolism pathway in different developmental stages of dragon fruit pulp based on transcriptome [J]. Chinese Journal of Tropical Crops, 2021, 42(6): 1520−1530. (in Chinese) [5] WANG L, WANG Y C, CAO H L, et al. Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae [J]. PLoS One, 2016, 11(2): e0148535. doi: 10.1371/journal.pone.0148535 [6] JAYASWALL K, MAHAJAN P, SINGH G, et al. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze) [J]. Scientific Reports, 2016, 6: 30412. doi: 10.1038/srep30412 [7] BHORALI P, GOHAIN B, GUPTA S, et al. Molecular analysis and expression profiling of blister blight defenserelated genes in tea [J]. Indian Journal of Genetics and Plant Breeding, 2012, 72(2): 226−233. [8] ZHANG Q Q, GUO N N, ZHANG Y H, et al. Genome-wide characterization and expression analysis of pathogenesis-related 1 (PR-1) gene family in tea plant (Camellia sinensis (L. ) O. Kuntze) in response to blister-blight disease stress [J]. International Journal of Molecular Sciences, 2022, 23(3): 1292. doi: 10.3390/ijms23031292 [9] SINGH G, SINGH G, SETH R, et al. Functional annotation and characterization of hypothetical protein involved in blister blight tolerance in tea (Camellia sinensis (L) O. Kuntze) [J]. Journal of Plant Biochemistry and Biotechnology, 2019, 28(4): 447−459. doi: 10.1007/s13562-019-00492-5 [10] 龙亚芹, 冉隆珣, 夏丽飞, 等. 茶饼病诱导感、抗茶树品种的基因表达谱分析 [J]. 分子植物育种, 2021, 19(18):6020−6034.LONG Y Q, RAN L X, XIA L F, et al. Gene expression profiling analysis of resistant and susceptible tea cultivars in response to tea blister blight [J]. Molecular Plant Breeding, 2021, 19(18): 6020−6034. (in Chinese) [11] ZHOU X L, HOANG N H, TAO F, et al. Transcriptomics and phytohormone metabolomics provide comprehensive insights into the response mechanism of tea against blister blight disease [J]. Scientia Horticulturae, 2024, 324: 112611. doi: 10.1016/j.scienta.2023.112611 [12] ZHOU X L, HU L H, HOANG N H, et al. The changes in metabolites, quality components, and antioxidant activity of tea (Camellia sinensis) infected with Exobasidium vexans by applying UPLC-MS/MS-based widely targeted metabolome and biochemical analysis [J]. Phytopathology, 2024, 114(1): 164−176. doi: 10.1094/PHYTO-03-23-0105-R [13] 薛守宇, 朱涛, 李冰冰, 等. 转录组和代谢组联合分析在植物中的应用研究 [J]. 山西农业大学学报(自然科学版), 2022, 42(3):1−13.XUE S Y, ZHU T, LI B B, et al. Application research of combined transcriptome with metabolome in plants [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(3): 1−13. (in Chinese) [14] XIA E H, LI F D, TONG W, et al. Tea Plant Information Archive: A comprehensive genomics and bioinformatics platform for tea plant [J]. Plant Biotechnology Journal, 2019, 17(10): 1938−1953. doi: 10.1111/pbi.13111 [15] WANG F, GE S F, XU X X, et al. Multiomics analysis reveals new insights into the apple fruit quality decline under high nitrogen conditions [J]. Journal of Agricultural and Food Chemistry, 2021, 69(19): 5559−5572. doi: 10.1021/acs.jafc.1c01548 [16] LI S P, DENG B L, TIAN S, et al. Metabolic and transcriptomic analyses reveal different metabolite biosynthesis profiles between leaf buds and mature leaves in Ziziphus jujuba Mill. [J]. Food Chemistry, 2021, 347: 129005. doi: 10.1016/j.foodchem.2021.129005 [17] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009 [18] 赵晓珍, 王勇, 任亚峰, 等. 茶饼病病原— Exobasidium vexans侵染茶树叶片过程的形态学观察 [J]. 中国农学通报, 2018, 34(5):117−122.ZHAO X Z, WANG Y, REN Y F, et al. The morphology observation of infection process for the pathogen Exobasidium vexans of tea blister blight against tea leaf [J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 117−122. (in Chinese) [19] CHANDRA S, CHAKRABORTY N, CHAKRABORTY A, et al. Induction of defence response against blister blight by calcium chloride in tea [J]. Archives of Phytopathology and Plant Protection, 2014, 47(19): 2400−2409. doi: 10.1080/03235408.2014.880555 [20] 肖景惠, 李美玉, 孙淼, 等. 一种几丁质酶基因的克隆表达及酶解产物分析 [J]. 微生物学通报, 2016, 43(10):2179−2186.XIAO J H, LI M Y, SUN M, et al. Cloning and expression of a novel chitinase gene and the analysis of its hydrolysis products [J]. Microbiology China, 2016, 43(10): 2179−2186. (in Chinese) [21] 李惠敏, 李璐璐, 陈玉梅, 等. 罗汉果几丁质酶基因家族的生物信息学分析 [J]. 生物信息学, 2019, 17(3):167−174.LI H M, LI L L, CHEN Y M, et al. Bioinformatics analysis of chitinase gene family in Siraitia grosvenorii [J]. Chinese Journal of Bioinformatics, 2019, 17(3): 167−174. (in Chinese) [22] 李晓丽, 罗榴彬, 周斌雄, 等. 基于共聚焦显微拉曼的真菌菌丝中几丁质的原位检测研究 [J]. 光谱学与光谱分析, 2016, 36(1):119−124.LI X L, LUO L B, ZHOU B X, et al. In vivo study of chitin in fungal hyphae based on confocal Raman microscopy [J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 119−124. (in Chinese) [23] CHEN A, SUN J M, VILJOEN A, et al. Genetic mapping, candidate gene identification and marker validation for host plant resistance to the race 4 of Fusarium oxysporum f. sp. cubense using Musa acuminata ssp. malaccensis [J]. Pathogens, 2023, 12(6): 820. doi: 10.3390/pathogens12060820 [24] 冉隆珣, 肖星, 殷丽琼, 等. 水杨酸和茉莉酸诱导茶树抗茶饼病研究初报 [J]. 陕西农业科学, 2022, 68(4):32−35.RAN L X, XIAO X, YIN L Q, et al. Effect of salicylic acid and jasmonic acid on inducement of tea plants against Exobasidium vexans massee [J]. Shaanxi Journal of Agricultural Sciences, 2022, 68(4): 32−35. (in Chinese) [25] LIU S Y, ZHANG Q Q, GUAN C F, et al. Transcription factor WRKY14 mediates resistance of tea plants (Camellia sinensis (L. ) O. Kuntze) to blister blight [J]. Physiological and Molecular Plant Pathology, 2021, 115: 101667. doi: 10.1016/j.pmpp.2021.101667 [26] CHEN S L, ZHANG L P, CAI X M, et al. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants [J]. Horticulture Research, 2020, 7(1): 52. doi: 10.1038/s41438-020-0275-7 [27] FICK A, SWART V, BOMBARELY A, et al. Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection [J]. Molecular Plant Pathology, 2024, 25(4): e13453. doi: 10.1111/mpp.13453 [28] AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens [J]. Trends in Plant Science, 2012, 17(2): 73−90. doi: 10.1016/j.tplants.2011.11.002 [29] XU D D, DENG Y Z, XI P G, et al. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism [J]. Food Chemistry, 2019, 286: 226−233. doi: 10.1016/j.foodchem.2019.02.015 [30] ZHANG P, ZHU Y Q, ZHOU S J. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L. ) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection [J]. BMC Plant Biology, 2021, 21(1): 24. doi: 10.1186/s12870-020-02797-3 [31] 贺军花, 马利菁, 周会玲. 根皮苷对苹果采后灰霉病的影响 [J]. 食品科学, 2018, 39(15):190−196.HE J H, MA L J, ZHOU H L. Effect of phlorizin treatment on postharvest gray mold of apples [J]. Food Science, 2018, 39(15): 190−196. (in Chinese) [32] HAN S, XU X, YUAN H, et al. Integrated transcriptome and metabolome analysis reveals the molecular mechanism of rust resistance in resistant (youkang) and susceptive (Tengjiao) Zanthoxylum armatum cultivars [J]. International Journal of Molecular Sciences, 2023, 24(19): 14761. doi: 10.3390/ijms241914761 [33] 刘亚军, 王培强, 蒋晓岚, 等. 茶树单体和聚合态儿茶素生物合成的研究进展 [J]. 茶叶科学, 2022, 42(1):1−17.LIU Y J, WANG P Q, JIANG X L, et al. Research progress on the biosynthesis of monomeric and polymeric catechins in Camellia sinensis [J]. Journal of Tea Science, 2022, 42(1): 1−17. (in Chinese) [34] 张琦琦. 茶饼病对茶树叶片形态、生理指标和品质成分的影响[D]. 杨凌: 西北农林科技大学, 2022.ZHANG Q Q. Effects of tea blister blight on leaf morphology, physiological indices and quality components of tea plant [D]. Yangling: Northwest A & F University, 2022. (in Chinese)