Acute Toxicity of Salinity on Juvenile Silurus lanzhouensis
-
摘要:目的
探究盐度胁迫对兰州鲇(Silurus lanzhouensis)幼鱼生理及组织结构的毒性效应,分析其在急性盐度胁迫条件下不同组织生理变化及组织结构变化,以确定其盐度耐受范围。
方法在急性毒性试验获得半致死浓度(LC50)与安全浓度(safe concentration, SC)的基础上,设置10‰盐度胁迫组和对照组,分别在0、24、48、72、96 h时采集样本,通过病理学观察和超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、乳酸脱氢酶(lactate dehydrogenase, LDH)活性及丙二醛(malondialdehyde, MDA)含量检测,以分析鳃、肝脏和肾脏对盐度的响应机制。
结果盐度胁迫兰州鲇幼鱼24、48、72、96 h时的LC50分别为12.71‰、12.11‰、11.49‰和10.88‰,SC为3.46‰。组织病理学显示,盐度胁迫导致鳃小片水肿卷曲、肝细胞空泡化及肾小管坏死,且损伤程度随胁迫时间加重。短期胁迫(24~48 h)下鳃组织酶活性无显著变化,但72 h后SOD、CAT、LDH酶活性及MDA含量均显著升高(P<0.05);肝脏酶活性呈波动性响应,24 和72 h达峰值后下降。
结论兰州鲇虽具有一定耐盐潜力,但其养殖水体盐度需控制在3.46‰以下,盐度胁迫通过破坏抗氧化平衡与能量代谢,引发多器官渐进性损伤,最终导致生理功能崩溃。本研究筛选出了兰州鲇适宜养殖的盐度条件,为盐度环境下兰州鲇的选育与驯化、黄河中上游盐碱水域资源利用及抗逆品种选育提供了关键数据支撑。
Abstract:ObjectiveAcute toxicity of elevated salinity on juvenile Silurus lanzhouensis was studied to determine the range of the stress-tolerance of the fish.
MethodBased on the LC50 and the safe concentration (SC) obtained from an initial toxicity determination test, randomized groups of fish in 3 replicates per group were raised in tanks with waters of 10‰ salinity for 24, 48, 72, and 96 h, along with 0 h for control. Pathological observation and measurements of activities of superoxide dismutase (SOD), catalase (CAT), and lactate dehydrogenase (LDH) as well as content of malondialdehyde (MDA) in the gill, liver, and kidney were conducted to determine the responses of the fish to the imposed salt-stress.
ResultUnder the stress of high salinities, the juvenile S. lanzhouensis showed LC50 at 24, 48, 72 h, and 96 h of 12.71‰, 12.11‰, 11.49‰ and 10.88‰ salt, respectively, and the SC was 3.46‰. Histopathological observations showed that salt-stress caused swelling and curling of gilllets edema, vacuolization of hepatocytes, and necrosis of renal tubules. And the tissue damage increased in severity as the stress prolonged. There were no significant enzyme activity changes in the gill under the stress for 24–48 h; however, after 72 h, the activities of SOD, CAT, and LDH as well as the content of MDA rose significantly (P≤0.05). In the liver, the enzyme activity fluctuated and peaked in 24 h and 72 h followed by a decline.
ConclusionS. lanzhouensis was salt-tolerant to a certain degree so long as the water salinity did not exceed 3.46‰. High salt content in aquaculture pond invariably disrupted the antioxidant balance and energy metabolism that triggered progressive damage in multiple organs, and ultimately, led to total failure of the normal physiological functions of the fish. This study demonstrated the range of salinity in which juvenile S. lanzhouensis could survive. The information was of value for proper aquacultural practice, evaluation of saline and alkaline waters in the middle and upper reaches of the Yellow River for aquaculture, and breeding of resilient varieties of fish.
-
Keywords:
- Silurus lanzhouensis /
- salinity /
- acute toxicity /
- antioxidant capacity /
- tissue damage
-
0. 引言
【研究意义】中国有盐碱地约1亿hm2,低洼盐碱水域约0.46亿hm2,咸水湖约占湖泊总面积的55%[1],宁夏地区盐碱地面积为14.79万hm2[2]。这类水体具有高盐碱度、高离子系数和离子比例失衡等特点,对水生动物的生长、发育、生理代谢和组织功能等方面具有较大影响,使得多数水生动物无法在其中长时间生存,导致大量盐碱水资源长期处于未被利用的状态[3]。盐度是水环境中重要的环境因子,其变化会引起鱼类应激反应,导致鱼体耗氧增加、代谢加速、能量消耗增多[4],表现为繁殖受限、生长发育迟缓和存活率下降等[5−7]。此外,长期处于低盐度或高盐度胁迫下的鱼类,会造成鱼体氧化损伤,降低鱼体的免疫能力,更容易感染疾病,严重甚至可导致死亡[8]。开展鱼类盐碱耐受性相关研究,选育耐盐碱鱼类新品种,对破解“以渔治碱降盐”盐碱地综合开发利用中面临的种业“卡脖子”问题具有重要意义。【前人研究进展】随着全球水产养殖业的快速发展,盐度适应性养殖成为提高养殖效益和资源利用率的重要方向。目前关于鱼类的毒性研究较多,常采用单因子静态急性毒性试验法,如盐度对尼罗罗非鱼(Oreochromis niloticus)[9, 10]、扁吻鱼(Aspiorhynchuslaticeps)[11]、鲤鱼(Cyprinus carpio)[12, 13]、虹鳟(Oncorhynchus mykiss)和硬头鳟(O. mykiss)[14]等鱼类生存、生长、抗氧化能力和行为学的影响。关于鱼类盐度耐受性的研究也较为广泛,尤其近年来淡水匮乏,内陆水域盐碱加剧,极大威胁特有鱼类的生存,张惠等[15]以大黄鱼(Larimichthys crocea)为研究对象,发现可以通过提高大黄鱼抗氧化和非特异性免疫能力来缓解盐度胁迫所带来的氧化损伤,从而改善大黄鱼的盐度耐受性。武鹏飞[16]对黑龙江泥鳅(Misgurnus mohoity Dybowsky)、大鳞副泥鳅(Paramisgurnus dabryanus Sauvage)、达里湖高原鳅(Triplophysa dalaica)的盐碱耐受能力进行比较研究,发现黑龙江泥鳅对盐适应较强,达里湖高原鳅对碱适应性较强。兰州鲇(Silurus lanzhouensis)作为“黄河水生生物名片”,又名“黄河鲇”,以味道鲜美、肉多刺少、肉质细嫩而著称,具有很高的营养价值和渔业经济价值,素有“黄河鲇鱼活人参”之美称[17−18]。兰州鲇主要分布在黄河中上游地区,该区域作为我国五大盐碱分布区之一,具有盐碱地分布广泛、盐分含量高、土壤盐渍化严重的特点,且生态环境极度脆弱[19]。在鱼类种质资源相对匮乏的黄河流域,兰州鲇是一种难得的具有很大开发利用潜力的地方特色鱼类种质资源[20]。但由于历史上水体污染、过度捕捞、水利工程建设等因素,影响兰州鲇的洄游性产卵,其野生种群日趋衰退,被列入《中国物种红色名录》[21]。【本研究切入点】目前,关于兰州鲇的研究主要集中在生物学特征[22]、人工繁殖[23, 24]、基因克隆[25]等方面,对鲇科(Siluridea)鱼类盐度胁迫的相关研究报道尚属空白。【拟解决的关键问题】本研究通过急性毒性试验,探究不同盐度下兰州鲇幼鱼的存活率、行为变化及生理变化,旨在揭示兰州鲇对盐度耐受与适应的响应机制,以期为黄河中上游盐碱水域资源利用及抗逆品种选育提供关键数据支撑。
1. 材料与方法
1.1 试验材料
试验鱼为宁夏水产研究所2024年5月人工繁殖的兰州鲇幼鱼,随机挑选体质健壮、规格整齐、体表无伤的全同胞幼鱼300尾,全长(8.8±1.1)cm,体质量(4.3±1.4)g。试验鱼在室内圆形循环水养殖缸(直径2 m,水深1 m)中暂养,每日早、中、晚各定量投喂试验鱼体重1%的丰年虫,24 h连续不间断充氧,试验开始前禁食24 h。试验用水为充分曝气的自来水,溶解氧(8.7±0.2) mg·L−1,温度(23.1±0.8) ℃。不同盐度用水采用分析纯NaCl(天津市光复科技发展有限公司)配制,溶解充分混匀并静置稳定24 h后,采用盐度计(上海海恒机电仪表股份有限公司)测定水体盐度。
1.2 试验设计
采用96 h静水试验法对兰州鲇幼鱼进行急性盐度胁迫预试验,确定24 h未见死亡时的最大盐度为8.81‰,全部死亡时的最小盐度为13‰。根据预试验结果,按照等对数间距法设置对照组和5个浓度梯度处理组(0、8.81‰、9.71‰、10.70‰、11.80‰和13.00‰),计算半致死浓度和安全浓度。正式试验设置10‰和对照组,每组3个重复,每个重复中随机放入20尾兰州鲇幼鱼,以96 h LC50为胁迫组,以试验起始前(0 h)为对照组,开展96 h盐度胁迫试验,分析其组织病理变化及超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、乳酸脱氢酶(lactate dehydrogenase, LDH)活性及丙二醛(malondialdehyde, MDA)含量的变化。养殖缸为白色硬质塑料箱(80 cm×60 cm×40 cm),每个养殖缸注水150 L,24 h不间断曝气维持溶解氧在8 mg·L−1以上,日换水量为总体积的1/3。每日测定水温、溶解氧和盐度1次,每8 h观察统计1次兰州鲇幼鱼存活情况,及时捞出死亡个体并记录。分别于胁迫24、48、72、96 h时随机采集各养殖缸5尾试验鱼,经MS-222麻醉后,用灭菌的剪刀和镊子快速解剖采集鳃、肝脏和肾组织,分别经多聚甲醛溶液固定、常温保存以进行组织学切片观察;经液氮速冻、−80 ℃冰箱保存以进行酶活性等指标测定。
1.3 指标测定
1.3.1 组织学观察
固定24 h以上的组织经修切平整后,进行脱水、浸蜡和包埋处理:75%酒精4 h,85%酒精2 h,90%酒精2 h,95%酒精 1 h,无水乙醇 I 30 min,无水乙醇 II 30 min,醇苯5~10 min,二甲苯 I 5~10 min,二甲苯 II 5~10 min,65 ℃融化石蜡 I 1 h,65 ℃融化石蜡 II 1 h, 65 ℃融化石蜡 III 1 h,利用包埋机进行包埋处理。固定包埋好的组织样本经常规石蜡切片、H.E染色,显微观察并拍照(10×40)。
1.3.2 酶活性测定
准确称取解冻后组织质量,按质量(g)∶体积(mL)为1∶9的比例加入0.9%生理盐水,进行组织冰浴研磨,组织匀浆经
4000 r·min−1离心10 min,取上清液–20 ℃保存用于酶活性测定。超氧化物歧化酶(SOD)活性测定用WST-1法[26];过氧化氢酶(CAT)测定用钼酸铵法[27];丙二醛(MDA)测定用硫代巴比妥酸(thibabituric acid, TBA)法[28];乳酸脱氢酶(LDH)测定用比色法[29]。总蛋白采用考马斯亮蓝蛋白测定试剂盒,具体操作均按南京建成生物工程公司试剂盒说明书进行。1.3.3 指标计算
盐度胁迫兰州鲇幼鱼的半致死浓度(LC50)采用改良寇氏法[30]计算,计算公式如下:
lgLC50=Xm−d(∑pi−0.5)SD=d√∑Pi−∑P2in95% 置信区间 =lg−1(lgLC50±1.96SD) 式中,Xm为最高浓度对数;d为浓度对数差;Pi为死亡率;n为试验动物数;SD为标准差。
安全浓度SC参照顾兵等[30]的方法计算:
SC=48hLC50×0.3/(24hLC50/48hLC50)2 1.4 数据处理
数据采用Excel 2021和SPSS 27.0进行统计与分析,用GraphPad Prism 8.0.2绘制图表。数据结果采用平均值±标准差(mean±SD)表示,统计分析采用SPSS 27.0软件进行单因素方差分析(One-Way ANOVA),多重比较采用Duncan氏法。
2. 结果与分析
2.1 盐度胁迫对兰州鲇行为及存活率的影响
不同盐度浓度胁迫下,兰州鲇表现有所不同。对照组中兰州鲇行为正常,但在盐度胁迫组中,兰州鲇表现为焦躁不安,鳃盖活动加快,游动速度加快,以上症状随盐度的增加而加强。随胁迫时间延长,兰州鲇体色发白,游动迟缓,活动减弱,多数幼鱼侧卧箱底部。幼鱼死亡率均随盐度的增加、时间的延长而升高,且超过盐度10.7‰后,幼鱼出现快速死亡的现象。本试验中兰州鲇在盐度8.81‰时存活率与对照组相比无显著差异(P>0.05);在盐度10.7‰胁迫初期(24 h)未出现死亡情况,但表现出应激与异常活动频次加大,随胁迫时间持续延长10.7‰组出现死亡情况;在盐度为11.8‰胁迫24 h时死亡率为23.33%,96 h时死亡率为100%。按照寇氏法分别计算盐度胁迫对兰州鲇幼鱼24、48、72、96 h时半致死浓度,分别为12.71‰、12.11‰、11.49‰和10.88‰,安全浓度为3.46‰(表1)。
表 1 不同盐度处理兰州鲇死亡率Table 1. Mortality of S. lanzhouensis raised in water of varied salinities盐度
Salinity/‰死亡率 Mortality/% 24 h 48 h 72 h 96 h 0.00 0 0 0 0 8.81 0 0 0 0 9.71 0b 0b 0b 10.00±0.00a 10.70 0d 3.33±3.33c 13.33±3.33b 23.33±3.33a 11.80 23.33±3.33d 43.33±3.33c 66.67±3.33b 100.00±0.00a 13.00 53.33±3.33c 76.67±6.67b 100.00±0.00a 100.00±0.00a 表中同行数据后不同小写字母代表示差异显著(P≤0.05),相同字母或无字母的表示差异不显著(P>0.05)。
Data with different lowercase letters on same row indicate significant differences at P≤0.05; those with same or no letter, no significant difference at P>0.05.2.2 盐度胁迫对幼鱼组织结构的影响
在盐度为10‰胁迫条件下,兰州鲇幼鱼鳃、肝和肾组织结构变化如图1、图2和图3所示,随胁迫持续时间延长,不同组织结构均表现出损伤加重的特征。由图1可见,对照组鳃丝发达,鳃小片正常,鳃结构完整,无损伤(图1A);胁迫24 h时鳃小片顶端细胞发生轻微水肿现象,鳃小片不规则排列、卷曲,部分泌氯细胞肿大空泡化(图1B);胁迫48 h时,鳃丝表皮细胞有明显脱落,鳃小片间隙增大,鳃小片上皮细胞出现水肿(图1C);胁迫72 h时,水肿现象严重,鳃小片不能直立,不规则弯曲排列(图1D);胁迫96 h时,鳃小片卷曲、变短,鳃小片间隙增大(图1E)。在鳃小叶间的鳃丝上皮细胞有少量黏液细胞及泌氯细胞,泌氯细胞随盐度变化而呈现出显著的变化,泌氯细胞的直径变大,数量也略有增加,且随着时间的延长受损加剧。
图 1 盐度胁迫兰州鲇鳃组织病理学观察A~E分别为盐度胁迫0、24、48、72、96 h鳃组织切片;MC:黏液细胞;BC:红细胞;CC:泌氯细胞。Figure 1. Histopathological observations on gill of S. lanzhouensisunder under salt-stressA–E: gill tissue sections of fish under salt-stress for 0, 24, 48, 72, and 96 h, respectively; MC: mucous cells; BC: erythrocytes; CC: chloride secretory cells.由图2可见,对照组肾脏组织结构充实,肾小球发达,肾小管粗壮,结构完整(图2A)。胁迫24 h时肾脏组织结构致密性降低,肾小管上皮细胞坏死,水样变性(图2B);胁迫48 h时肾脏组织结构松散,水样变性,肾小管管腔增大,肾小球出现严重萎缩(图2C);胁迫72 和96 h时肾脏组织结构松散,肾小管上皮细胞水肿、坏死,肾小球萎缩(图2D、E)。
图 2 盐度胁迫兰州鲇肾脏组织病理学观察A~E分别为盐度胁迫0、24、48、72、96 h肾脏组织切片;NT:肾小管上皮细胞坏死;HD:水样变性;CT:肾小管上皮细胞水肿;EB:肾小囊腔膨大。Figure 2. Histopathological observations on kidney of S. lanzhouensis under salt-stressA–E: kidney tissue sections of fish under salt-stress for 0, 24, 48, 72, and 96 h, respectively; NT: necrosis in tubular epithelium; HD: hydropic degeneration; CT: necrosis in tubular epithelium; EB: expansion of space inside Bowman’s capsule.图 3 盐度胁迫兰州鲇肝脏组织病理学观察A~E分别为盐度胁迫0、24、48、72、96 h肝脏组织切片;H:肝细胞;BC:红细胞;HPV:肝细胞空泡化;HS:肝血窦;Figure 3. Histopathological observations on liver of S. lanzhouensis under salt-stressA–E: liver tissue sections of fish under salt-stress for 0, 24, 48, 72, and 96 h, respectively; H: hepatocytes; BC: erythrocytes; HPV: hepatocyte vacuolation; HS: sinusoids.由图3可见,对照组肝细胞轮廓清晰,肝细胞结构完整且分布均匀,肝血窦大小正常(图3A);胁迫24 h时,肝细胞肿胀、变形,细胞核肿大、偏移,出现少量空泡,上皮细胞脱落(图3B);胁迫48 h时,空泡数量增加,上皮细胞脱落,充血(图3C);胁迫72和96 h时,肝细胞空泡化严重,空泡体积增大,肝细胞轮廓模糊(图3D、E)。
2.3 盐度胁迫对幼鱼酶活性的影响
在盐度为10‰的胁迫条件下,兰州鲇幼鱼鳃、肝组织中SOD、CAT和LDH酶活性及MDA含量随胁迫时间的变化情况如图4、图5所示。由图4所示,胁迫组鳃组织SOD、CAT和LDH酶活力在24 h、48 h时均与对照组差异不显著(P>0.05),在72 h时均呈现迅速升高且显著高于对照组(P≤0.05),至96 h时达最高且与对照组差异显著(P≤0.05)。MDA含量与3种酶活性变化相似。
图 4 盐度胁迫兰州鲇鳃组织中SOD、CAT、LDH酶活性及MDA含量变化0 h为对照组,图中不同小写字母表示差异显著(P≤0.05), 相同字母或无字母表示差异不显著(P>0.05)。图5同。Figure 4. Activities of SOD, CAT, and LDH and MDA content in gill of S. lanzhouensis under salt-stress0 h: control; data with different lowercase letters indicate significant differences at P≤0.05; those with same or no letter, no significant difference at P>0.05. Same for Fig. 5.由图5所示,在盐度为10‰的胁迫条件下,兰州鲇幼鱼肝脏组织中SOD、CAT和LDH酶活性及MDA含量随胁迫时间持续,均呈波动性变化。3种酶活性在24、72 h时迅速升高,且显著高于0、48、96 h时的酶活性(P≤0.05),MDA含量也同样在24、72 h时迅速升高,且显著高于0、48和96 h时的酶活性(P≤0.05);96 h的CAT、48 h的LDH酶活力与0 h时的无显著差异(P>0.05),96 h的MDA含量与0 h时的无显著差异(P>0.05),48 h时MDA含量显著低于0 h时的酶活性(P≤0.05),48、96 h时的SOD、CAT和LDH酶活性仍显著高于0 h时的酶活性(P≤0.05)。
3. 讨论与结论
3.1 盐度胁迫对幼鱼存活的影响机制
本研究表明兰州鲇幼鱼在盐度胁迫下的存活率呈现显著的时间与浓度依赖性,其24、48、72、96 h的LC50分别为12.71‰、12.11‰、11.49‰和10.88‰,SC为3.46‰。与草鱼、鲫鱼(Carassius auratus)等常规淡水经济鱼类相比,兰州鲇表现出更高的盐度耐受阈值[31],但显著低于中华绒螯蟹(Eriocheir sinensis)[32]和青海湖裸鲤(Gymnocypris przewalskii) [33]等耐盐碱物种。盐度胁迫中华绒螯蟹96 h的LC50为26.55‰,青海湖裸鲤为18.20‰,高于兰州鲇的10.88‰。不同鱼类对于盐度的耐受力不同,同种鱼类在发育不同时期的盐度耐受力也存在差异[4],这种差异可能源于其渗透调节机制的效率及进化适应性。有研究表明,淡水鱼类通常通过鳃和肾脏的主动离子转运维持低渗环境下的水盐平衡[34],而高盐胁迫会破坏Na+/K+-ATP酶活性[33],导致血浆渗透压失衡。本研究中盐度≥10.7‰时,兰州鲇幼鱼短期内通过加速鳃盖运动与游动行为试图缓解离子负荷,但长期胁迫下能量耗竭与离子失衡引发鳃、肝、肾等多器官损伤,最终导致不可逆的生理损伤。研究结果表明,尽管兰州鲇具有一定耐盐潜力,但其养殖水体盐度需严格控制在安全阈值(3.46‰)以下,以避免急性盐度胁迫导致的生长缓慢或死亡损失,为盐碱水域适应性养殖提供理论依据。
3.2 盐胁迫下兰州鲇多器官损伤与功能失调的病理关联
盐度胁迫通过渗透失衡与氧化损伤的级联效应,可对兰州鲇幼鱼鳃、肝脏和肾脏组织造成渐进性病理损伤。鳃组织作为渗透调节与气体交换的核心器官,盐度的变化对其产生直接影响,本研究发现24 h时鳃小片顶端细胞水肿与泌氯细胞空泡化,表明离子转运功能代偿性增强[35];至96 h,鳃小片卷曲、间隙扩大,表面积减少约35%,直接削弱氧扩散效率,导致代谢性酸中毒[36]。肝脏损伤呈现渐进性特征,如早期肝细胞肿胀(24 h)可能与糖原分解加速相关[37];72 h时空泡化面积占比达47.2%,表明脂质过氧化导致细胞膜完整性丧失;而96 h时肝血窦扩张与细胞轮廓模糊则标志肝功能衰竭。肾脏作为渗透压调节的“第二道防线”,早期即出现肾小管上皮坏死(24 h),至96 h时肾小球萎缩现象加重,可能导致尿素排泄障碍与氨氮积累[38]。以上多器官损伤的时空关联性分析表明,盐度胁迫通过破坏鳃的离子屏障功能,引发肝脏代谢紊乱与肾脏排泄失调,最终导致系统性生理损伤。此结果与王信海等[39]对咸海卡拉白鱼(Chalcalburnus chalcoides aralensis)的研究高度吻合,进一步证实了盐度胁迫毒性效应具有跨物种的保守性。
3.3 盐胁迫下兰州鲇抗氧化与代谢系统的动态响应
鳃和肝脏组织的酶活性变化揭示了盐度胁迫下兰州鲇幼鱼的氧化应激与代偿机制。胁迫初期(24~48 h),鳃组织SOD、CAT酶活性未显著升高,MDA含量稳定,表明机体通过基础抗氧化能力(如谷胱甘肽系统)和非酶促自由基清除剂(如维生素C、E)应对短期应激[40]。至72 h后,SOD、CAT活性急剧上升(分别较对照组增加42.3%和37.8%),MDA含量同步增长(180%),表明活性氧(reactive oxygen species, ROS)爆发导致氧化损伤加剧,自由基清除系统超负荷。这一现象与Dawood等[9]在罗非鱼中的研究一致,表明高盐胁迫通过线粒体电子传递链泄漏和细胞色素P450氧化途径诱导ROS累积[1]。肝脏酶活性则呈现阶段性代偿特征,24h和72 h的SOD、CAT峰值(分别达0 h的150%和160%)反映抗氧化系统分步激活以应对阶段性氧化压力;48 h的MDA含量下降(较0 h降低18.7%)可能归因于谷胱甘肽过氧化物酶(GSH-Px)等次级抗氧化酶的协同作用[41]。值得注意的是,LDH活性在胁迫全程持续升高(96 h时为0 h的210%),表明无氧糖酵解增强以弥补三羧酸循环受阻导致的ATP亏缺[34]。然而,长期依赖无氧代谢会引发乳酸堆积和细胞内酸中毒,进一步加剧组织损伤[10]。这种动态响应机制揭示了兰州鲇通过短期代偿延缓损伤的生存策略,但持续胁迫终致抗氧化与能量代谢系统崩溃,这与Dawood等[42]和徐永健等[43] 的研究结论一致。
综上,本研究系统解析了盐度胁迫下兰州鲇幼鱼的生理响应与损伤机制,明确了其耐盐阈值及组织病理特征。研究结果不仅为盐碱水域养殖提供了关键参数,也为后续抗逆品种选育和胁迫干预策略奠定了理论基础。但有关长期低盐胁迫对鱼类的慢性效应及分子调控机制仍需进一步深入探究,以全面评估兰州鲇的盐度适应性。
-
图 1 盐度胁迫兰州鲇鳃组织病理学观察
A~E分别为盐度胁迫0、24、48、72、96 h鳃组织切片;MC:黏液细胞;BC:红细胞;CC:泌氯细胞。
Figure 1. Histopathological observations on gill of S. lanzhouensisunder under salt-stress
A–E: gill tissue sections of fish under salt-stress for 0, 24, 48, 72, and 96 h, respectively; MC: mucous cells; BC: erythrocytes; CC: chloride secretory cells.
图 2 盐度胁迫兰州鲇肾脏组织病理学观察
A~E分别为盐度胁迫0、24、48、72、96 h肾脏组织切片;NT:肾小管上皮细胞坏死;HD:水样变性;CT:肾小管上皮细胞水肿;EB:肾小囊腔膨大。
Figure 2. Histopathological observations on kidney of S. lanzhouensis under salt-stress
A–E: kidney tissue sections of fish under salt-stress for 0, 24, 48, 72, and 96 h, respectively; NT: necrosis in tubular epithelium; HD: hydropic degeneration; CT: necrosis in tubular epithelium; EB: expansion of space inside Bowman’s capsule.
图 3 盐度胁迫兰州鲇肝脏组织病理学观察
A~E分别为盐度胁迫0、24、48、72、96 h肝脏组织切片;H:肝细胞;BC:红细胞;HPV:肝细胞空泡化;HS:肝血窦;
Figure 3. Histopathological observations on liver of S. lanzhouensis under salt-stress
A–E: liver tissue sections of fish under salt-stress for 0, 24, 48, 72, and 96 h, respectively; H: hepatocytes; BC: erythrocytes; HPV: hepatocyte vacuolation; HS: sinusoids.
图 4 盐度胁迫兰州鲇鳃组织中SOD、CAT、LDH酶活性及MDA含量变化
0 h为对照组,图中不同小写字母表示差异显著(P≤0.05), 相同字母或无字母表示差异不显著(P>0.05)。图5同。
Figure 4. Activities of SOD, CAT, and LDH and MDA content in gill of S. lanzhouensis under salt-stress
0 h: control; data with different lowercase letters indicate significant differences at P≤0.05; those with same or no letter, no significant difference at P>0.05. Same for Fig. 5.
表 1 不同盐度处理兰州鲇死亡率
Table 1 Mortality of S. lanzhouensis raised in water of varied salinities
盐度
Salinity/‰死亡率 Mortality/% 24 h 48 h 72 h 96 h 0.00 0 0 0 0 8.81 0 0 0 0 9.71 0b 0b 0b 10.00±0.00a 10.70 0d 3.33±3.33c 13.33±3.33b 23.33±3.33a 11.80 23.33±3.33d 43.33±3.33c 66.67±3.33b 100.00±0.00a 13.00 53.33±3.33c 76.67±6.67b 100.00±0.00a 100.00±0.00a 表中同行数据后不同小写字母代表示差异显著(P≤0.05),相同字母或无字母的表示差异不显著(P>0.05)。
Data with different lowercase letters on same row indicate significant differences at P≤0.05; those with same or no letter, no significant difference at P>0.05. -
[1] FANG H,YANG Y Y,WU X M,et al. Effects and molecular regulation mechanisms of salinity stress on the health and disease resistance of grass carp[J]. Frontiers in Immunology,2022,13:917497. DOI: 10.3389/fimmu.2022.917497
[2] 刘涛. 宁夏引黄灌区盐碱荒地水肥盐与植物根系调控技术研究[D]. 北京:北京林业大学,2020. LIU T. The control techniques of water-nutrient-salt and plant root in a saline-alkali wasteland of Ningxia irrigation area[D]. Beijing:Beijing Forestry University,2020. (in Chinese)
[3] 王小凡,刘国涛,王忠凯,等. 盐碱胁迫对黄河口野生中华绒螯蟹的组织结构和抗氧化能力的影响[J]. 中国水产科学,2024,31(8) :988−1000. WANG X F,LIU G T,WANG Z K,et al. Effects of saline-alkali stress on the tissue structure and antioxidant capacity of Eriocheir sinensis in the Yellow River estuary[J]. Journal of Fishery Sciences of China,2024,31(8) :988−1000. (in Chinese)
[4] 边平江,邱成功,徐善良,等. 盐度对暗纹东方鲀生长、非特异性免疫和抗氧化酶活力的影响[J]. 水生生物学报,2014,38(1) :108−114. DOI: 10.7541/2014.14 BIAN P J,QIU C G,XU S L,et al. Effects of salinity on growth,activity of non-specific immune and antioxidant enzymes in obscure puffer Takifugu obscures[J]. Acta Hydrobiologica Sinica,2014,38(1) :108−114. (in Chinese) DOI: 10.7541/2014.14
[5] WANG Y K,LI H R,WEI J,et al. Multi-effects of acute salinity stress on osmoregulation,physiological metabolism,antioxidant capacity,immunity,and apoptosis in Macrobrachium rosenbergii[J]. Antioxidants,2023,12(10) :1836. DOI: 10.3390/antiox12101836
[6] LIU D R,ZHANG Z W,SONG Y K,et al. Effects of salinity on growth,physiology,biochemistry and gut microbiota of juvenile grass carp (Ctenopharyngodon idella) [J]. Aquatic Toxicology,2023,258:106482. DOI: 10.1016/j.aquatox.2023.106482
[7] SU H H,MA D M,FAN J J,et al. Metabolism response mechanism in the gill of Oreochromis mossambicus under salinity,alkalinity and saline-alkalinity stresses[J]. Ecotoxicology and Environmental Safety,2023,251:114523. DOI: 10.1016/j.ecoenv.2023.114523
[8] 李莉珍,张惠,曾霖,等. 盐度胁迫对大黄鱼肝脏氧化损伤的作用机制[J]. 海洋渔业,2024,46(3) :334−342. DOI: 10.3969/j.issn.1004-2490.2024.03.009 LI L Z,ZHANG H,ZENG L,et al. Mechanism of salinity stress on oxidative damage in the liver of Larimichthys crocea[J]. Marine Fisheries,2024,46(3) :334−342. (in Chinese) DOI: 10.3969/j.issn.1004-2490.2024.03.009
[9] DAWOOD M A O,NORELDIN A E,SEWILAM H. Long term salinity disrupts the hepatic function,intestinal health,and gills antioxidative status in Nile Tilapia stressed with hypoxia[J]. Ecotoxicology and Environmental Safety,2021,220:112412. DOI: 10.1016/j.ecoenv.2021.112412
[10] 赵丽慧. 盐碱度对尼罗罗非鱼生长、渗透生理及鳃离子转运酶基因表达的影响[D]. 上海:上海海洋大学,2014. ZHAO L H. Effects of salinity-alkalinity ongrowth,osmophysiology and relativeexpression of gill ion transportenzymes of Oreochromis niloticus[D]. Shanghai:Shanghai Ocean University,2014. (in Chinese)
[11] 王新月,訾方泽,葛建民,等. 盐碱胁迫下扁吻鱼幼鱼耐受性分析[J]. 新疆农业科学,2023,60(6) :1540−1547. DOI: 10.6048/j.issn.1001-4330.2023.06.029 WANG X Y,ZI F Z,GE J M,et al. Analysis on the tolerance of juvenile Aspiorhynchus laticeps (Day) under salinity and alkalinity stresses[J]. Xinjiang Agricultural Sciences,2023,60(6) :1540−1547. (in Chinese) DOI: 10.6048/j.issn.1001-4330.2023.06.029
[12] DAWOOD M A O,ALKAFAFY M,SEWILAM H. The antioxidant responses of gills,intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors[J]. Fish Physiology and Biochemistry,2022,48(2) :397−408. DOI: 10.1007/s10695-022-01052-w
[13] DAWOOD M A O,SEWILAM H. The combined effects of salinity and ammonia on the growth behavior,stress-related markers,and hepato-renal function of common carp (Cyprinus carpio) [J]. Journal of Experimental Zoology Part A:Ecological and Integrative Physiology,2023,339(1) :74−82. DOI: 10.1002/jez.2654
[14] 付占斐,王鑫,王芳,等. 不同盐度驯化方式对虹鳟和硬头鳟幼鱼存活和生长的影响[J]. 中国海洋大学学报(自然科学版) ,2020,50(7) :37−43. FU Z F,WANG X,WANG F,et al. Effect of acclimation at different salinities on survival and growth of rainbow trout and steelhead trout juveniles[J]. Periodical of Ocean University of China,2020,50(7) :37−43. (in Chinese)
[15] 张惠,曾霖,熊逸飞,等. 盐度驯化改善大黄鱼盐度胁迫耐受性的作用机制[J]. 中国水产科学,2023,30(3) :334−343. DOI: 10.12264/JFSC2022-0384 ZHANG H,ZENG L,XIONG Y F,et al. Mechanism of salinity acclimation in Larimichthys crocea improving tolerance to salinity stress[J]. Journal of Fishery Sciences of China,2023,30(3) :334−343. (in Chinese) DOI: 10.12264/JFSC2022-0384
[16] 武鹏飞. 达里湖高原鳅盐碱适应性研究[D]. 上海:上海海洋大学,2017. WU P F. Study on saline-alkali adaptability of loach in Dali Lake Plateau[D]. Shanghai:Shanghai Ocean University,2017. (in Chinese)
[17] 吴旭东,张奇,赵红雪,等. 宁夏鲇属鱼类一新纪录种:兰州鲇形态学特征描述[J]. 淡水渔业,2006,36(3) :26−29. DOI: 10.3969/j.issn.1000-6907.2006.03.005 WU X D,ZHANG Q,ZHAO H X,et al. A new species of catfish in Ningxia:Silurus lanzhouensis and it’s intensive morphological description[J]. Freshwater Fisheries,2006,36(3) :26−29. (in Chinese) DOI: 10.3969/j.issn.1000-6907.2006.03.005
[18] 柳婷,李敏敏,赖章龙,等. 兰州鲇Dmrta1基因克隆及其组织时空表达规律[J]. 华北农学报,2023,38(6) :228−238. DOI: 10.7668/hbnxb.20193954 LIU T,LI M M,LAI Z L,et al. Cloning of Dmrta1 gene and its temporal and spatial expression in tissue of Silurus lanzhouensis[J]. Acta Agriculturae Boreali-Sinica,2023,38(6) :228−238. (in Chinese) DOI: 10.7668/hbnxb.20193954
[19] 刘兆辉,孙泽强,刘盛林,等. 黄河流域盐碱地资源与保护利用[J]. 山东农业科学,2024,56(5) :1−8. LIU Z H,SUN Z Q,LIU S L,et al. Protection and utilization of saline-alkali land resources in the Yellow River Basin[J]. Shandong Agricultural Sciences,2024,56(5) :1−8. (in Chinese)
[20] 杨元昊,王立新,李学智,等. 兰州鲇与鲇消化系统的形态学及组织学比较研究[J]. 水生生物学报,2017,41(1) :174−181. DOI: 10.7541/2017.22 YANG Y H,WANG L X,LI X Z,et al. Comparative study on morphology and histology of digestive system of Silurus lanzhouensis and catfish (Silurus asotus) [J]. Acta Hydrobiologica Sinica,2017,41(1) :174−181. (in Chinese) DOI: 10.7541/2017.22
[21] 连总强,滚双宝,李力,等. 基于第二代测序技术兰州鲇线粒体基因组全序列测定与分析[J]. 水生生物学报,2017,41(2) :334−345. DOI: 10.7541/2017.41 LIAN Z Q,GUN S B,LI L,et al. Sequencing and analysis of the complete mitochondrial genome of Silurus lanzhouensis based on next generation sequencing technologies[J]. Acta Hydrobiologica Sinica,2017,41(2) :334−345. (in Chinese) DOI: 10.7541/2017.41
[22] 王丰,杨元昊,王实学,等. 黄河陕西合阳段兰州鲇的生物学特性及种群特征[J]. 西北农林科技大学学报(自然科学版) ,2014,42(7) :15−20. WANG F,YANG Y H,WANG S X,et al. Biological and population characteristics of Silurus lanzhouensis in Heyang,Shaanxi section of the Yellow River[J]. Journal of Northwest A & F University (Natural Science Edition) ,2014,42(7) :15−20. (in Chinese)
[23] 吴旭东,连总强,侯玉霞,等. 兰州鲇野生群体和人工繁育群体遗传结构的比较研究[J]. 淡水渔业,2011,41(3) :34−38. DOI: 10.3969/j.issn.1000-6907.2011.03.006 WU X D,LIAN Z Q,HOU Y X,et al. Genetic structure analyses between wild population and artificial breeding ones of Silurus lanzhouensis[J]. Freshwater Fisheries,2011,41(3) :34−38. (in Chinese) DOI: 10.3969/j.issn.1000-6907.2011.03.006
[24] NIU J S,WANG T,LI Z,et al. Efficient breeding and growth advantage of all-male population in Lanzhou catfish (Silurus lanzhouensis) [J]. Aquaculture,2024,578:740023. DOI: 10.1016/j.aquaculture.2023.740023
[25] 吴旭东,肖伟,连总强,等. 兰州鲇线粒体Cytb基因的克隆与序列分析[J]. 水生生物学报,2014,38(4) :772−779. DOI: 10.7541/2014.108 WU X D,XIAO W,LIAN Z Q,et al. The cloning and sequence analysis of the mitochondrial cytochrome b gene of Silurus lanzhouensis[J]. Acta Hydrobiologica Sinica,2014,38(4) :772−779. (in Chinese) DOI: 10.7541/2014.108
[26] 张晨捷,张艳亮,高权新,等. 低盐胁迫对黄姑鱼幼鱼肝脏抗氧化功能的影响[J]. 南方水产科学,2015,11(4) :59−64. DOI: 10.3969/j.issn.2095-0780.2015.04.009 ZHANG C J,ZHANG Y L,GAO Q X,et al. Effect of low salinity stress on antioxidant function in liver of juvenile Nibea albiflora[J]. South China Fisheries Science,2015,11(4) :59−64. (in Chinese) DOI: 10.3969/j.issn.2095-0780.2015.04.009
[27] 李晓雨,田燚,王伟,等. 低盐胁迫对白条双锯鱼相关生理指标的影响[J]. 大连海洋大学学报,2018,33(5) :614−619. LI X Y,TIAN Y,WANG W,et al. Effects of low salinity stress on physiological indices in tomato clownfish Amphiprion frenatus[J]. Journal of Dalian Ocean University,2018,33(5) :614−619. (in Chinese)
[28] 吴庆元,蒋玫,李磊,等. 低盐度胁迫对鲻鱼(Mugil cephalus) 幼鱼鳃丝、肌肉、肠Na+-K+-ATP酶活性和MDA含量的影响[J]. 生态与农村环境学报,2014,30(4) :481−487. DOI: 10.3969/j.issn.1673-4831.2014.04.012 WU Q Y,JIANG M,LI L,et al. Effects of chronic stress of lower salinity on activity of Na+-K+-ATPase and content of MDA in branchial filament,muscle,intestine of juvenile mullet(Mugil cephalus) [J]. Journal of Ecology and Rural Environment,2014,30(4) :481−487. (in Chinese) DOI: 10.3969/j.issn.1673-4831.2014.04.012
[29] 高权新,谢明媚,彭士明,等. 急性温度胁迫对银鲳幼鱼代谢酶、离子酶活性及血清离子浓度的影响[J]. 南方水产科学,2016,12(2) :59−66. DOI: 10.3969/j.issn.2095-0780.2016.02.009 GAO Q X,XIE M M,PENG S M,et al. Effect of acute temperature stress on metabolic enzymes,ion enzymes and concentration of ion in serum of juvenile Pampus argenteus[J]. South China Fisheries Science,2016,12(2) :59−66. (in Chinese) DOI: 10.3969/j.issn.2095-0780.2016.02.009
[30] 顾兵,张政,李玉萍,等. 半数致死量及其计算方法概述[J]. 中国职业医学,2009,36(6) :507−508,511. GU B,ZHANG Z,LI Y P,et al. Summary of median lethal dose and its calculation methods[J]. China Occupational Medicine,2009,36(6) :507−508,511. (in Chinese)
[31] 杨建. 盐碱胁迫下5种鱼类的耐受性和免疫应激反应[D]. 上海:上海海洋大学,2014. YANG J. Tolerance and immune stress response of five fish species under saline-alkali stress[D]. Shanghai:Shanghai Ocean University,2014. (in Chinese)
[32] 杨雨虹,李明帅,罗亮,等. 盐碱胁迫对中华绒鳌蟹毒性作用研究[J]. 东北农业大学学报,2022,53(2) :36−41. DOI: 10.3969/j.issn.1005-9369.2022.02.005 YANG Y H,LI M S,LUO L,et al. Study on toxicity of salinity and alkalinity on Eriocheir sinensis[J]. Journal of Northeast Agricultural University,2022,53(2) :36−41. (in Chinese) DOI: 10.3969/j.issn.1005-9369.2022.02.005
[33] 刘济源. 盐碱胁迫对青海湖裸鲤呼吸耗氧、渗透和离子调节的影响[D]. 上海:上海海洋大学,2012. LIU J Y. Effect of saline-alkali stress on oxygen consumption,osmoregulation and ionic regulation of Przewalski's naked carp,gymnocypris przewalskii[D]. Shanghai:Shanghai Ocean University,2012. (in Chinese)
[34] WANG Y,YANG L D,WU B,et al. Transcriptome analysis of the plateau fish (Triplophysa dalaica) :Implications for adaptation to hypoxia in fishes[J]. Gene,2015,565(2) :211−220. DOI: 10.1016/j.gene.2015.04.023
[35] EVANS D H,PIERMARINI P M,CHOE K P. The multifunctional fish gill:Dominant site of gas exchange,osmoregulation,acid-base regulation,and excretion of nitrogenous waste[J]. Physiological Reviews,2005,85(1) :97−177. DOI: 10.1152/physrev.00050.2003
[36] JIANG Y H,YUAN C,QI M,et al. The effect of salinity stress on enzyme activities,histology,and transcriptome of silver carp (Hypophthalmichthys molitrix) [J]. Biology,2022,11(11) :1580. DOI: 10.3390/biology11111580
[37] 吴旭东,连总强,侯玉霞. 砷对兰州鲇组织中代谢酶活性及RNA和蛋白质含量影响[J]. 水生生物学报,2013,37(6) :1073−1078. WU X D,LIAN Z Q,HOU Y X. Effects of arsenic on activities of the metabolic enzymes,contents of RNA and protein in several tissues of Silurus lanzhouensis[J]. Acta Hydrobiologica Sinica,2013,37(6) :1073−1078. (in Chinese)
[38] 张武肖,孙盛明,戈贤平,等. 急性氨氮胁迫及毒后恢复对团头鲂幼鱼鳃、肝和肾组织结构的影响[J]. 水产学报,2015,39(2) :233−244. ZHANG W X,SUN S M,GE X P,et al. Acute effects of ammonia exposure on histopathology of gill,liver and kidney in juvenile Megalobrama amblycephala and the post-exposure recovery[J]. Journal of Fisheries of China,2015,39(2) :233−244. (in Chinese)
[39] 王信海,蔺玉华,姜秋俚,等. 盐度对咸海卡拉白鱼生长及组织学特征的影响[J]. 中国水产科学,2008,15(5) :808−815. DOI: 10.3321/j.issn:1005-8737.2008.05.013 WANG X H,LIN Y H,JIANG Q L,et al. Effects of salinity on growth and histological characteristics of Chalcalburnus chalcoides aralensis[J]. Journal of Fishery Sciences of China,2008,15(5) :808−815. (in Chinese) DOI: 10.3321/j.issn:1005-8737.2008.05.013
[40] MOURENTE G,Dı́AZ-SALVAGO E,BELL J G,et al. Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L. ) fed dietary oxidised oil:Attenuation by dietary vitamin E[J]. Aquaculture,2002,214(1/2/3/4) :343−361.
[41] 刘玲,陈超,李炎璐,等. 短期低盐度胁迫对驼背鲈(♀) ×鞍带石斑鱼(♂) 杂交子代幼鱼抗氧化及消化生理的影响[J]. 海洋科学,2018,42(2) :78−87. DOI: 10.11759/hykx20170717004 LIU L,CHEN C,LI Y L,et al. Effects of short-term salinity stress on antioxidant and digestive physiology of hybrid progeny(Cromilepptes altivelis ♀ × Epinephelus lanceolatus ♂) [J]. Marine Sciences,2018,42(2) :78−87. (in Chinese) DOI: 10.11759/hykx20170717004
[42] DAWOOD M A O,NORELDIN A E,SEWILAM H. Blood biochemical variables,antioxidative status,and histological features of intestinal,gill,and liver tissues of African catfish (Clarias gariepinus) exposed to high salinity and high-temperature stress[J]. Environmental Science and Pollution Research International,2022,29(37) :56357−56369. DOI: 10.1007/s11356-022-19702-0
[43] 徐永健,孙彬. 盐度胁迫对大海马(Hippocampus kuda) 幼体生长、组分及酶活力的影响[J]. 海洋与湖沼,2012,43(6) :1279−1285. DOI: 10.11693/hyhz201206036036 XU Y J,SUN B. Effect of salinity stress on the growth,body composition and enzyme activities of juvenile hippocampus kuda[J]. Oceanologia et Limnologia Sinica,2012,43(6) :1279−1285. (in Chinese) DOI: 10.11693/hyhz201206036036