• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

枯草芽孢杆菌B2-GFP菌株对甜椒幼苗生长和生理特性的影响

赵莉 尚烨 闫庚洋 刘菊 张菊平

赵莉,尚烨,闫庚洋,等. 枯草芽孢杆菌B2-GFP菌株对甜椒幼苗生长和生理特性的影响 [J]. 福建农业学报,2024,39(4):1−8
引用本文: 赵莉,尚烨,闫庚洋,等. 枯草芽孢杆菌B2-GFP菌株对甜椒幼苗生长和生理特性的影响 [J]. 福建农业学报,2024,39(4):1−8
ZHAO L, SHANG Y, YAN G Y, et al. Application of Bacillus subtilis B2-GFP to Promote Growth of Sweet Pepper Seedlings [J]. Fujian Journal of Agricultural Sciences,2024,39(4):1−8
Citation: ZHAO L, SHANG Y, YAN G Y, et al. Application of Bacillus subtilis B2-GFP to Promote Growth of Sweet Pepper Seedlings [J]. Fujian Journal of Agricultural Sciences,2024,39(4):1−8

枯草芽孢杆菌B2-GFP菌株对甜椒幼苗生长和生理特性的影响

基金项目: 河南省自然科学基金项目(242300421318)中国烟草总公司重大科技项目[110202101051(LS-11)];
中国烟草总公司河南省公司重点科技项目(2023410000240022)
详细信息
    作者简介:

    赵莉(1996 —),女,硕士研究生,主要从事蔬菜栽培生理研究,E-mail:653597172@qq.com

    通讯作者:

    张菊平(1968 —),女,博士,教授,主要从事蔬菜栽培与遗传育种研究,E-mail:jupingzhang@163.com

  • 中图分类号: S641.3

Application of Bacillus subtilis B2-GFP to Promote Growth of Sweet Pepper Seedlings

  • 摘要:   目的  筛选能促进甜椒幼苗生长的枯草芽孢杆菌B2-GFP菌株发酵液适宜浓度,为研发菌肥作用于蔬菜提供依据。  方法  以甜椒硕源808为材料,设置枯草芽孢杆菌B2-GFP菌株发酵液T1(1×105 CFU·mL−1)、T2(1×106 CFU·mL−1)、T3(1×107 CFU·mL−1)、T4(1×108 CFU·mL−1)4个浓度梯度处理,每隔7 d向植株浇灌菌株发酵液,连续浇灌3次,每次每株浇灌5 mL,21 d时测定甜椒幼苗生长指标、生物量积累、叶片光合特性、叶绿素荧光参数、根系抗氧化酶活性、根系形态建成及根系活力指标。  结果  与对照相比,不同浓度枯草芽孢杆菌B2-GFP菌株发酵液可提高甜椒株高、叶面积、叶绿素含量、植株生物量,以1×106 CFU·mL−1的增幅最大。同时,该浓度显著提高了叶片蒸腾速率(Tr)、气孔导度(Gs)、最大荧光(Fm)、PSⅡ实际光化学效率(ФPSⅡ)和光化学荧光猝灭系数(qP),降低了胞间CO2浓度(Ci)和叶绿素基础荧光(Fo);提高甜椒根系过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)活性及根系活力。  结论  在甜椒移栽后浇灌1×106 CFU·mL−1B2-GFP菌株发酵液可促进甜椒植株生长和根系形态建成,增强叶片光合能力,提高生物量积累、根系抗氧化酶活性和根系活力。
  • 图  1  枯草芽孢杆菌B2-GFP菌株发酵液对甜椒生物量的影响

    不同小写字母表示在0.05水平上差异显著。下图同。

    Figure  1.  Effect of B2-GFP culture broth on biomass of sweet pepper seedlings

    Data with different lowercase letters indicate significant differences at P<0.05. Same for below.

    图  2  枯草芽孢杆菌B2-GFP菌株发酵液对甜椒叶片光合特性的影响

    Figure  2.  Effect of B2-GFP culture broth on leaf photosynthetic characteristics of sweet pepper seedlings

    图  3  枯草芽孢杆菌B2-GFP菌株发酵液对甜椒根系抗氧化酶活性的影响

    Figure  3.  Effect of B2-GFP culture broth on root antioxidase activity of sweet pepper seedlings

    图  4  枯草芽孢杆菌B2-GFP菌株发酵液处理甜椒的根系扫描图

    Figure  4.  Scanning image of sweet pepper roots treated with B2-GFP culture broth

    图  5  枯草芽孢杆菌B2-GFP菌株发酵液对甜椒根系活力的影响

    Figure  5.  Effect of B2-GFP culture broth on activity of sweet pepper seedling roots

    表  1  枯草芽孢杆菌B2-GFP菌株发酵液对甜椒生长指标的影响

    Table  1.   Effect of B2-GFP culture broth application on growth of sweet pepper seedlings

    处理
    Treatment
    株高
    Plant height/cm
    茎粗
    Stem diameter/mm
    叶面积
    Leaf area/cm2
    叶绿素相对含量
    SPAD
    CK 11.90±0.10 d 4.05±0.20 ab 15.79±0.55 c 45.69±0.26 b
    T1 13.60±0.24 b 3.94±0.10 bc 18.07±1.09 b 47.42±0.79 ab
    T2 14.58±0.27 a 4.35±0.20 a 20.62±1.16 a 48.12±1.09 a
    T3 12.98±0.26 c 3.53±0.20 d 18.06±1.19 b 47.67±0.82 ab
    T4 12.10±0.17 d 3.60±0.25 cd 16.69±0.88 bc 47.58±1.54 ab
    同列不同小写字母表示在0.05水平的差异显著性。下表同。
    Data with different lowercase letters on same column indicate significant differences at P<0.05. Same for below.
    下载: 导出CSV

    表  2  枯草芽孢杆菌B2-GFP菌株发酵液对甜椒叶片叶绿素荧光参数的影响

    Table  2.   Effect of B2-GFP culture broth on leaf chlorophyll fluorescence parameters of sweet pepper seedlings

    处理
    Treatment
    叶绿素基础
    荧光Fo
    最大荧光
    Fm
    PSⅡ最大光能
    转换效率Fv/Fm
    PSⅡ实际光
    化学效率ΦPSⅡ
    光化学荧光
    猝灭系数qP
    非光化学
    猝灭效率NPQ
    CK 3995±140 a 19308±1632 b 0.825±0.004 abc 0.520±0.008 bc 0.67±0.006 b 1.54±0.13 a
    T1 3811±95 ab 20334±1103 ab 0.827±0.006 ab 0.533±0.012 ab 0.69±0.006 a 1.57±0.25 a
    T2 3576±197 b 22714±1638 a 0.831±0.001 a 0.539±0.006 a 0.70±0.012 a 1.81±0.16 a
    T3 3818±163 ab 22610±496 a 0.820±0.002 c 0.525±0.004 abc 0.65±0.015 c 1.94±0.08 a
    T4 3822±146 ab 21450±2207 ab 0.822±0.001 bc 0.511±0.014 c 0.64±0.010 c 1.69±0.40 a
    下载: 导出CSV

    表  3  枯草芽孢杆菌B2-GFP菌株发酵液对甜椒根系生长特性的影响

    Table  3.   Effect of B2-GFP culture broth on growth of sweet pepper seedling roots

    处理
    Treatment
    总根长
    Length/cm
    根总表面积
    Surf area/cm2
    根系总体积
    Root volume/cm3
    根尖数
    Tips
    分叉数
    Forks
    CK 435.24±41.12 b 55.16±5.93 b 0.642±0.092 bc 1737±175 b 2024±651 ab
    T1 498.32±57.70 ab 74.20±11.64 a 0.757±0.075 ab 1401±182 b 1802±405 ab
    T2 564.47±48.07 a 70.96±9.45 ab 0.881±0.110 a 2179±273 a 2607±768 a
    T3 449.93±85.85 b 53.31±7.19 b 0.631±0.134 bc 1553±112 b 2039±793 ab
    T4 388.92±35.59 b 53.39±9.88 b 0.543±0.097 c 1543±218 b 1405±426 b
    下载: 导出CSV
  • [1] KAUR R, KAUR K, SIDHU J S. Drying kinetics, chemical, and bioactive compounds of yellow sweet pepper as affected by processing conditions [J]. Journal of Food Processing and Preservation, 2022, 46(3): e16330.
    [2] 项朝阳, 肖小勇, 宋长鸣. 我国蔬菜产业当前的新特点、新问题及对策建议 [J]. 中国蔬菜, 2019, (1):1−6.

    XIANG Z Y, XIAO X Y, SONG C M. New characteristics, problems and countermeasures of vegetable industry in China [J]. China Vegetables, 2019(1): 1−6. (in Chinese)
    [3] 张静. 露地栽培彩色甜椒霜霉病综合防治技术 [J]. 农村新技术, 2023, (7):24−26. doi: 10.3969/j.issn.1002-3542.2023.07.012

    ZHANG J. Integrated control techniques of downy mildew of colored sweet pepper cultivated in open field [J]. New Rural Technology, 2023(7): 24−26. (in Chinese) doi: 10.3969/j.issn.1002-3542.2023.07.012
    [4] HU W Y, ZHANG Y X, HUANG B, et al. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies [J]. Chemosphere, 2017, 170: 183−195.
    [5] 付丽军, 张爱敏, 王向东, 等. 生物有机肥改良设施蔬菜土壤的研究进展 [J]. 中国土壤与肥料, 2017, (3):1−5. doi: 10.11838/sfsc.20170301

    FU L J, ZHANG A M, WANG X D, et al. Research progress of bio-organic fertilizer in improving greenhouse vegetable soil [J]. Soil and Fertilizer Sciences in China, 2017(3): 1−5. (in Chinese) doi: 10.11838/sfsc.20170301
    [6] BASU A, PRASAD P, DAS S N, et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects [J]. Sustainability, 2021, 13(3): 1140.
    [7] SARTI G C, GALELLI M E, ARREGHINI S, et al. Inoculation with biofilm of Bacillus subtilis promotes the growth of Lactuca sativa [J]. Sustainability, 2023, 15(21): 15406.
    [8] 杨兴有, 丁安明, 余祥文, 等. 烟草青枯病拮抗菌TBWR1的筛选鉴定及防病促生能力 [J]. 贵州农业科学, 2023, 51(10):58−65. doi: 10.3969/j.issn.1001-3601.2023.10.007

    YANG X Y, DING A M, YU X W, et al. Screening and identification of antagonistic strain TBWR1 against tobacco bacterial wilt and its disease prevention and growth promotion ability [J]. Guizhou Agricultural Sciences, 2023, 51(10): 58−65. (in Chinese) doi: 10.3969/j.issn.1001-3601.2023.10.007
    [9] 胡晨曦, 肖洒, 陈刚, 等. 枯草芽孢杆菌悬浮种衣剂对辣椒幼苗生长和生理特性的影响 [J]. 福建农业学报, 2021, 36(9):1017−1024. doi: 10.3969/j.issn.1008-0384.2021.9.fjnyxb202109004

    HU C X, XIAO S, CHEN G, et al. Effects of seed-coating Bacillus subtilis suspension on growth and physiology of chili pepper seedlings [J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1017−1024. (in Chinese) doi: 10.3969/j.issn.1008-0384.2021.9.fjnyxb202109004
    [10] 朱孔艳, 韩升才, 赵榕, 等. 向日葵籽粒拮抗核盘菌的内生菌分离筛选及鉴定 [J]. 作物杂志, 2023, (5):280−284.

    ZHU K Y, HAN S C, ZHAO R, et al. Isolation and identification of endophytes from sunflower seeds [J]. Crops, 2023(5): 280−284. (in Chinese)
    [11] 胡金雪, 樊建英, 相丛超, 等. 枯草芽孢杆菌对马铃薯的促生防病效应 [J]. 中国瓜菜, 2023, 36(10):121−128. doi: 10.3969/j.issn.1673-2871.2023.10.017

    HU J X, FAN J Y, XIANG C C, et al. Effects of Bacillus subtilis on growth promotion and disease control of potato [J]. China Cucurbits and Vegetables, 2023, 36(10): 121−128. (in Chinese) doi: 10.3969/j.issn.1673-2871.2023.10.017
    [12] SONG J, WANG D, HAN D F, et al. Characterization of the endophytic Bacillus subtilis KRS015 strain for its biocontrol efficacy against Verticillium dahliae [J]. Phytopathology, 2024, 114(1): 61−72.
    [13] RATHOD K, RANA S, DHANDHUKIA P, et al. Marine Bacillus subtilis as an effective biocontrol agent against Fusarium oxysporum f. sp. ciceris [J]. European Journal of Plant Pathology, 2023, 167(4): 759−770.
    [14] LI Y, ZHANG X, HE K, et al. Isolation and identification of Bacillus subtilis LY-1 and its antifungal and growth-promoting effects [J]. Plants, 2023, 12(24): 4158.
    [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [16] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22(5): 867−880.
    [17] 石连旋, 颜宏. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2013.
    [18] 刘新. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2015.
    [19] 彭喜之, 王涛辉, 马珺怡, 等. 微生物菌剂对土壤酸碱性的改良研究[J]. 天津科技, 2021, 48(1):42-45, 48.

    PENG X Z, WANG T H, MA J Y, et al. Improvement of soil acidity and alkalinity by microbial agents[J]. Tianjin Science & Technology, 2021, 48(1): 42-45, 48. (in Chinese)
    [20] 杨璐, 周蓓蓓, 侯亚玲, 等. 枯草芽孢杆菌菌剂对盐胁迫下冬小麦生长与土壤水氮分布的影响 [J]. 排灌机械工程学报, 2021, 39(5):517−524.

    YANG L, ZHOU B B, HOU Y L, et al. Effects of Bacillus subtilis on growth of winter wheat and distribution of soil water and nitrogen under salt stress [J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(5): 517−524. (in Chinese)
    [21] 邱萌萌, 吴玉斌, 陆洪省. 枯草芽孢杆菌对土壤群落结构的影响 [J]. 南方农业, 2021, 15(3):179−181.

    QIU M M, WU Y B, LU H S. Effect of Bacillus subtilis on soil community structure [J]. South China Agriculture, 2021, 15(3): 179−181. (in Chinese)
    [22] 张照然, 何朋杰, 李兴玉, 等. 枯草芽孢杆菌XF-1对十字花科作物体内异硫氰酸苯乙酯含量的影响 [J]. 江西农业学报, 2021, 33(1):23−27.

    ZHANG Z R, HE P J, LI X Y, et al. Effects of Bacillus subtilis XF-1 on phenethyl isothiocyanate concent in cruciferous crops [J]. Acta Agriculturae Jiangxi, 2021, 33(1): 23−27. (in Chinese)
    [23] 甘金佳, 孙成荣, 尹华田, 等. 枯草芽孢杆菌可湿性粉剂防治西红柿青枯病的田间药效试验 [J]. 南方园艺, 2020, 31(6):38−41. doi: 10.3969/j.issn.1674-5868.2020.06.008

    GAN J J, SUN C R, YIN H T, et al. Field efficacy test of Bacillus subtilis wettable powder against tomato bacterial wilt [J]. Southern Horticulture, 2020, 31(6): 38−41. (in Chinese) doi: 10.3969/j.issn.1674-5868.2020.06.008
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 录用日期:  2024-04-12
  • 修回日期:  2024-03-19
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回