Study on matrix effects in the detection of 15 pesticide residues in 6 types of tea leaves
-
摘要:
目的 对气相色谱-串联质谱法测定6类茶叶中15种农药残留过程中产生的基质效应进行分析,并就日常检测中常见批量样品同时处理时可采用的替代基质进行探讨。 方法 茶叶样品经QuEChERS前处理,配制质量浓度在0.01~0.32 mg·L−1的溶剂标准曲线和基质标准曲线,经GC-MS/MS测定后计算基质效应。 结果 6类茶叶中15种农药检测过程中均产生增强基质效应,其中以增强强基质效应为主,基质效应区间范围1.35%~411.58%, 强、中、弱基质效应分别为73.33%、23.33%、3.33%。以红茶为替代基质测定15种农药时,主要以产生增强弱基质效应为主,整体区间范围为|0.62%|~|59.22%|,强中弱基质效应分别为1.33%、14.67%、84.00%;以混合茶叶为代表基质测定15种农药时,主要以产生抑制弱基质效应为主,整体区间范围为|0.09%|~|48.09%|,强中弱基质效应分别为0、13.33%、86.67%。 结论 茶叶样品基质复杂,在农残检测时使用基质标曲分析可降低基质效应,提高检测结果的准确度。使用混合茶叶样品作为替代基质配制基质标曲对茶叶农残进行定量分析时,可有效提高批量样品的分析效率。 Abstract:Objective Matrix effects in detecting 15 pesticide residues in six types of tea using gas chromatography-tandem mass spectrometry (GC-MS/MS) with a sample pretreatment of QuEChERS were analyzed for assay improvement. Methods Tea samples were pretreated with QuEChERS, and solvent and matrix standard curves for the mass concentrations of 0.01-0.32 mg·L−1 prepared. After a GC-MS/MS determination, the matrix effects were calculated. Results Matrix effects were enhanced in the determination that ranged from 1.35-411.58% with the strong, medium, and weak matrix effects of 73.33%, 23.33%, and 3.33%, respectively. When black tea was used as an alternative matrix, they ranged 0.62-59.22% with the strong, medium, and weak matrix effects at 1.33%, 14.67% and 84.00%, respectively. Whereas, when a mixed tea was applied as an alternative matrix, suppressed matrix effects resulted at 0.09-48.09% with the strong, medium, and weak matrix effects at 0, 13.33% and 86.67%. Conclusion The matrix effects in the pesticide residue detection on teas were complex. Application of a matrix standard curve reduced the matrix effects and improved the determination accuracy. By using mixed tea sample as an alternative matrix, the analysis efficiency was significantly enhanced. -
图 1 15种农药典型MRM色谱图
1. 敌敌畏;2.甲拌磷;3.五氯硝基苯;4.毒死蜱;5.马拉硫磷; 6.杀螟硫磷;7.甲基异柳磷; 8.水胺硫磷;9.腐霉利;10.杀扑磷; 11.联苯菊酯;12.甲氰菊酯;13.氯菊酯;14.溴氰菊酯;15.苯醚甲环唑。
Figure 1. Typical MRM chromatogram of 15 pesticide residues
1: dichlorvos; 2: phorate; 3: pentachloronitrobenzene; 4: chlorpyrifos; 5: malathion; 6: fenitrothion; 7: isofenphos-methy; 8: isocarbophos; 9: procymidone; 10: methidathion; 11: bifenthrin; 12: fenpropathrin; 13: permethrin; 14: deltamethrin; 15: difenoconazole.
表 1 15种农药名称、CAS号、色谱及质谱参数及定量限
Table 1. Chemical abstract service(CAS) number,GC-MS/MS parameters and limit of quantitation of 15 pesticide residues
序号
No.目标物
CompoundCAS号
CAS
number保留时间
Retention
time/min母离子
Precursor
ions(m/z)子离子
Product
ions(m/z)碰撞能量
Collision
energy/eV定量限
limit of quantitation/
(mg·kg−1)线性范围
Linear range/
(mg·kg−1)1 敌敌畏 Dichlorvos 62-73-7 6.81 109.0 79.0* 5 0.05 0.01~0.32 184.9 93.0 10 2 甲拌磷 Phorate 298-02-2 14.17 260.0 75.0* 5 0.01 0.01~0.32 230.9 128.9 25 3 五氯硝基苯 Pentachloronitrobenzene 82-68-8 15.32 295.0 237.0* 20 0.05 0.01~0.32 236.9 142.9 30 4 毒死蜱 Chlorpyrifos 2921-88-2 19.73 196.9 169.0* 15 0.05 0.01~0.32 198.9 171.0 15 5 马拉硫磷 Malathion 121-75-5 20.39 126.9 99.0* 5 0.05 0.01~0.32 172.9 99.0 15 6 杀螟硫磷 Fenitrothion 122-14-5 20.42 277.0 260.0* 5 0.05 0.01~0.32 277.0 109 20 7 甲基异柳磷 Isofenphos-methy 99675-03-3 21.44 199.0 121.0* 10 0.01 0.01~0.32 241.1 199.1 10 8 水胺硫磷 Isocarbophos 24353-61-5 21.74 135.9 108.0* 15 0.05 0.01~0.32 135.9 69.0 30 9 腐霉利 Procymidone 32809-16-8 23.10 96.0 67.1* 10 0.05 0.01~0.32 96.0 53.1 15 10 杀扑磷 Methidathion 950-37-8 23.11 144.9 85.0* 5 0.05 0.01~0.32 144.9 58.1 15 11 联苯菊酯 Bifenthrin 82657-04-3 27.35 181.2 165.2* 25 0.05 0.01~0.32 181.2 166.2 10 12 甲氰菊酯 Fenpropathrin 39515-41-8 28.34 207.9 181.0* 5 0.05 0.01~0.32 264.9 210.0 10 13 氯菊酯 Permethrin 51877-74-8 29.97 183.1 168.1* 10 0.05 0.01~0.32 183.1 153.0 15 14 溴氰菊酯 Deltamethrin 52918-63-5 33.13 252.9 93.0* 15 0.05 0.01~0.32 250.7 172.0 5 15 苯醚甲环唑 Difenoconazole 119446-68-3 33.25 322.8 264.8* 15 0.05 0.01~0.32 264.9 202.0 20 *定量离子对。
*: quantitative ion.表 2 6类茶叶中15种农药检测过程中产生的基质效应比较
Table 2. Matrix effects generated in detecting 15 pesticide residues in 6 types of tea
农药名称
Pesticide name基质效应 ME/% 绿茶
Green tea红茶
Black tea花茶
Scented tea黑茶
Dark tea白茶
White tea乌龙茶
Oolong绝对平均值
Absolute mean敌敌畏 Dichlorvos 1.35 31.59 8.81 27.06 35.20 38.15 23.69 甲拌磷 Phorate 6.13 43.31 23.75 72.32 56.16 60.19 43.64 五氯硝基苯 Pentachloronitrobenzene 47.35 23.34 45.46 39.95 48.73 60.08 44.15 毒死蜱 Chlorpyrifos 57.39 48.00 56.25 33.78 66.10 75.31 56.14 马拉硫磷 Malathion 101.11 148.50 123.92 154.93 161.75 153.84 140.68 杀螟硫磷 Fenitrothion 112.99 135.59 126.29 145.96 134.13 156.16 135.19 甲基异柳磷 Isofenphos-methy 66.55 44.65 60.34 61.92 64.59 70.01 61.34 水胺硫磷 Isocarbophos 108.10 140.04 115.11 152.66 158.59 178.60 142.18 腐霉利 Procymidone 57.67 34.95 53.11 73.39 55.28 61.84 56.04 杀扑磷 Methidathion 14.51 180.82 58.92 142.15 138.94 104.98 106.72 联苯菊酯 Bifenthrin 39.66 30.69 40.75 50.40 48.68 50.76 43.49 甲氰菊酯 Fenpropathrin 76.60 75.33 81.19 95.37 94.99 88.00 85.25 氯菊酯 Permethrin 85.72 79.55 83.41 110.82 103.12 107.78 95.07 溴氰菊酯 Deltamethrin 269.31 298.67 304.64 394.83 354.78 366.68 331.49 苯醚甲环唑 Difenoconazole 211.21 391.51 279.99 411.58 344.98 381.49 336.79 表 3 以红茶为代表基质时5类茶叶中15种农药检测过程中产生的基质效应比较
Table 3. Matrix effects generated in detecting 15 pesticides in 5 types of tea with black tea used as a representative matrix
农药名称
Pesticide name基质效应 ME/% 绿茶
Green tea花茶
Scented tea黑茶
Dark tea白茶
White tea乌龙茶
Oolong绝对平均值
Absolute mean敌敌畏 Dichlorvos −22.98 −17.31 −3.45 2.75 4.99 10.29 甲拌磷 Phorate −25.95 −13.65 20.24 8.96 11.78 16.12 五氯硝基苯 Pentachloronitrobenzene 19.47 17.93 13.46 20.58 29.79 20.25 毒死蜱 Chlorpyrifos 6.34 5.58 −9.61 12.23 18.45 10.44 马拉硫磷 Malathion −19.07 −9.89 2.59 5.33 2.15 7.81 杀螟硫磷 Fenitrothion −9.59 −3.95 4.40 −0.62 8.73 5.46 甲基异柳磷 Isofenphos-methy 15.14 10.84 11.93 13.78 17.53 13.85 水胺硫磷 Isocarbophos −13.30 −10.39 5.26 7.73 16.07 10.55 腐霉利 Procymidone 16.83 13.45 28.48 15.07 19.93 18.75 杀扑磷 Methidathion −59.22 −43.41 −13.77 −14.91 −27.01 31.66 联苯菊酯 Bifenthrin 6.87 7.70 15.09 13.76 15.36 11.75 甲氰菊酯 Fenpropathrin 0.73 3.34 11.43 11.22 7.23 6.79 氯菊酯 Permethrin 3.44 2.15 17.42 13.13 15.73 10.37 溴氰菊酯 Deltamethrin −7.37 1.50 24.12 14.07 17.06 12.82 苯醚甲环唑 Difenoconazole −36.68 −22.69 4.08 −9.47 −2.04 14.99 表 4 以混合茶为代表基质时6类茶叶中15种农药检测过程中产生的基质效应比较
Table 4. Matrix effects generated in detecting 15 pesticides in 6 types of tea with mixed tea used as a representative matrix
农药名称
Pesticide name基质效应 ME/% 绿茶
Green tea红茶
Black tea花茶
Scented tea黑茶
Dark tea白茶
White tea乌龙茶
Oolong绝对平均值
Absolute mean敌敌畏 Dichlorvos −26.54 −4.62 −21.14 −7.91 −2.00 0.13 10.39 甲拌磷 Phorate −31.54 −7.56 −20.18 11.15 0.73 3.33 12.41 五氯硝基苯 Pentachloronitrobenzene −4.26 −19.86 −5.49 −9.07 −3.37 4.01 7.68 毒死蜱 Chlorpyrifos −6.62 −12.19 −7.30 −20.63 −1.45 4.01 8.70 马拉硫磷 Malathion −18.27 0.98 −9.00 3.60 6.37 3.16 6.90 杀螟硫磷 Fenitrothion −13.33 −4.13 −7.92 0.09 −4.73 4.24 5.74 甲基异柳磷 Isofenphos-methy −1.50 −14.45 −5.17 −4.24 −2.66 0.54 4.76 水胺硫磷 Isocarbophos −28.59 −17.63 −26.18 −13.29 −11.26 −4.39 16.89 腐霉利 Procymidone −1.23 −15.46 −4.09 8.62 −2.73 1.39 5.59 杀扑磷 Methidathion −48.09 27.31 −27.95 9.78 8.33 −7.07 21.42 联苯菊酯 Bifenthrin −6.75 −12.74 −6.03 0.42 −0.73 0.66 4.55 甲氰菊酯 Fenpropathrin −5.92 −6.60 −3.48 4.08 3.88 0.15 4.02 氯菊酯 Permethrin −13.88 −16.75 −14.96 −2.25 −5.82 −3.65 9.55 溴氰菊酯 Deltamethrin −22.58 −16.43 −15.17 3.73 −4.66 −2.17 10.79 苯醚甲环唑 Difenoconazole −29.29 11.68 −13.66 16.24 1.11 9.40 13.56 表 5 添加水平为0.10 mg·kg−1时4种农药在两种定量方式下的平均回收率(n=6)
Table 5. Average recovery rates of 4 pesticides under two quantitative methods at an addition level of 0.10 mg·kg−1(n=6)
茶叶种类
Tea types标液类型
Standard liquid type马拉硫磷
Malathion水胺硫磷
Isocarbophos溴氰菊酯
Deltamethrin苯醚甲环唑
Difenoconazole平均回收率
Average
recovery
rate/%相对标准
偏差
RSD/%平均回收率
Average
recovery
rate/%相对标准
偏差
RSD/%平均回收率
Average
recovery
rate/%相对标准
偏差
RSD/%平均回收率
Average
recovery
rate/%相对标准
偏差
RSD/%绿茶
Green tea绿茶基质标
Green tea substrate114.99 3.18 114.84 2.14 112.75 2.16 109.71 2.14 混合茶基质标
Mixed tea substrate107.76 4.11 96.41 2.46 93.09 1.63 105.14 3.93 花茶
Scented tea花茶基质标
Scented tea substrate90.47 3.46 101.03 1.57 85.54 4.95 89.7 2.46 混合茶基质标
Mixed tea substrate91.9 2.51 94.55 1.83 90.55 3.10 89.77 2.68 红茶
Black tea红茶基质标
Black tea substrate76.57 3.10 104.14 4.71 87.78 3.33 79.19 4.31 混合茶基质标
Mixed tea substrate85.24 4.84 102.04 2.97 91.25 4.83 85.29 5.61 黑茶
Dark tea黑茶基质标
Dark tea substrate84.03 2.56 106.34 3.79 80.54 2.96 96.53 1.83 混合茶基质标
Mixed tea substrate94.83 2.85 101.44 2.11 87.11 2.49 99.48 3.11 白茶
White tea白茶基质标
White tea substrate78.88 3.62 98.74 3.82 107.18 5.10 85.81 4.34 混合茶基质标
Mixed tea substrate80.58 5.12 104.62 4.15 105.03 2.61 88.65 2.77 乌龙茶
Oolong乌龙茶基质标
Oolong substrate86.46 3.94 107.9 3.21 80.18 2.27 75.81 3.27 混合茶基质标
Mixed tea substrate88.6 3.81 108.47 4.19 83.23 3.15 86.41 2.68 -
[1] 马佳丽, 王晨, 陈红平, 等. 注射器内分散固相萃取-超高效液相色谱-串联质谱法快速测定茶叶中24种农药残留 [J]. 茶叶科学, 2021, 41(5):717−730. doi: 10.3969/j.issn.1000-369X.2021.05.011MA J L, WANG C, CHEN H P, et al. Rapid determination of 24 pesticide residues in tea by in-syringe dispersive solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Tea Science, 2021, 41(5): 717−730. (in Chinese) doi: 10.3969/j.issn.1000-369X.2021.05.011 [2] 刘佳, 赵昌燕, 蔡滔, 等. 贵州省不同产区茶叶中7种农药的基质效应评价 [J]. 现代农药, 2023, 22(2):66−69,75.LIU J, ZHAO C Y, CAI T, et al. Matrix effect analysis of seven pesticide residues in tea from Guizhou Province [J]. Modern Agrochemicals, 2023, 22(2): 66−69,75. (in Chinese) [3] 陈廷春, 林思思, 罗贵文, 等. 不同蔬菜品种中基质效应对5种杀虫剂农药残留检测影响的对比试验 [J]. 农业科技通讯, 2020, (9):159−162. doi: 10.3969/j.issn.1000-6400.2020.09.052CHEN T C, LIN S S, LUO G W, et al. Comparative experiment on the influence of matrix effect on the detection of pesticide residues of five pesticides in different vegetable varieties [J]. Bulletin of Agricultural Science and Technology, 2020(9): 159−162. (in Chinese) doi: 10.3969/j.issn.1000-6400.2020.09.052 [4] 许炳雯, 孙程鹏, 葛祥武, 等. 气相色谱-串联质谱法测定30种果蔬中61种农药的基质效应及其克服方式 [J]. 食品安全质量检测学报, 2021, 12(15):6068−6076.XU B W, SUN C P, GE X W, et al. Matrix effects and their countermeasures of 61 kinds of pesticides in 30 kinds of fruits and vegetables by gas chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2021, 12(15): 6068−6076. (in Chinese) [5] 朱作为, 张文中, 陈沙, 等. 气相色谱-三重四极杆串联质谱法测定大米、韭菜、茶叶3种基质中51种农药残留的研究 [J]. 食品安全质量检测学报, 2018, 9(6):1297−1307. doi: 10.3969/j.issn.2095-0381.2018.06.012ZHU Z W, ZHANG W Z, CHEN S, et al. Determination of 51 kinds of pesticide residues in 3 kinds of substrates(rice, garlic chives and tea) by gas chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2018, 9(6): 1297−1307. (in Chinese) doi: 10.3969/j.issn.2095-0381.2018.06.012 [6] 刘继才, 林芳, 王建山, 等. QuEChERS-超高效液相色谱-串联质谱法测定桑叶中64种农药残留 [J]. 食品安全质量检测学报, 2021, 12(3):1048−1056.LIU J C, LIN F, WANG J S, et al. Determination of 64 kinds of pesticide residues in mulberry leaves by QuEChERS combined with ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2021, 12(3): 1048−1056. (in Chinese) [7] 何冲, 孙亚南, 王彬, 等. 水果蔬菜中多种农药残留基质效应探讨 [J]. 食品工业, 2022, 43(12):104−106.HE C, SUN Y N, WANG B, et al. Research on matrix effects of mutiple pesticede residues in africultural products [J]. The Food Industry, 2022, 43(12): 104−106. (in Chinese) [8] 蔡振辉. QuEChERS结合GC-MS/MS检测食用菌中20种有机磷农药的基质效应 [J]. 亚热带农业研究, 2022, 18(2):136−141.CAI Z H. Matrix effect of 20 kinds of organophosphorus pesticides in edible fungi by GC-MS/MS combined with QuEChERS [J]. Subtropical Agriculture Research, 2022, 18(2): 136−141. (in Chinese) [9] 张圆圆, 刘磊, 李娜, 等. 农药残留检测中不同蔬菜的基质效应 [J]. 农药学学报, 2019, 21(3):327−337.ZHANG Y Y, LIU L, LI N, et al. Matrix effects in pesticide residue analysis in various vegetable samples [J]. Chinese Journal of Pesticide Science, 2019, 21(3): 327−337. (in Chinese) [10] 侯雪, 易盛国, 韩梅, 等. 串联质谱法检测洋葱中36种例行监测农药及其基质效应的探讨 [J]. 现代科学仪器, 2012, (4):115−118.HOU X, YI S G, HAN M, et al. Study on detection and matrix effects of 36 routine monitoring pesticides in onion by gas chromatography-tandem mass spectrometry [J]. Modern Scientific Instruments, 2012(4): 115−118. (in Chinese) [11] 靳雅楠, 魏昭, 贾红霞, 等. 农药残留检测中基质效应的研究 [J]. 食品安全导刊, 2022, (28):172−174. doi: 10.3969/j.issn.1674-0270.2022.28.spaqdk202228057JIN Y N, WEI Z, JIA H X, et al. Study of matrix effects in pesticide residue detection [J]. China Food Safety Magazine, 2022(28): 172−174. (in Chinese) doi: 10.3969/j.issn.1674-0270.2022.28.spaqdk202228057 [12] 梁宜品. 蔬菜农药残留检测基质效应消除方法 [J]. 现代农村科技, 2022, (8):92. doi: 10.3969/j.issn.1674-5329.2022.08.062LIANG Y P. Elimination method of matrix effect in detection of pesticide residues in vegetables [J]. Modern Agricultural Science and Technology, 2022(8): 92. (in Chinese) doi: 10.3969/j.issn.1674-5329.2022.08.062 [13] 鲍忠赞, 邓昭浦. 气相色谱法检测果蔬中30种有机磷类农药残留的基质效应 [J]. 湖北农业科学, 2019, 58(20):152−156.BAO Z Z, DENG Z P. Matrix effects on GC determination of 30 organophosphorus pesticides residues in fruits and vegetables [J]. Hubei Agricultural Sciences, 2019, 58(20): 152−156. (in Chinese) [14] 封利会, 王硕, 安阳, 等. 分散固相萃取-气相色谱串联质谱法测定花类代用茶中的48种农药残留 [J]. 食品科技, 2021, 46(5):265−271.FENG L H, WANG S, AN Y, et al. Determination of 48 pesticides in flower substitute tea by dispersive solid-phase extraction and GC-MS/MS [J]. Food Science and Technology, 2021, 46(5): 265−271. (in Chinese) [15] 黄松, 宋安华, 陈穗, 等. QuEChERS-气相色谱-串联质谱法测定油麦菜中农药多残留的基质效应 [J]. 食品安全质量检测学报, 2019, 10(12):3863−3868. doi: 10.3969/j.issn.2095-0381.2019.12.038HUANG S, SONG A H, CHEN S, et al. Determination of matrix effects of pesticide multi-residues in lettuces by QuEChERS-gas chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2019, 10(12): 3863−3868. (in Chinese) doi: 10.3969/j.issn.2095-0381.2019.12.038 [16] 许洋, 叶善蓉, 唐祥凯, 等. 分散固相萃取-气相色谱-串联质谱法同时测定稻谷中三种烯虫酯类保幼激素类似物残留 [J]. 中国测试, 2023, 49(1):57−62.XU Y, YE S R, TANG X K, et al. Simultaneous determination of three methoprene juvenile hormone analogues in paddy by dispersive solid-phase extraction combined with gas chromatography-mass spectrometry [J]. China Measurement & Test, 2023, 49(1): 57−62. (in Chinese) [17] 罗小娇, 魏新琦, 田翠, 等. 基于QuEChERS-气相色谱串联质谱法的43种农药残留基质效应研究 [J]. 现代农业科技, 2023, (7):85−87,90.LUO X J, WEI X Q, TIAN C, et al. Matrix effect of 43 pesticide residues based on QuEChERS-gas ChromatographyTandem mass spectrometry [J]. Modern Agricultural Science and Technology, 2023(7): 85−87,90. (in Chinese) [18] 易盛国, 侯雪, 韩梅, 等. 气相色谱-串联质谱法检测蔬菜农药残留基质效应与基质分类的研究 [J]. 西南农业学报, 2012, 25(2):537−543. doi: 10.3969/j.issn.1001-4829.2012.02.038YI S G, HOU X, HAN M, et al. Study on matrix effects and matrix classification of pesticide residues in vegetable by gas chromatography-tandem mass spectrometry [J]. Southwest China Journal of Agricultural Sciences, 2012, 25(2): 537−543. (in Chinese) doi: 10.3969/j.issn.1001-4829.2012.02.038 [19] 方海仙, 耿慧春, 梅文泉, 等. 气相色谱法测定农产品中农药残留的基质效应研究 [J]. 食品安全质量检测学报, 2018, 9(14):3770−3779.FANG H X, GENG H C, MEI W Q, et al. Study on matrix effect of determination of pesticide residues in agricultural products by gas chromatography [J]. Journal of Food Safety & Quality, 2018, 9(14): 3770−3779. (in Chinese) [20] 鲍忠赞. 气相色谱法探究果蔬中有机氯和拟除虫菊酯类农药残留的基质效应 [J]. 农药, 2018, 57(12):890−894.BAO Z Z. Matrix effects of organochlorine and pyrethroid pesticides in fruits and vegetables using gas chromatography [J]. Agrochemicals, 2018, 57(12): 890−894. (in Chinese)