Effect of arbuscular mycorrhizal fungi on the growth and secondary metabolism of Taxus chinensis (seedling stage )
-
摘要:
目的 研究丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对南方红豆杉苗期生长及次生代谢的影响,揭示南方红豆杉与AMF的共生关系,为南方红豆杉的种植和利用提供科学依据。 方法 以南方红豆杉幼苗(Taxus wallichiana var. Mairei)为材料,盆栽试验条件下,在其根部接种AMF根内根孢囊霉菌(Rhizophagus intraradices)和摩西斗管囊霉菌(Funneliformis mosseae)以及两菌种的混合菌剂,本试验接种与种植同步进行。研究AMF对南方红豆杉苗期的苗高、主根长、地径等植物生长指标、土壤理化性质以及次生代谢物紫杉醇含量的影响。 结果 (1)接种AMF能显著促进南方红豆杉苗木株高、地径、根长和一级枝数的增长,其中接种R. intraradices和F. mosseae对株高和根长的增长达到显著水平,接种R. intraradices对地径的增长效果最显著,接种F. mosseae对一级枝数的增加效果最好;(2)AMF的生长指标与土壤速效磷含量、土壤碱解氮和土壤速效钾含量等土壤理化性质呈显著相关性,其中侵染率与速效磷呈现显著负相关性(p<0.05),而其他指标例如碱解氮、速效钾等于生长指标均呈现显著相关性(p<0.05);(3)接种AMF均能显著提高紫杉醇的含量,其中接种R. intraradices 效果最好。 结论 通过比较不同AMF对南方红豆杉苗期生长和次生代谢的影响,发现根内根孢囊霉菌与南方红豆杉的共生模式更能促进其生长和次生代谢产物的积累。 Abstract:Objective To investigate the impacts of AM fungi on the growth and secondary metabolism of Taxus chinensis seedlings, to discover the symbiotic relationship between Taxus chinensis and AM fungi, and to offer a scientific foundation for Taxus chinensis planting and use. Method Taxus chinensis seedlings were used as materials, and the roots were inoculated with the arbuscular mycorrhizal fungi (AMF) Rhizophagus intraradices and Funneliformis mosseae during the potting test, as well as a mixture of the two strains, and the inoculation was timed to coincide with planting in this experiment. The effects of AMF on plant growth markers as seedling height, primary root length, ground diameter, soil physicochemical qualities, and secondary metabolism paclitaxel content were investigated in Taxus chinensis seedlings. Result The results showed that: (1) AMF inoculation could significantly promote the growth of plant height, ground diameter, root length, and number of primary branches of Taxus chinensis seedlings, among which the inoculation of R. intraradices and F. mosseae reached a significant level of growth of plant height and root length, and the inoculation of R. intraradices had the most significant effect on the growth of ground diameter, and the inoculation of F. mosseae had the best influence on the increase of the number of first-order branches. (2) The growth indexes of AMF showed significant correlation with soil physicochemical properties such as soil quick-acting phosphorus content, soil alkaline dissolved nitrogen , and soil quick-acting potassium content. The infestation rate showed a significant negative correlation with the quick-acting phosphorus (p<0.05), and other indexes such as alkaline dissolved nitrogen , quick-acting potassium , and growth indexes all showed a significant correlation.(3) Inoculation with AMF might greatly increase the content of paclitaxel, with R. intraradices having the strongest effect. Conclusion By analyzing the impacts of several AM fungi on Taxus chinensis growth and secondary metabolism during the seedling stage, it was discovered that the symbiotic pattern of Rhizophagus intraradices and Taxus chinensis could better promote growth and accumulation of secondary metabolism products. -
Key words:
- Arbuscular mycorrhizal fungi /
- Taxuschinensis /
- secondarymetabolism /
- paclitaxel content /
- interactions
-
表 1 不同 AM 真菌的土壤理化性质(平均值+标准误)
Table 1. Soil pHysicochemical properties of different AM fungi Chinensis(mean+SE)
处理
Treatment酸碱度
PH含水量
Moisture
content/
(×100 %)速效钾
Rapidly available
potassium/
(μg·mL−1)碱解氮
Alkali hydrolyzale
nitrogen/
(mg·kg−1)速效磷
Rapidly available
phosphorus/
(mg·L−1)侵染率
Colonization
rate/
(×100%)CK 6.57±0.52b 0.41±0.036a 1.46±0.56c 1.58±0.76b 6.13±0.12a 0.02±0.001c GM 6.01±0.29d 0.41±0.053a 1.76±0.25b 2.85±1.16a 4.67±0.05b 0.18±0.058b GI 6.31±0.92c 0.42±0.019a 2.14±0.38a 3.11±3.16a 4.48±0.50b 0.28±0.03a MA 6.99±0.32a 0.41±0.034a 1.81±1.2b 1.93±1.91b 6.88±0.13a 0.17±0.09b 同一列数据中字母不同者表示差异显著(P < 0.05)。
Date with different letters are significantly different (P < 0.05) in the same column.表 2 土壤理化性质与生长指标相关性分析
Table 2. Correlation analysis between soil pHysicochemical properties and growth indicators
项目
Item速效钾
Rapidly
available
potassium碱解氮
Alkali
hydrolyzale
nitrogen速效磷
Rapidly
Available
phosphorus酸碱度
Pondus
hydrogenii侵染率
Colonization
rate根长
Root
length地径
Grounddiameter株高
Plant
height速效钾 Rapidly available potassium 1 碱解氮 Alkali hydrolyzale nitrogen 0.618* 1 速效磷 Rapidly Available phosphorus −0.493 −0.818** 1 酸碱度 Pondus hydrogenii −0.230 −0.559 0.814** 1 侵染率 Colonization rate 0.855** 0.789** −0.618* −0.336 1 根长 Root length 0.683* 0.812** −0.868** −0.795** 0.747** 1 地径 Ground diameter 0.709** 0.868** −0.883** −0.781** 0.821** 0.917** 1 株高 Plant height 0.534 0.782** −0.837** −0.795** 0.621* 0.845** 0.878** 1 注:*表示显著相关(P < 0.05),**表示极显著相关P < 0.01。
Note:* Indicate significant correlation(P < 0.05),**Indicating extremely significant correlation(P < 0.01). -
[1] 张淑彬, 王幼珊, 殷晓芳, 等. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响 [J]. 植物营养与肥料学报, 2017, 23(3):649−657. doi: 10.11674/zwyf.16406ZHANG S B, WANG Y S, YIN X F, et al. Development of arbuscular mycorrhizal(AM) fungi and their influences on the absorption of N and P of maize at different soil phosphorus application levels [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 649−657. (in Chinese) doi: 10.11674/zwyf.16406 [2] 索炎炎, 张翔, 司贤宗, 等. 丛枝菌根真菌和根瘤菌对连作花生养分吸收及土壤微生物特性的影响[J]. 中国土壤与肥料, 2023, No. 310(02): 106-112.SUO Y Y, ZHANG X, SI X Z , et al. Effects of mycorrhizal fungi and rhizobacteria on nutrient uptake and soil microbial properties of continuous peanut[J]. Soil and Fertilizer Sciences in China, 2023, No. 310(2): 106-112. (in Chinese) [3] 徐玲霞, 柳巧, 王景仪, 等. 南方红豆杉内生真菌多样性及内生真菌对紫杉醇和中间产物含量的影响 [J]. 植物资源与环境学报, 2022, 31(4):50−56. doi: 10.3969/j.issn.1674-7895.2022.04.06XU L X, LIU Q, WANG J Y, et al. Diversity of endophytic fungi in Taxus wallichiana var. mairei and effects of endophytic fungi on contents of taxol and intermediates [J]. Journal of Plant Resources and Environment, 2022, 31(4): 50−56. (in Chinese) doi: 10.3969/j.issn.1674-7895.2022.04.06 [4] 时光黎. 天目山地区南方红豆杉种子命运的研究[D]. 南京: 南京林业大学, 2010.SHI G L. Study on the seed fate of Taxus mairei in Tianmu Mountain area[D]. Nanjing: Nanjing Forestry University, 2010. (in Chinese) [5] LUN B S, SHAO L W, WANG Y, et al. Taxanes from Taxus wallichiana var. mairei cultivated in the southern area of the Yangtze River in China [J]. Natural Product Research, 2017, 31(20): 2341−2347. doi: 10.1080/14786419.2017.1305381 [6] 王海娟. 菌剂与肥料配施对露天矿排土场土壤养分含量及紫花苜蓿生长的影响[D]. 呼和浩特: 内蒙古大学, 2014WANG H J. Effects of combined application of microbial inoculum and fertilizer on soil nutrient content and alfalfa growth in open pit dump[D]. Hohhot: Inner Mongolia University, 2014. (in Chinese) [7] 马放, 苏蒙, 王立, 等. 丛枝菌根真菌对小麦生长的影响 [J]. 生态学报, 2014, 34(21):6107−6114.MA F, SU M, WANG L, et al. Effects of Arbuscular mycorrhizal fungi(AMF) on the growth of wheat [J]. Acta Ecologica Sinica, 2014, 34(21): 6107−6114. (in Chinese) [8] 耿云芬, 邱琼, 卯吉华, 等. 铁力木幼苗接种丛枝菌根菌剂的效应[J. 林业科技开发, 2015.29(5): 64-66. ]GENG Y F, QIU Q, MAO J H, et al. Effects of inoculation of Tilikum seedlings with mycorrhizal fungicides[J]. China Forestry Science and Technology, 2015.29(5): 64-66. (in Chinese) [9] 徐志荣, 赵英杰, 王婷, 等. 真菌诱导子对南方红豆杉细胞生长及紫杉醇合成的影响 [J]. 湖北农业科学, 2017, 56(17):3283−3286.XU Z R, ZHAO Y J, WANG T, et al. Effects of fungus elicitor on the cells growth and paclitaxel accumulation of Taxus chinensis var. mairer [J]. Hubei Agricultural Sciences, 2017, 56(17): 3283−3286. (in Chinese) [10] 陈易展, 刘蔚漪, 张玉薇, 等. 南方红豆杉濒危现状分析与保护对策 [J]. 林业勘察设计, 2018(3):66−69.CHEN Y Z, LIU W Y, ZHANG Y W, et al. The endangered status analysis and protection countermeasures of Taxus chinensis var. mairei [J]. Forestry Prospect and Design, 2018(3): 66−69. (in Chinese) [11] 付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响 [J]. 西北植物学报, 2016, 36(2):353−360.FU X F, ZHANG G P, ZHANG X W, et al. Effects of PSB and amf on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings [J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 353−360. (in Chinese) [12] PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Transactions of the British Mycological Society, 1970, 55(1): 158−IN18. doi: 10.1016/S0007-1536(70)80110-3 [13] 许凌峰, 李卓蔚, 郭冬琴, 等. 不同丛枝菌根真菌组合对滇重楼根系生理特性的影响 [J]. 华西药学杂志, 2023, 38(1):65−69.XU L F, LI Z (W /Y), GUO D Q, et al. Effects of different Arbuscular mycorrhiza fungi combinations on root physiological characteristics of Paris Polyphylla var. Yunnanensis [J]. West China Journal of Pharmaceutical Sciences, 2023, 38(1): 65−69. (in Chinese) [14] 曹明奡, 张菲, 黄光明, 等. 丛枝菌根真菌对低磷胁迫下核桃幼苗根系磷吸收的影响及机制 [J]. 林业科学, 2023, 59(12):117−124. doi: 10.11707/j.1001-7488.LYKX20220253CAO M A, ZHANG F, HUANG G M, et al. Effects of arbuscular mycorrhizal fungi on phosphorus uptake of walnut seedling roots under low phosphorus stress and the potential mechanisms [J]. Scientia Silvae Sinicae, 2023, 59(12): 117−124. (in Chinese) doi: 10.11707/j.1001-7488.LYKX20220253 [15] 陈美兰, 郭兰萍, 杨光, 等. 药用植物AM共生体系评价方法和关键技术的探讨 [J]. 中国中药杂志, 2011, 36(21):3051−3056.CHEN M L, GUO L P, YANG G, et al. Discussion on appraisal methods and key technologies of arbuscular mycorrhizal fungi and medicinal plant symbiosis system [J]. China Journal of Chinese Materia Medica, 2011, 36(21): 3051−3056. (in Chinese) [16] LIU R J , ChEN Y L . Mycorrhizology[M]. 地点: 出版社? 2007. [17] 陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展 [J]. 生态学报, 2023, 43(11):4390−4399.TAO D X, GAO Y Z. Advances on the strategies of soil phosphate solubilizing microorganisms to promote plant phosphorus uptake [J]. Acta Ecologica Sinica, 2023, 43(11): 4390−4399. (in Chinese) [18] QIU L, BI Y L, JIANG B, et al. Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in Northwestern China [J]. Journal of Arid Land, 2019, 11(1): 135−147. doi: 10.1007/s40333-018-0019-9 [19] 李佳齐, 王晓慧, 何鑫, 等. 丛枝菌根真菌提高植物耐酸碱能力及改善土壤pH应用潜力 [J]. 中国农学通报, 2023, 39(34):123−129. doi: 10.11924/j.issn.1000-6850.casb2023-0503LI J Q, WANG X H, HE X, et al. Improvement of plant acid and alkali resistance and soil pH application potential by arbuscular mycorrhizal fungi [J]. Chinese Agricultural Science Bulletin, 2023, 39(34): 123−129. (in Chinese) doi: 10.11924/j.issn.1000-6850.casb2023-0503 [20] 潘龙. 丛植菌根真菌与解磷细菌互作促进土壤有机磷矿化的研究[D]. ?: 河南科技学院. 2022PAN L. Study on the interactions between clumping mycorrhizal fungi and phosphorus-solubilizing bacteria to promote soil organic phosphorus mineralization[D]. Xin Xiang, Henan Institute of Science and Technology. 2022. (in Chinese) [21] 赵祥, 曾广萍, 杨盼, 等. AM真菌对红花生长及其有效成分的影响 [J]. 干旱区研究, 2019, 36(4):935−942.ZHAO X, ZENG G P, YANG P, et al. Effects of arbuscular mycorrhizal fungi on growth and active constituents of Carthamus tinctorius [J]. Arid Zone Research, 2019, 36(4): 935−942. (in Chinese) [22] 彭凤珍, 杜亚填, 周春长, 等. 南方红豆杉菌根紫杉醇含量及其菌根菌组分离纯化和种属鉴定 [J]. 天然产物研究与开发, 2022, 34(5):800−809.PENG F Z, DU Y T, ZHOU C C, et al. Paclitaxel content in mycorrhizal of Taxus chinensis var. mairei and isolation purification and species identification of its fungal [J]. Natural Product Research and Development, 2022, 34(5): 800−809. (in Chinese)