Identification and Evaluation of Stem Rot Antagonistic and Growth promotion Effects of Trichoderma on Anoectochilus roxburghii
-
摘要:
目的 分离具有金线兰茎腐病拮抗作用的木霉菌,为生防菌的开发提供理论基础。 方法 以金线兰仿野生种植植株为材料,利用组织分离法分离木霉菌,利用形态特征与ITS和rpb2序列同源性分析鉴定其分类,利用平板对峙法鉴定其抗茎腐病能力,并对不同木霉菌的促生长作用进行评价。 结果 利用组织分离法分离3株木霉菌A21B-1、A21B-2和A21E。经鉴定,3株木霉株分别为哈茨木霉、拟康宁木霉及Trichoderma longifialidicum。对峙生长表明,3种木霉菌株均对茎腐病病原菌尖孢镰刀菌ASP01表现较强的抑制作用,其抑制率分别达75.29%、73.55%和 60.02%。室内防效结果表明,A21B-1菌株对茎腐病有较强的抑制作用,接种15 d后病情抑制率达91.9%,可作为该病的生物防治候选菌株。促进生长试验表明,种植6个月后,施用3个木霉菌的金线兰植株的单株重、株高、茎粗、叶面积及SPAD值较对照均显著提高,其中A21B-2与A21E处理的植株单株重比对照分别提高了58.6%与58.9%,叶面积分别提高66.8%与59.7%,可作为金线兰促进生长的候选菌株。同时,施用木霉菌可有效提高金线兰多糖及金线莲苷的含量,其中A21B-2菌株效果最佳,其多糖及金线莲苷含量均较对照提高89.6%与11.8%,可作为促进金线兰药用成分积累的候选菌株。 结论 3种不同类型的木霉菌在金线兰对抗茎腐病、促进生长及提高多糖含量方面有显著作用。 Abstract:Objective Isolation of stem rot antagonistic Trichoderma from Anoectochilus roxburghii, providing theoretical basis for the development of biocontrol fungi. in A. roxburghii. Method Using wild cultivated A.roxburghiias as materials, Trichoderma strains were isolated using tissue isolation method. Morphological characteristics and homology analysis with ITS and rpb2 sequences were conducted for strains classification. Plate confrontation method were used for evaluating different Trichoderma strains resistance to stem rot ability, and the growth promoting effects of different Trichoderma strains were also processed.[Resulsts]3 Trichodermas trains as A21B-1, A21B-2 and A21E were isolated from the A. roxburghii via tissue isolation method. Combined with morphological characterization and ITS and rpb2 sequences homology identification, 3 Trichoderma strains were identified as T. rugulosum, T. koningiopsis and T. longifialidicum, respectively. Confrontation cultured showed that the 3 Trichoderma strains showed strong inhibitory effects on stem rot pathogen Fusarium oxysporum f. sp. opponiarum ASP01, and their inhibition rates reached 75.29%, 73.55% and 60.02%, respectively. The indoor control results showed that A21B-1 strain had a strong inhibitory effect on stem rot, after 15 d inoculation, the disease inhibition rate reached 91.9%, which could be used as a candidate strain for stem rot biological control fungi. The growth promotion experiments showed that Trichoderma strains significantly increased individual plant weight, height, stem diameter, leaf area, and SPAD value in A. roxburghii after 6 months grown. Among the 3 Trichoderma strains, plants innoculated with A21B-2 and A21E showed significant growth promotion effects with individual plant weight increased by 58.6% and 58.9%, leaf area increased by 66.8% and 59.7% compared to the controls, respectively. They could be used as candidate strains for growth promoting in A. roxburghii. At the same time, the application of Trichoderma strains effectively increased the content of polysaccharides and kinsenoside in A. roxburghii, A21B-2 strain showed the best effects, which content of polysaccharides and kinsenoside increased by 89.6% and 11.8% compared to the controls, could be used a candidate strain for promoting the accumulation of medicinal components in A. roxburghii. Conclusion 3 different strains of Trichoderma have significant effects on inhibiting stem rot disease, promoting growth, and increasing polysaccharide content in A. roxburghii. -
Key words:
- Trichoderma /
- Anoectochilus roxborghii /
- Fusarium oxysporum /
- kinsenoside
-
图 1 木霉菌形态特征
a~d,e~h,i~l分别为木霉菌菌株A21B-1, A21B-2与A21E接种于PDA培养7 d后的菌落形态;a,e,i为正面;b,f, j为背面;c,g,k为分生孢子梗与瓶梗形态,分生孢子形态。
Figure 1. Morphological characterization of Trichoderma strains
a-d,e-h,i-l:Colony morphologyof Trichodermastrains A21B-1, A21B-2 and A21E grown on PDA for 7 d; a, e, i are front; b, f, j are back; c,g,k are conidia stem and bottle stem, conidia morphology.
图 3 不同木霉菌与尖孢镰刀菌菌株ASP01对峙培养
a,e:尖孢镰刀菌ASP01;b,f:A21B-1与ASP01对峙培养;c,g:A21B-2与ASP01对峙培养;d,h:A21E与ASP01对峙培养;箭头所指为木霉菌菌丝侵入ASP01菌丝并导致尖孢镰刀菌孢子不能正常发育。
Figure 3. Confrontation culture of different Trichoderma strains against F. oxysporum f. sp. opponiarumASP01
a, e: F. oxysporum f. sp. opponiarum ASP01; b,f: confrontation culture of A21B-1 and ASP01; c, g: confrontation culture of A21B-2 and ASP01; d, h: confrontation culture of A21E and ASP01; the arrow points to the invasion of Trichoderma hyphae into ASP01 hyphae, resulting in the inability of ASP01 spores to develop normally.
表 1 木霉菌序列登录号及种名
Table 1. Trichoderma sequences accssion number and species
菌株
Strains登录号
Accession NO.种名
SpeciesITS rpb2 A21B-1 ON209377 OR161371 T. harzianum A21B-2 ON209378 OR161372 T. konginggipsis A21E ON209384 OR161373 T. longifialidiucum 表 2 不同木霉菌对尖孢镰刀菌株ASP01抑制效果
Table 2. Inhibition effects of different Trichoderma strains against F. oxysporum f. sp. opponiarumASP01
处理
Treatment病原真菌菌落直径
Colony diameter of pathogens/cm抑制率/%
Inhibition ratesCK 5.41±0.08 a 0±0 c A21B-1 1.33±0.32 c 75.29±6.45a A21B-2 1.43±0.40 c 73.55±7.38 a A21E 2.17±0.16 b 60.02±2.87 b 数据为平均值±标准误,不同小字母表示0.05水平上差异显著。
Dates were presented as mean ± SD, data with different lowercase letters indicated significant difference at 0.05 level.表 3 木霉菌对茎腐病室内防效
Table 3. Indoor control effects of Trichoderma strains on stem rot disease
处理
Treatment7 d 15 d 感病面积
Infected areas/mm2抑制率
Inhibition rates/%感病面积
Infected areas/mm2抑制率
Inhibition rates/%CK 354.0±90.7 0c 995.3±55.6 0 d A21B-1 5.33±0.94 98.5±0.26a 79.9±14.7 91.9±1.47 a A21B-2 23.3±5.73 93.4±1.62 b 242.1±38.5 75.6±3.78 b A21E 11.8±4.09 96.7±1.15 b 334.2±65.8 66.4±6.61c 数据为平均值±标准误,不同字母代表在0.05水平存在显著差异。
Date were presented as mean±SD, Different lowercase letters indicated significant differenceat 0.05 level.表 4 木霉菌对金线兰促生效果
Table 4. Growth promotion effects of Trichoderma strains on A.roxburghii
处理
Treatment株高
Plant highth/
cm茎粗
Stem diameter/
mm叶数
Number of
leaves叶长
Leaf Lenth/
mm叶宽
Leaf Width/
mm叶面积
Leaf area/
mm2叶厚
Leaf thickth/
mm根长
Root lenth/
cm根粗
Root diameter/
mm根数
Root numberSPAD 单株重
Single plant
weight/gCK 15.23±1.81 b 2.62±0.30c 6.67±1.37b 29.10±3.02b 26.78±1.84b 784.69±141.95 b 0.33±0.05 b 7.19±1.08b 2.02±0.26b 2.83±0.37 a 46.83±3.84c 3.17±0.44c A21B-1 19.15±3.26 a 3.05±0.40b 7.67±1.37ab 29.85±2.41 b 28.02±2.99b 984.27±151.95b 0.42±0.07 a 6.68±0.68b 1.95±0.21b 2.83±0.90 a 56.65±4.18 a 3.25±0.45 b A21B-2 21.02±2.05 a 3.08±0.19 b 8.33±0.47a 39.55±3.08 a 32.95±2.41a 1309.01 ±177.04a0.40±0a 8.93±1.20 a 2.53±0.09a 2.33±0.47a 50.53±4.83b 5.03±0.62a A21E 19.65±2.00a 3.65±0.29 a 6.00±2.45b 38.10±0.73 a 32.85±1.67a 1253.43 ±87.91a0.40±0 a 9.14±1.36a 2.10±0.24 b 3.00±0 a 56.95±2.16a 5.04±0.20a 数据为平均值±标准误,不同字母代表在0.05水平存在显著差异。
Date were presented as mean±SD, data with different lowercase letters indicated significant difference at 0.05 level.表 5 木霉菌对金线兰促进次生代谢物积累效果
Table 5. Sencondary metabolite accumulated promotion effects of Trichoderma strains on A.roxburghii
处理
Treatment折干率
Drying rate/%多糖含量
Content of polysaccharide/(mg·g−1)黄酮含量
Content of flavone/(mg·g−1)金线莲苷含量
Content of kinsenoside/(mg·g−1)CK 11.25±0.71d 6.07±0.14 d 8.15±0.43 a (14.292±0.24) b A21B-1 12.88±0.73 cd 7.4±0.68 c 7.2±0.14c (14.6±0.45) b A21B-2 13.91±0.59b 11.51±0.35a 7.43±0.24bc (15.98±0.97) a A21E 14.58±0.01 a 8.05±0.99 b 7.76±0.78ab (14.96±1.26) b 数据为平均值±标准误,不同字母代表在0.05水平存在显著差异。
Date were presented as mean±SD, data with different lowercase letters indicated significant difference at 0.05 level. -
[1] 郑纯, 黄以钟, 季莲芳. 金钱莲文献考证、原植物及商品调查 [J]. 中草药, 1996, 27(3):169−172.ZHENG C, HUANG Y Z, JI L F. Pharmacognostic studies on Jinxianlian Ⅰ. bencaologic review, resource survey and taxonomic identification [J]. Chinese Traditional and Herbal Drugs, 1996, 27(3): 169−172. (in Chinese) [2] QIU Y, SONG W B, YANG Y, et al. Isolation, structural and bioactivities of polysaccharides from Anoectochilus roxburghii (Wall. ) Lindl. : A review [J]. International Journal of Biological Macromolecules, 2023, 236: 123883. doi: 10.1016/j.ijbiomac.2023.123883 [3] DU X, SUN N, TAMURA T, et al. Higher yielding isolation of kinsenoside in Anoectochilus and its antihyperliposis effect [J]. Biological & Pharmaceutical Bulletin, 2001, 24(1): 65−69. [4] 叶炜, 颜沛沛, 王培育, 等. 金线兰茎腐病的病原菌鉴定与防治药剂的筛选 [J]. 亚热带农业研究, 2023, 19(1):1−9.YE W, YAN P P, WANG P Y, et al. Pathogen identification of Anoectochium roxborghil stem rot and screening of fungicides [J]. Subtropical Agriculture Research, 2023, 19(1): 1−9. (in Chinese) [5] 邵清松, 刘洪波, 赵晓芳, 等. 金线莲茎腐病菌的生物学特性及5种杀菌剂对其抑制作用 [J]. 中国中药杂志, 2014, 39(8):1386−1390.SHAO Q S, LIU H B, ZHAO X F, et al. Biological characteristics of Fusarium oxysporum and inhibitory effects of five fungicides [J]. China Journal of Chinese Materia Medica, 2014, 39(8): 1386−1390. (in Chinese) [6] 路梅, 刘建峰, 郑熊飞, 等. 金线莲茎腐病致病菌的分离及其拮抗菌的筛选 [J]. 浙江农业科学, 2022, 63(10):2354−2358.LU M, LIU J F, ZHENG X F, et al. Isolation of pathogenic bacteria from stem rot of Anoectochilus roxburghii and screening of antagonistic bacteria [J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(10): 2354−2358. (in Chinese) [7] 赵云青, 陈菁瑛, 林晓军, 等. 金线莲茎腐病病原菌分离及分子鉴定 [J]. 福建农业学报, 2014, 29(10):995−999. doi: 10.3969/j.issn.1008-0384.2014.10.012ZHAO Y Q, CHEN J Y, LIN X J, et al. Molecular identification for southern blight pathogen of anoectoch ilusroxburghii(Wall. )Lindl [J]. Fujian Journal of Agricultural Sciences, 2014, 29(10): 995−999. (in Chinese) doi: 10.3969/j.issn.1008-0384.2014.10.012 [8] 林文珍, 郭迟鸣, 郭莺, 等. 1株海洋草酸青霉HY181-2的分离鉴定及其对金线莲茎腐病病原菌的生防能力 [J]. 西南农业学报, 2021, 34(8):1649−1656.LIN W Z, GUO C M, GUO Y, et al. Isolation and identification of marine Penicillium oxalicum HY181-2 and its biocontrol ability against pathogen of Anoectochilus stem rot [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8): 1649−1656. (in Chinese) [9] WOO S L, HERMOSA R, LORITO M, et al. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture [J]. Nature Reviews Microbiology, 2023, 21(5): 312−326. doi: 10.1038/s41579-022-00819-5 [10] SOOD M, KAPOOR D, KUMAR V, et al. Trichoderma: The “secrets” of a multitalented biocontrol agent [J]. Plants, 2020, 9(6): 762. doi: 10.3390/plants9060762 [11] ZHANG J L, TANG W L, HUANG Q R, et al. Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance [J]. Frontiers in Microbiology, 2021, 12: 723828. doi: 10.3389/fmicb.2021.723828 [12] 胡卫丛, 黄忠阳, 张宗俊, 等. 化肥减施条件下木霉菌生物有机肥对水果黄瓜生长及品质的影响 [J]. 长江蔬菜, 2023(4):63−66. doi: 10.3865/j.issn.1001-3547.2023.04.017HU W C, HUANG Z Y, ZHANG Z J, et al. Effects of Trichoderma bio-organic fertilizer on growth and quality of fruit cucumber under reduced fertilizer application [J]. Journal of Changjiang Vegetables, 2023(4): 63−66. (in Chinese) doi: 10.3865/j.issn.1001-3547.2023.04.017 [13] 董琼娥, 杨顺安, 罗聪, 等. 微生物菌剂对切花玫瑰白粉病的防效及产质量的影响 [J]. 贵州农业科学, 2022, 50(10):54−59. doi: 10.3969/j.issn.1001-3601.2022.10.009DONG Q E, YANG S A, LUO C, et al. Control effect of microbial agent on powdery mildew and yield and quality of cut rose [J]. Guizhou Agricultural Sciences, 2022, 50(10): 54−59. (in Chinese) doi: 10.3969/j.issn.1001-3601.2022.10.009 [14] 吕亮雨, 段国珍, 苏彩风, 等. 木霉菌微生物菌剂对枸杞生长及土壤性状的影响 [J]. 沈阳农业大学学报, 2022, 53(4):476−482. doi: 10.3969/j.issn.1000-1700.2022.04.011LÜ L Y, DUAN G Z, SU C F, et al. Effects of microbial agents on growth and soil properties of Lycium barbarum L [J]. Journal of Shenyang Agricultural University, 2022, 53(4): 476−482. (in Chinese) doi: 10.3969/j.issn.1000-1700.2022.04.011 [15] 罗庆国, 叶炜, 江金兰, 等. 金线莲组培快繁技术研究 [J]. 南方农业(园林花卉版), 2011, 5(5):43−44.LUO Q G, YE W, JIANG J L, et al. Study on tissue culture and rapid propagation of Anoectochilus roxburghii [J]. South China Agriculture, 2011, 5(5): 43−44. (in Chinese) [16] WHITE T J, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//PCR Protocols. Amsterdam: Elsevier, 1990: 315-322. [17] CHAVERRI P, CASTLEBURY L A, OVERTON B E, et al. Hypocrea/Trichoderma: species with conidiophore elongations and green conidia [J]. Mycologia, 2003, 95(6): 1100−1140. doi: 10.1080/15572536.2004.11833023 [18] 祁智慧, 庄媛, 张海洋, 等. 粮食上木霉菌的分离鉴定及其生防效果 [J]. 微生物学通报, 2023, 50(7):2860−2875.QI Z H, ZHUANG Y, ZHANG H Y, et al. Isolation, identification, and biocontrol efficacy determination of Trichoderma spp. on grains [J]. Microbiology China, 2023, 50(7): 2860−2875. (in Chinese) [19] 张静雅, 李欣雨, 张成, 等. 木薯炭疽病拮抗木霉菌筛选与室内防效研究 [J]. 中国生物防治学报, 2022, 38(1):115−124.ZHANG J Y, LI X Y, ZHANG C, et al. Screening of antagonistic Trichoderma against cassava anthracnose and investigation on its control effect in laboratory [J]. Chinese Journal of Biological Control, 2022, 38(1): 115−124. (in Chinese) [20] 甘林, 代玉立, 杨秀娟, 等. 木霉菌对番茄灰霉病菌的抑制作用 [J]. 福建农业学报, 2016, 31(11):1221−1225.GAN L, DAI Y L, YANG X J, et al. Antagonistic Effect of Trichoderma spp. Strains on Botrytis cinerea [J]. Fujian Journal of Agricultural Sciences, 2016, 31(11): 1221−1225. (in Chinese) [21] 姚晨虓, 李小杰, 刘畅, 等. 3株拮抗烟草尖孢镰刀菌的木霉菌筛选鉴定及促生防病效果评价 [J]. 中国烟草学报, 2022, 28(4):96−105.YAO C X, LI X J, LIU C, et al. Screening and identification of three strains of Trichoderma spp. antagonizing Fusarium oxysporum and evaluation of their effects on promoting growth and disease control [J]. Acta Tabacaria Sinica, 2022, 28(4): 96−105. (in Chinese) [22] 曹奕鸯, 李永清, 江金兰, 等. 不同种源金线兰及近缘种多糖和总黄酮含量的研究 [J]. 福建农业学报, 2016, 31(6):604−610.CAO Y Y, LI Y Q, JIANG J L, et al. Polysaccharide and flavonoid contents in Anoectochilus roxburghii and related species [J]. Fujian Journal of Agricultural Sciences, 2016, 31(6): 604−610. (in Chinese) [23] 陈莹, 王文义, 谌赛男, 等. 不同品系及生长期金线莲的金线莲苷含量变化研究 [J]. 中国现代中药, 2021, 23(8):1423−1429.CHEN Y, WANG W Y, CHEN S N, et al. Changes in kinsenoside content of different strains of Anoectochilus roxburghii at different growth periods [J]. Modern Chinese Medicine, 2021, 23(8): 1423−1429. (in Chinese) [24] ADEDAYO A A, BABALOLA O O. Fungi that promote plant growth in the rhizosphere boost crop growth [J]. Journal of Fungi, 2023, 9(2): 239. doi: 10.3390/jof9020239 [25] DUTTA P, MAHANTA M, SINGH S B, et al. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens [J]. Frontiers in Plant Science, 2023, 14: 1145715. doi: 10.3389/fpls.2023.1145715 [26] YAO X, GUO H L, ZHANG K X, et al. Trichoderma and its role in biological control of plant fungal and nematode disease [J]. Frontiers in Microbiology, 2023, 14: 1160551. doi: 10.3389/fmicb.2023.1160551 [27] 黄靖, 陈婵. 接种促生菌对金线莲生物活性成分及土壤细菌群落的影响 [J]. 江苏农业科学, 2022, 50(23):184−191.HUANG J, CHEN. Influences of inoculation of growth-promoting bacteria on bioactive constituents and soil bacterial communities of Anoectochilus roxburghii [J]. Jiangsu Agricultural Sciences, 2022, 50(23): 184−191. (in Chinese) [28] VICENTE C S L, SOARES M, FARIA J M S, et al. Insights into the role of fungi in pine wilt disease [J]. Journal of Fungi, 2021, 7(9): 780. doi: 10.3390/jof7090780 [29] 张祥丽, 曹瑱艳, 杨怡华, 等. 铁皮石斛镰刀菌根腐病病原菌的鉴定及其对链霉菌发酵液的敏感性分析 [J]. 中国生物防治学报, 2022, 38(1):258−266.ZHANG X L, CAO T Y, YANG Y H, et al. Identification of the pathogen causing root rot of Dendrobium officinale and sensitivity to the fermentation broth of Streptomyces [J]. Chinese Journal of Biological Control, 2022, 38(1): 258−266. (in Chinese) [30] 叶炜, 江金兰, 李永清, 等. 金线兰及近缘种植物遗传多样性ISSR分子标记分析 [J]. 植物遗传资源学报, 2015, 16(5):1045−1054.YE W, JIANG J L, LI Y Q, et al. Analysis of genetic diversity in Anoectochilus roxburghii and it’s relative species using ISSR molecular markers [J]. Journal of Plant Genetic Resources, 2015, 16(5): 1045−1054. (in Chinese) [31] 赵泽宇. 地生兰与附生兰菌根真菌的差异比较研究[D]. 北京: 北京协和医学院, 2021.ZHAO Z Y. Comparative study on the difference of mycorrhizal fungil between terrestrial and epiphytic orchids[D]. Beijing: Peking Union Medical College, 2021. [32] 李婷, 王洪旭, 崔广禄, 等. 哈茨木霉在植物应用上的研究进展 [J]. 中国农学通报, 2023, 39(21):57−61. doi: 10.11924/j.issn.1000-6850.casb2022-0652LI T, WANG H X, CUI G L, et al. Application of Trichoderma harzianum in plant: Research progress [J]. Chinese Agricultural Science Bulletin, 2023, 39(21): 57−61. (in Chinese) doi: 10.11924/j.issn.1000-6850.casb2022-0652 [33] XIAO Z Y, ZHAO Q Q, LI W, et al. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects [J]. Frontiers in Microbiology, 2023, 14: 1146210. doi: 10.3389/fmicb.2023.1146210 [34] 尤佳琪, 杜然, 顾卫红, 等. 拟康宁木霉T-51菌株生物学特性及其生物防治潜力 [J]. 植物保护学报, 2022, 49(3):946−955.YOU J Q, DU R, GU W H, et al. Biological characteristics and biological control potential of endophytic fungus Trichoderma koningiopsis strain T-51 [J]. Journal of Plant Protection, 2022, 49(3): 946−955. [35] HUANG L P, WEI M S, LI L Q, et al. Polyketides with Anti-Inflammatory Activity from Trichoderma koningiopsis, a Rhizosphere Fungus from the Medicinal Plant Polygonum paleaceum [J]. Journal of Natural Products, 2023, 86(7): 1643−1653. doi: 10.1021/acs.jnatprod.2c00842 [36] 董章勇, 罗梅, 陈越, 等. 一株具有生防及诱导抗病作用的拟康宁木霉Tk905菌株及其应用: CN113862160A[P]. 2021-12-31. [37] 罗梅, 罗玉霖, 陈沫冰, 等. 拟康宁木霉Tk1的分离鉴定、拮抗作用及其生物学特性 [J]. 中国生物防治学报, 2020, 36(4):581−586.LUO M, LUO Y L, CHEN M B, et al. Isolation and identification Trichoderma koningiopsis Tk1, and its antagonistic effect and biological characteristics [J]. Chinese Journal of Biological Control, 2020, 36(4): 581−586. (in Chinese) [38] 涂晶晶, 于存. 拟康宁木霉Hailin菌株对马尾松幼苗的促生和防病作用 [J]. 中国植保导刊, 2020, 40(2):9−16,21. doi: 10.3969/j.issn.1672-6820.2020.02.002TU J J, YU C. Effect of Trichoderma koningiopsis on the growth promotion and disease control of Pinus massoniana seedlings [J]. China Plant Protection, 2020, 40(2): 9−16,21. (in Chinese) doi: 10.3969/j.issn.1672-6820.2020.02.002 [39] 李海云, 宋晓妍, 张秀省, 等. 拟康宁木霉SMF2防治大白菜软腐病机理研究 [J]. 园艺学报, 2012, 39(7):1373−1379.LI H Y, SONG X Y, ZHANG X S, et al. Research on mechanism of Trichoderma pseudokoningii SMF2 controlling soft rot of Chinese cabbage [J]. Acta Horticulturae Sinica, 2012, 39(7): 1373−1379. (in Chinese) [40] MONTOYA Q V, MEIRELLES L A, CHAVERRI P, et al. Unraveling Trichoderma species in the attine ant environment: Description of three new taxa [J]. Antonie Van Leeuwenhoek, 2016, 109(5): 633−651. doi: 10.1007/s10482-016-0666-9 [41] 关璟, 王春兰, 郭顺星. 福建产金线莲中黄酮苷成分的研究 [J]. 中草药, 2005, 36(10):1615−1617.GUAN J, WANG C L, GUO S X. Isolation and structural elucidation of flavonoids from Ancecotochilus roxburghii [J]. Chinese Traditional and Herbal Drugs, 2005, 36(10): 1615−1617. (in Chinese) [42] 何春年, 王春兰, 郭顺星, 等. 兰科开唇兰属植物的化学成分和药理活性研究进展 [J]. 中国药学杂志, 2004, 39(2):81−84.HE C N, WANG C L, GUO S X, et al. Advances in chemistry and pharmacology on plants Orchidaceae Anoectochilus [J]. Chinese Pharmaceutical Journal, 2004, 39(2): 81−84. (in Chinese) [43] 福建省卫生健康委员会. 福建省食品安全地方标准金线莲: DBS35/ 006—2022 [S]. 福建省卫生健康委员会, 2022. [44] QI C X, ZHOU Q, YUAN Z, et al. Kinsenoside: A promising bioactive compound from Anoectochilus species [J]. Current Medical Science, 2018, 38(1): 11−18. doi: 10.1007/s11596-018-1841-1 [45] YE S Y, SHAO Q S, ZHANG A L. Anoectochilus roxburghii: A review of its phytochemistry, pharmacology, and clinical applications [J]. Journal of Ethnopharmacology, 2017, 209: 184−202. doi: 10.1016/j.jep.2017.07.032