Construction and Immunogenicity of S and N gene DNA Vaccine Vector for TGEV
-
摘要:
目的 构建猪传染性胃肠炎病毒(transmissible gastroenteritis virus, TGEV)S、N基因的DNA疫苗载体,并进行免疫原性试验,为猪传染性胃肠炎(transmissible gastroenteritis, TGE)的防控和DNA疫苗研究提供技术支撑和基础数据。 方法 扩增S基因的A位点、D位点和N基因,并将N基因(单独)、A位点和D位点(融合)克隆至pCDNA3.1-His-C构建重组疫苗载体,运用生物信息学软件预测分析S(A-D)蛋白、N蛋白二级结构组成、三级构像、亚细胞定位和优势B细胞抗原表位。将构建成功的重组载体分别转染至PK-15细胞进行间接免疫荧光试验,运用共聚焦检测重组蛋白的表达分布情况。将重组疫苗载体单独或联合免疫小鼠,运用间接ELISA检测IgG抗体水平。 结果 扩增出S基因的A位点、D位点和N基因,大小分别为498、606、 1149 bp。构建了A位点与D位点(融合)、N基因(单独)的DNA疫苗重组载体p-S(A-D)-His和p-N-His。生物信息学软件预测分析发现TGEV感染宿主细胞时N蛋白主要定位于细胞核和线粒体,S(A-D)蛋白主要定位于细胞质和线粒体,S(A-D)蛋白具有7个优势B细胞抗原表位,N蛋白具有8个优势B细胞抗原表位。重组载体p-S(A-D)-His和p-N-His均在PK-15细胞内成功表达,且S(A-D)-His和N-His在PK-15细胞核和细胞质中均有分布。重组疫苗载体免疫小鼠后,免疫效果由高至低依次为p-N-His>p-S(A-D)-His + p-N-His>p-S(A-D)-His。结论 本研究构建了TGEV的 S、N基因的DNA疫苗载体,免疫小鼠后均产生了较强的特异性抗体,为TGEV的核酸疫苗的研制提供了基础材料和依据。 Abstract:Objective In order to provide a technical support and basic data for the prevention and control of porcine transmissible gastroenteritis and the DNA vaccine research, the DNA vaccine vector of S and N genes of porcine transmissible gastroenteritis virus was constructed and its immunogenicity was tested. Method The A site and D site from the S gene and N gene was amplified from transmissible gastroenteritis virus and the N gene (alone) and the A and D sites (fusion) were cloned into the vaccine vector pCDNA3.1-His-C.Bioinformatics software was used to predict and analyze the secondary structure composition, tertiary configuration, subcellular localization and dominant B cell epitope of S(A-D) protein and N protein. The recombinant vectors were transfected into PK-15 cells, and expression distribution of the N gene (alone) and the A and D sites (fusion) was detected by indirect immunofluorescence and confocal detection. The recombinant vaccine vector was used to immunize mice alone or in combination, and the IgG antibody level was detected by indirect ELISA. Result The results showed that the A sites and D sites of S gene and N genes were amplified, and their sizes were 498bp, 606bp and 1149bp, respectively. the nucleic acid vaccine expression vectors p-S(A-D)-His and p-N-His for A and D sites (fusion) and N gene (alone) were constructed. Bioinformatics software predicted that when TGEV infected host cells, N protein was mainly located in the nucleus and mitochondria, S(A-D) protein was mainly located in the Conclusion In this paper, the DNA vaccine vectors of S and N genes of TGEV were constructed, and strong specific antibodies were generated after immunizing mice, which provided the basic material and basis for the development of nucleic acid vaccine of TGEV. -
Key words:
- TGEV /
- S gene、N gene /
- vector construction /
- immunogenicity
-
图 2 TGEV S基因A、D位点扩增结果
A:A位点扩增结果;M为DNA分子质量标准DL2000,1为扩增的A位点。B:D位点扩增结果;M为DNA分子质量标准DL2000,1为扩增的D位点。
Figure 2. Amplification results of S gene A and D site of TGEV
A: amplification results of A site; M was DNA Marker DL2000, 1 was the PCR-amplified A site. B: amplification results of D site; M was DNA Marker DL2000, 1 was the PCR-amplified D site.
图 4 S基因A位点重组载体p-S(A)-His的构建与鉴定
M:DNA分子质量标准DL2000;1、2:重组载体p-S(A)-His的单酶切;3、4:重组载体p-S(A)-His的双酶切。
Figure 4. Construction and identification of recombinant vectors p-S(A)-His at A site of S gene
M: DNA Marker DL2000; 1、2: single enzyme digestion of recombinant vector p-S(A)-His; 3、4: double digestion of recombinant vector p-S(A)-His.
图 5 重组载体p-S(A-D)-His的构建与鉴定
M:DNA分子质量标准DL2000; 1:重组载体p-S(A-D)-His的单酶切;2:重组载体p-S(A-D)-His的双酶切。
Figure 5. Construction and identification of recombinant vectors p-S(A-D)-His
M:DNA Marker DL2000; 1:Single enzyme digestion of recombinant vector p-S(A-D)-His; 2: Double digestion of recombinant vector p-S(A-D)-His.
表 1 A位点、D位点和N基因扩增引物序列
Table 1. The sequence of primers for amplification of A, D and N genes
基因
Gene引物
Primers序列(5′−3′)
Sequence(5′−3′)酶切位点
Restriction enzyme cutting siteS基因A位点
A-site in S geneP1 CGCGGATCCATGTTAGTTACCAAACAGCCGT Bam H I P2 CCGGAATTCTATTGTCCAGAAAACGTCAC Eco R I S基因D位点
D-site in S geneP3 CCGGAATTCAAGTTGAAAACACAGCTATT Eco R I P4 TGCTCTAGA ACTATTATCAGACGGTACACC Xba I N基因
N GeneP5 CGCGGATCCATGGCCAACCAGGGAC Bam H I P6 CCGGAATTCGTTCGTTACCTCATCAATT Eco R I 表中加下划线的碱基序列为酶切位点序列。
The base sequences underlined in the table are the sequences of cleavage sites.表 2 小鼠分组及免疫程序
Table 2. Immunological grouping and immunological program of mice
组别
Group疫苗载体种类
Vaccine carrier type免疫剂量
Immunizing dose/μg小鼠数量
Number of mice免疫时间
Immune frequency免疫位置
Immune site1 p-S(A-D)-His 240 6 第1、7、21天 脚底板 2 p-N-His 240 6 第1、7、21天 脚底板 3 p-S(A-D)-His + p-N-His 120+120 6 第1、7、21天 脚底板 4 pCDNA3.1-His-C 240 6 第1、7、21天 脚底板 表 3 S(A-D)蛋白和N蛋白亚细胞定位预测
Table 3. Prediction of subcellular localization of S(A-D) protein and N protein
组别
Group亚细胞定位
Subcellular localization可能性
Possibility/%S(A-D)蛋白
S(A-D) protein细胞质 Cytoplasm 34.8 线粒体 Mitochondria 17.4 细胞核 Cell nucleus 13.0 质膜 Plasmalemma 13.0 内质网 Endoplasmic reticulum 8.7 N蛋白
N protein细胞核 Cell nucleus 65.2 线粒体 Mitochondria 17.4 细胞质 Cytoplasm 13.0 溶酶体 Lysosome 4.3 表 4 S(A-D)蛋白和N蛋白的B细胞抗原表位预测
Table 4. B cell epitope prediction of S(A-D) and N protein
蛋白
Protein序号
Number起始位点
Start site结束位点
End site序列
Amino acid sequenceS(A-D)蛋白
S(A-D)protein1 33 43 FDQCNGAVLNN 2 55 62 TTNVQSGK 3 86 101 DSSFFSYGEIPFGVTD 4 195 211 NLNNGFYPVSSSEVGLV 5 233 250 LGMKRSGYGQPIASTLSN 6 281 295 ALWDNIFKRNCTDVL 7 306 318 CPFSFDKLNNYLT N蛋白
N protein1 4 32 QGQRVSWGDESTKTRGRSNSRGRKSNNIP 2 43 87 QGSKFWNLCPRDFVPNGIGNRDQQIGYWNRQTRYRMVKGQRKELP 3 101 108 ADAKFKDK 4 118 146 DGAMNKPTTLGSRGANNESKALKFDGKVP 5 150 189 QLEVNQSRDNSRSRSQSRSRSRNRSQSRGRQQSNNKKDDS 6 201 244 LGVDTEKQQQRSRSKSKERSNSKTRDTTPKNENKHTWKRTAGKG 7 251 271 GARSSSANFGDSDLVANGSSA 8 316 378 DPKTEQFLQQINAYARPSEVAKEQRKRKSRSKSAERSEQEVVPDALIENYTDVFDDTQVEIID 表 5 免疫小鼠抗TGEV血清IgG间接ELISA检测
Table 5. Indirect ELISA of anti-TGEV serum IgG in immunized mice
组别
Group疫苗载体种类
Vaccine carrier type免疫后不同时间抗TGEV血清IgG水平(OD450 nm)
Anti-tgev serum IgG levels at different time after immunization (OD450 nm)0天
0 days14天
14 days28天
28 days42天
42 days1 p-S(A-D)-His 0.133±0.011 a 0.218± 0.0075 b0.243± 0.0060 c0.401± 0.0100 c2 p-N-His 0.138±0.016 a 0.244± 0.0025 a0.344± 0.0070 a0.504± 0.0141 a3 p-S(A-D)-His + p-N-His 0.142± 0.0050 a0.225± 0.0021 b0.300± 0.0050 b0.471± 0.0075 b4 pCDNA3.1-His-C 0.134± 0.0089 a0.144± 0.0076 c0.141± 0.0069 c0.139± 0.0020 d同列数据肩标小写字母完全不同表示差异显著(P<0.05),含相同小写字母或无肩标表示差异不显著(P>0.05) 。
Different lowercase letters of shoulder labels in the same column indicated significant differences (P<0.05), while the same lowercase letters or no shoulder labels indicated no significant differences (P>0.05). -
[1] 张羽欣, 王树茂, 段宏勇, 等. 猪传染性胃肠炎病毒TaqMan实时荧光定量PCR检测方法的建立与应用 [J]. 中国兽医科学, 2024, 54(4):479−484.ZHANG Y X, WANG S M, DUAN H Y, et al. Establishment and application of TaqMan real-time quantitative PCR for detection of porcine transmissible gastroenteritis virus [J]. Chinese Veterinary Science, 2024, 54(4): 479−484. (in Chinese) [2] JI Z Y, DONG H, JIAO R X, et al. The TGEV membrane protein interacts with HSC70 to direct virus internalization through clathrin-mediated endocytosis [J]. Journal of Virology, 2023, 97(4): e0012823. doi: 10.1128/jvi.00128-23 [3] PU J N, CHEN D W, TIAN G, et al. All-trans retinoic acid attenuates transmissible gastroenteritis virus-induced inflammation in IPEC-J2 cells via suppressing the RLRs/NF-κB signaling pathway [J]. Frontiers in Immunology, 2022, 13: 734171. doi: 10.3389/fimmu.2022.734171 [4] NIU Z, XU S S, ZHANG Y L, et al. Transmissible gastroenteritis virus nucleocapsid protein interacts with Na+/H+ exchanger 3 to reduce Na+/H+ exchanger activity and promote piglet diarrhea [J]. Journal of Virology, 2022, 96(22): e0147322. doi: 10.1128/jvi.01473-22 [5] QIAN J T, LI M J, FENG Y F, et al. Genetic epidemiology of porcine transmissible gastroenteritis virus based on whole genome and S gene sequences[C]//2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB). May 25-27, 2021, Taiyuan, China. IEEE, 2021: 148-151. [6] 郝振业. 猪传染性胃肠炎病毒反向遗传操作系统的构建及附属蛋白3(ORF3)的定位及功能研究[D]. 哈尔滨: 东北农业大学, 2023.HAO Z Y. Construction of reverse genetic operating system of porcine transmissible gastroenteritis virus and study on location and function of accessory protein 3(ORF3)[D]. Harbin: Northeast Agricultural University, 2023. (in Chinese) [7] 王艳春. 猪传染性胃肠炎病毒S基因A位点杆状病毒表达及初步应用[D]. 扬州: 扬州大学, 2020.WANG Y C. Expression of baculovirus at site A of S gene of porcine infectious gastroenteritis virus and its preliminary application[D]. Yangzhou: Yangzhou University, 2020. (in Chinese) [8] 张海燕. PEDV和TGEV的S蛋白融合抗原表位核酸疫苗的研究[D]. 武汉: 华中农业大学, 2019.ZHANG H Y. Study on S protein fusion epitope nucleic acid vaccine of PEDV and TGEV[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese) [9] LI X L, LI P C, CAO L Y, et al. Porcine IL-12 plasmid as an adjuvant improves the cellular and humoral immune responses of DNA vaccine targeting transmissible gastroenteritis virus spike gene in a mouse model [J]. Journal of Veterinary Medical Science, 2019, 81(10): 1438−1444. doi: 10.1292/jvms.18-0682 [10] 师一鸣. TGEV单克隆抗体的制备及检测方法的建立[D]. 哈尔滨: 东北农业大学, 2019.SHI Y M. Preparation of TGEV monoclonal antibody and establishment of detection method[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese) [11] 李雅静, 宫强. 铜绿假单胞菌oprH基因DNA疫苗的构建与检测 [J]. 现代畜牧兽医, 2022(11):19−23. doi: 10.3969/j.issn.1672-9692.2022.11.lnxmsy202211006LI Y J, GONG Q. Construction and detection of Pseudomonas aeruginosa oprH gene DNA vaccine [J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(11): 19−23. (in Chinese) doi: 10.3969/j.issn.1672-9692.2022.11.lnxmsy202211006 [12] 杨鹏, 吴燕, 岳筠, 等. 绵羊肺炎支原体P113蛋白C末端基因真核表达载体的构建及其小鼠免疫应答 [J]. 中国兽医学报, 2022, 42(3):496−501,521.YANG P, WU Y, YUE J, et al. Construction of eukaryotic expression vector for C terminal gene of Mycoplasma ovipneumoniae P113 protein and its immune response in mice [J]. Chinese Journal of Veterinary Science, 2022, 42(3): 496−501,521. (in Chinese) [13] 姚思, 杨洁琼, 杨雨欣, 等. 结核分枝杆菌ESAT6-Fc DNA疫苗的免疫效应评价 [J]. 中国生物制品学杂志, 2023, 36(8):897−901.YAO S, YANG J Q, YANG Y X, et al. Evaluation of immune effect of ESAT6-Fc DNA vaccine against Mycobacterium tuberculosis [J]. Chinese Journal of Biologicals, 2023, 36(8): 897−901. (in Chinese) [14] 黄小波, 杨恒, 曹三杰, 等. 猪传染性胃肠炎病毒S-N融合双基因疫苗的构建及其免疫原性分析 [J]. 中国兽医科学, 2012, 42(8):848−853.HUANG X B, YANG H, CAO S J, et al. Construction and immunogenicity analysis of the S-N fusion gene vaccine against porcine transmissible gastroenteritis virus [J]. Chinese Veterinary Science, 2012, 42(8): 848−853. (in Chinese) [15] WANG G, LIANG R, LIU Z W, et al. The N-terminal domain of spike protein is not the enteric tropism determinant for transmissible gastroenteritis virus in piglets [J]. Viruses, 2019, 11(4): 313. doi: 10.3390/v11040313 [16] 韩郁茹, 石达, 张记宇, 等. 猪急性腹泻综合征冠状病毒RT-LAMP快速检测方法的建立与应用 [J]. 中国预防兽医学报, 2021, 43(1):35−39.HAN Y R, SHI D, ZHANG J Y, et al. Development and application of RT-LAMP method for rapid detection of SADS-CoV [J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(1): 35−39. (in Chinese) [17] 樊杰. 猪传染性胃肠炎病毒N蛋白纳米抗体的制备和基于纳米抗体竞争ELISA的建立[D]. 杨凌: 西北农林科技大学, 2021.FAN J. Preparation of nano-antibody against N protein of transmissible gastroenteritis virus and establishment of competitive ELISA based on nano-antibody[D]. Yangling: Northwest A & F University, 2021. (in Chinese) [18] ZHANG Y D, ZHANG X H, LIAO X D, et al. Construction of a bivalent DNA vaccine co-expressing S genes of transmissible gastroenteritis virus and porcine epidemic diarrhea virus delivered by attenuated Salmonella typhimurium [J]. Virus Genes, 2016, 52(3): 354−364. doi: 10.1007/s11262-016-1316-z [19] 何雷, 董玲娟, 张彦明, 等. 猪传染性胃肠炎病毒ORF7蛋白在ST细胞中定位及其对病毒复制影响的研究 [J]. 中国预防兽医学报, 2020, 42(6):543−548.HE L, DONG L J, ZHANG Y M, et al. The subcellular location of transmissible gastroenteritis virus protein ORF7 and its effect on viral replication [J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(6): 543−548. (in Chinese) [20] 何雷, 贾艳艳, 郁川, 等. 稳定表达猪传染性胃肠炎病毒N蛋白的ST细胞株的构建及其亚细胞定位 [J]. 中国预防兽医学报, 2016, 38(2):101−104. doi: 10.3969/j.issn.1008-0589.2016.02.04HE L, JIA Y Y, YU C, et al. Establishment of stably-expressed transmissible gastroenteritis virus N protein cell line and its subcellular location [J]. Chinese Journal of Preventive Veterinary Medicine, 2016, 38(2): 101−104. (in Chinese) doi: 10.3969/j.issn.1008-0589.2016.02.04 [21] 韩涛涛, 黎露, 唐青海, 等. 不同佐剂对猪传染性胃肠炎病毒S蛋白和猪流行性腹泻病毒S蛋白免疫原性的影响 [J]. 中国农学通报, 2020, 36(30):143−150. doi: 10.11924/j.issn.1000-6850.casb20191000740HAN T T, LI L, TANG Q H, et al. Different adjuvants: Effects on S protein immunogenicity of porcine transmissible gastroenteritis virus and porcine epidemic diarrhea virus [J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 143−150. (in Chinese) doi: 10.11924/j.issn.1000-6850.casb20191000740 [22] 伊立超. PEDV和TGEV受体结合区基因在昆虫杆状病毒系统的表达与免疫原性分析[D]. 延吉: 延边大学, 2022.YI L C. Expression and immunogenicity analysis of PEDV and TGEV receptor binding region genes in insect baculovirus system[D]. Yanji: Yanbian University, 2022. (in Chinese)