• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斑马鱼TYRP1b基因SNPs筛查及其与体色性状的关联分析

宋兴超 王云艳 王莎莎 方月 巴家文 梅杰 梁正其

宋兴超,王云艳,王莎莎,等. 斑马鱼TYRP1b基因SNPs筛查及其与体色性状的关联分析 [J]. 福建农业学报,2024,39(4):1−11
引用本文: 宋兴超,王云艳,王莎莎,等. 斑马鱼TYRP1b基因SNPs筛查及其与体色性状的关联分析 [J]. 福建农业学报,2024,39(4):1−11
SONG X C, WANG Y Y, WANG S S, et al. SNPs and Correlation of TYRP1b with Color of Zebrafish [J]. Fujian Journal of Agricultural Sciences,2024,39(4):1−11
Citation: SONG X C, WANG Y Y, WANG S S, et al. SNPs and Correlation of TYRP1b with Color of Zebrafish [J]. Fujian Journal of Agricultural Sciences,2024,39(4):1−11

斑马鱼TYRP1b基因SNPs筛查及其与体色性状的关联分析

基金项目: 国家自然科学基金项目(32060274);贵州省科技计划项目(黔科合基础-ZK〔2022〕一般559);贵州省科技支撑项目(黔科合支撑〔2023〕一般081号);贵州省高层次创新型“千”层次人才培养项目(2024-〔2022〕-048);贵州省重点实验室项目(黔科合平台人才〔2020〕2003号)
详细信息
    作者简介:

    宋兴超(1982 —),男,博士,副教授,主要从事水产动物遗传育种研究,E-mail:songxingchao_888@126.com

    通讯作者:

    梁正其(1985 —),男,硕士,教授,主要从事水生动物繁殖与发育生物学研究,E-mail:940429393@qq.com

  • 中图分类号: S917.4

SNPs and Correlation of TYRP1b with Color of Zebrafish

  • 摘要:   目的  探究酪氨酸酶相关蛋白1b(tyrosinase-related protein 1b, TYRP1b)基因变异与斑马鱼体色性状的相关性。  方法  以体色表型存在显著差异的红色、黄色和蓝色斑马鱼共计219个样本的肌肉组织DNA为模板,设计3对引物,采用PCR扩增、Sanger测序技术筛查TYRP1b基因单核苷酸多态性(single nucleotide polymorphisms, SNPs),并将SNPs与斑马鱼体色性状进行关联分析。  结果  获得的斑马鱼TYRP1b基因外显子2、部分内含子3、外显子4、内含子4、外显子5、内含子5、外显子6和外显子7长度分别为134、212、168、135、180、113、150、171 bp。SNPs筛查显示,3种体色斑马鱼群体共筛查到18个SNPs,部分内含子3存在11个SNPs位点:g.2125G>A、g.2150G>A、g.2152G>T、g.2161C>A、g.2175A>T、g.2180G>T、g.2185A>T、g.2192A>C、g.2200A>T、g.2201A>C和g.2213T>C;内含子4检测到4个SNPs位点:g.7C>A、g.65A>G、g.84T>A和g.103C>T;内含子5存在1个SNPs位点:g.61G>T;外显子4、6分别存在1个SNPs位点:g.125G>T和g.80T>A,且均为同义突变;外显子2、5和7均未检测到SNPs。关联分析表明,TYRP1b基因内含子3中g.2152G>T、g.2175A>T、g.2180T>G、g.2192A>C、g.2200A>T、g.2201A>C位点、内含子4中g.65A>G位点及外显子6中g.80T>A位点的基因型均与斑马鱼体色性状极显著相关(P<0.01)。  结论  斑马鱼TYRP1b基因内含子3、4及外显子6存在8个与体色表型存在关联的SNPs,可能影响斑马鱼体色性状或与之紧密连锁。
  • 图  1  斑马鱼TYRP1b基因3对引物PCR产物电泳图谱

    M:DL2000 DNA Marker;A图中1~6:Tb-2引物PCR产物;B图中1~3:Tb-1引物PCR产物,4~6:Tb-3引物PCR产物。

    Figure  1.  Electrophoresis of products of TYRP1b in zebrafish from 3 pairs of primers

    M: DL2000 DNA marker; A1-6: PCR product of Tb-2 primer; B1-3: PCR product of Tb-1 primer; B4-6: PCR product of Tb-3 primer.

    图  2  斑马鱼TYRP1b基因SNPs位点测序峰图

    箭头所指表示碱基突变位点。

    Figure  2.  Sequencing profiles of SNPs in zebrafish TYRP1b

    Arrows point at mutated bases.

    图  3  斑马鱼TYRP1b基因SNPs分布

    括号中数字表示SNPs的数量;黑色和白色矩形分别代表外显子和内含子。

    Figure  3.  SNPs distribution of zebrafish TYRP1b

    Number in brackets is quantity of SNPs. Black rectangles represent exons, and white introns.

    表  1  引物信息

    Table  1.   Information on primer

    引物
    Primers
    序列(5′-3′)
    Sequence(5′-3′)
    退火温度
    Annealing temperature/ ℃
    延伸时间
    Extended time/s
    产物长度
    Product length/bp
    扩增区域
    Amplified region
    Tb-1F:CTGTTGTCTGGCCCGAAGAT60.225134外显子2
    Exon 2
    R:AGGAATGTGCTGACGCTGAG
    Tb-2F:CCCACAGCTCTAATGCAAACT59.659956部分内含子3~外显子6
    Partial intron 3–exon 6
    R:GCAATCAGCCGTCACTCACTT
    Tb-3F:GTAGCGTCACACCACTGACT58.428171外显子7
    Exon 7
    R:ATCACGGTAACGGTGGTAGC
    下载: 导出CSV

    表  2  不同体色斑马鱼TYRP1b基因内含子3中11个SNPs的基因型与等位基因频率

    Table  2.   Genotypes and allele frequencies of 11 SNPs in intron 3 of TYRP1b of zebrafish with different body colors

    突变位点
    SNPs
    基因型与等位基因
    Genotype and allele
    基因型与等位基因频率
    Genotype and allele frequencies
    红色 RZ 黄色 YZ 蓝色 BZ
    g.2125G>AGG1.0000(70)0.5625(36)1.0000(85)
    GA0(0)0.3750(24)0(0)
    AA0(0)0.0625(4)0(0)
    G1.00000.75001.0000
    A00.25000
    g.2150G>AGG0.2000(14)1.0000(64)0.7647(65)
    GA0.4000(28)0(0)0.2353(20)
    AA0.4000(28)0(0)0(0)
    G0.40001.00000.8823
    A0.600000.1177
    g.2152G>TGG0.2000(14)0.3125(20)0.4706(40)
    GT0.4000(28)0.3750(24)0.5294(45)
    TT0.4000(28)0.3125(20)0(0)
    G0.40000.50000.7353
    T0.60000.50000.2647
    g.2161C>ACC1.0000(70)0.3125(20)0.7059(60)
    CA0(0)0.3750(24)0.2941(25)
    AA0(0)0.3125(20)0.0000(0)
    C1.00000.50000.8530
    A00.50000.1470
    g.2175A>TAA0.4000(28)0.5000(32)0.4706(40)
    AT0.4000(28)0.5000(32)0.5294(45)
    TT0.2000(14)0(0)0(0)
    A0.60000.75000.7353
    T0.40000.25000.2647
    g.2180T>GTT0.2000(14)0.3125(20)0.4706(40)
    TG0.4000(28)0.3750(24)0.5294(45)
    GG0.4000(28)0.3125(20)0(0)
    T0.40000.50000.7353
    G0.60000.50000.2647
    g.2185A>TAA1.0000(70)0.3125(20)0.7059(60)
    AT0(0)0.3750(24)0.2941(25)
    TT0(0)0.3125(20)0(0)
    A1.00000.50000.8530
    T00.50000.1470
    g.2192A>CAA0.2000(14)0.3125(20)0.4706(40)
    AC0.4571(32)0.3750(24)0.5294(45)
    CC0.3429(24)0.3125(20)0(0)
    A0.42860.50000.7353
    C0.57140.50000.2647
    g.2200A>TAA0.2000(14)0.3125(20)0.4706(40)
    AT0.4571(32)0.3750(24)0.5294(45)
    TT0.3429(24)0.3125(20)0(0)
    A0.42860.50000.7353
    T0.57140.50000.2647
    g.2201A>CAA0.2000(14)0.5000(32)0.4706(40)
    AC0.4571(32)0.5000(32)0.5294(45)
    CC0.3429(24)0(0)0(0)
    A0.42860.75000.7353
    C0.57140.25000.2647
    g.2213T>CTT0.2000(14)1.0000(64)0.7059(60)
    TC0.4571(32)0(0)0.2941(25)
    CC0.3429(24)0(0)0(0)
    T0.42861.00000.8530
    C0.571400.1470
    括号内的数字为SNPs位点基因型数,下表同。
    Data in brackets are number of genotypes. Same for below.
    下载: 导出CSV

    表  3  不同体色斑马鱼TYRP1b基因内含子4、5和外显子4、6中7个SNPs的基因型与等位基因频率

    Table  3.   Genotypes and allele frequencies of 7 SNPs of TYRP1b in introns 4, 5 and exons 4, 6 in zebrafish of different body colors

    分布区域
    Distribution region
    突变位点
    SNPs
    基因型与等位基因
    Genotype and allele
    基因型与等位基因频率
    Genotype and allele frequencies
    红色 RZ黄色 YZ蓝色 BZ
    内含子4
    Intron 4
    g.7C>ACC1.0000(70)0.5625(36)1.0000(85)
    CA0(0)0.3750(24)0(0)
    AA0(0)0.0625(4)0(0)
    C1.00000.75001.0000
    A00.25000
    g.65A>GAA0.2000(14)0.5625(36)0.7059(60)
    AG0.4571(32)0.3750(24)0.2941(25)
    GG0.3429(24)0.0625(4)0(0)
    A0.42860.75000.8530
    G0.57140.25000.1470
    g.84T>ATT1.0000(70)0.3125(20)0.7059(60)
    TA0(0)0.3750(24)0.2941(25)
    AA0(0)0.3125(20)0(0)
    T1.00000.50000.8530
    A00.50000.1470
    g.103C>TCC0.2000(14)0.7500(64)0.7647(65)
    CT0.4571(32)0.0625(0)0.2353(20)
    TT0.3429(24)0.1875(0)0(0)
    C0.42861.00000.8823
    T0.571400.1177
    内含子5
    Intron 5
    g.61G/TGG1.0000(70)0.5625(36)1.0000(85)
    GT0(0)0.3750(24)0(0)
    TT0(0)0.0625(4)0(0)
    G1.00000.75001.0000
    T00.25000
    外显子4
    Exon 4
    g.125G>TGG1.0000(70)0.5625(36)1.0000(85)
    GT0(0)0.3750(24)0(0)
    TT0(0)0.0625(4)0(0)
    G1.00000.75001.0000
    T00.25000
    外显子6
    Exon 6
    g.80T>ATT0.4571(32)0.5000(32)0(0)
    TA0.3429(24)0.5000(32)0.5294(45)
    AA0.2000(14)0(0)0.4706(40)
    T0.62860.75000.2647
    A0.37140.25000.7353
    下载: 导出CSV

    表  4  TYRP1b基因SNPs位点的各基因型分布及其与体色表型的关联分析

    Table  4.   Distribution and association between TYRP1b SNPs genotypes and body color phenotypes

    分布区域
    Distribution region
    位点
    SNPs
    基因型
    Genotype
    不同体色数量
    Number of different body color
    总计
    Total
    χ2 P
    P value
    红色 RZ 黄色 YZ 蓝色 BZ
    内含子3
    Intron 3
    g.2152G>T GG 14 20 40 74 42.4995 <0.0001
    GT 28 24 45 97
    TT 28 20 0 48
    g.2175A>T AA 28 32 40 100 32.0120 <0.0001
    AT 28 32 45 105
    TT 14 0 0 14
    g.2192A>C AA 14 20 40 74 38.4456 <0.0001
    AC 32 24 45 101
    CC 24 20 0 44
    g.2201A>C AA 14 32 40 86 61.2982 <0.0001
    AC 32 32 45 109
    CC 24 0 0 24
    内含子4
    Intron 4
    g.65A>G AA 14 36 60 110 61.2907 <0.0001
    AG 32 24 25 81
    GG 24 4 0 28
    外显子6
    Exon 6
    g.80T>A TT 32 32 0 64 77.6947 <0.0001
    TA 24 32 45 101
    AA 14 0 40 54
    下载: 导出CSV
  • [1] ZHONG X T, LI J L, LU F R, et al. Application of zebrafish in the study of the gut microbiome [J]. Animal Models and Experimental Medicine, 2022, 5(4): 323−336. doi: 10.1002/ame2.12227
    [2] 孙桂金, 潘杰, 刘可春, 等. 苯硫脲对斑马鱼黑色素生成及早期发育的影响 [J]. 水产科学, 2011, 30(7):387−390. doi: 10.3969/j.issn.1003-1111.2011.07.004

    SUN G J, PAN J, LIU K C, et al. Effects of N-phenylthiourea (PTU) on melanogenesis and early development in zebrafish(Danio rerio) [J]. Fisheries Science, 2011, 30(7): 387−390. (in Chinese) doi: 10.3969/j.issn.1003-1111.2011.07.004
    [3] ZHANG C Q, REN Z H, GONG Z Y. Generation of albino phenotype in ornamental fish by CRISPR/Cas9-mediated genome editing of slc45a2 gene [J]. Marine Biotechnology, 2023, 25(2): 281−290. doi: 10.1007/s10126-023-10204-9
    [4] 胡续雯. Mlpha基因对瓯江彩鲤和斑马鱼黑斑体色的影响[D]. 上海: 上海海洋大学, 2021.

    HU X W. Effect of melanophilin gene on black coloration in Oujiang color common carp(Cyprinus carpio var. color) and Zebrafish(Danio rerio)[D]. Shanghai: Shanghai Ocean University, 2021. (in Chinese)
    [5] 林金杏, 冯丽萍, 胡建华, 等. 斑马鱼鳍和鳞片色素细胞的显微观察 [J]. 实验动物与比较医学, 2017, 37(2):94−101. doi: 10.3969/j.issn.1674-5817.2017.02.003

    LIN J X, FENG L P, HU J H, et al. Microscopical observation on pigment cells in fins and scales of zebrafish [J]. Laboratory Animal and Comparative Medicine, 2017, 37(2): 94−101. (in Chinese) doi: 10.3969/j.issn.1674-5817.2017.02.003
    [6] SUBKHANKULOVA T, CAMARGO SOSA K, UROSHLEV L A, et al. Zebrafish pigment cells develop directly from persistent highly multipotent progenitors [J]. Nature Communications, 2023, 14(1): 1258. doi: 10.1038/s41467-023-36876-4
    [7] SHARMA B, SUBRAMANIAM Y J, AYYAPPA RAJA D, et al. Reverse genetic approach to identify regulators of pigmentation using zebrafish [J]. Journal of Visualized Experiments: JoVE, 2022,(181): e62955. doi: 10.3791/62955
    [8] 马嘉忆, 汪波, 丁晖, 等. 东星斑BCO基因家族鉴定及其表达对体色的影响 [J]. 中国海洋大学学报(自然科学版), 2023, 53(9):89−101.

    MA J Y, WANG B, DING H, et al. Identification of BCO gene family and their effect on the body color in leopard coral grouper (Plectropomus leopardus) [J]. Periodical of Ocean University of China, 2023, 53(9): 89−101. (in Chinese)
    [9] 万顺鹏, 朱文彬, 王兰梅, 等. 红福瑞鲤2号生长、体色及相关基因表达分析 [J]. 水产科学, 2023, 42(6):1032−1039.

    WAN S P, ZHU W B, WANG L M, et al. Analysis of growth, body color and expression levels of skin color related genes in red family common carp Cyprinus carpio FFRC No. 2 strain [J]. Fisheries Science, 2023, 42(6): 1032−1039. (in Chinese)
    [10] ZHANG X T, WEI K J, CHEN Y Y, et al. Molecular cloning and expression analysis of Tyr and tyrp1 genes in normal and albino yellow catfish Tachysurus fulvidraco [J]. Journal of Fish Biology, 2018, 92(4): 979−998. doi: 10.1111/jfb.13556
    [11] 马元, 仲颖, 郭婧, 等. 西里伯斯青鳉tyr和slc24a5的克隆及表达分析 [J]. 水生生物学报, 2022, 46(3):282−291. doi: 10.7541/2022.2020.304

    MA Y, ZHONG Y, GUO J, et al. Cloning and expression analysis of Tyr and slc24a5 in Oryzias celebensis [J]. Acta Hydrobiologica Sinica, 2022, 46(3): 282−291. (in Chinese) doi: 10.7541/2022.2020.304
    [12] 吴垚磊, 李仰真, 王娜, 等. 半滑舌鳎酪氨酸酶基因(TYR)和多巴色素异构酶基因(DCT)的克隆表达与分析 [J]. 渔业科学进展, 2021, 42(6):42−52.

    WU Y L, LI Y Z, WANG N, et al. Expression analysis of TYR and DCT genes related to body color in Cynoglossus semilaevis at different periods and in different tissues [J]. Progress in Fishery Sciences, 2021, 42(6): 42−52. (in Chinese)
    [13] KOBAYASHI T, HEARING V J. Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo[J]. Journal of Cell Science, 2007, 120(Pt 24): 4261-4268.
    [14] KOBAYASHI T, IMOKAWA G, BENNETT D C, et al. Tyrosinase stabilization by Tyrp1 (the brown locus protein) [J]. The Journal of Biological Chemistry, 1998, 273(48): 31801−31805. doi: 10.1074/jbc.273.48.31801
    [15] SOLANO F. On the metal cofactor in the tyrosinase family [J]. International Journal of Molecular Sciences, 2018, 19(2): 633. doi: 10.3390/ijms19020633
    [16] 曾丽雯. 胭脂鱼ASIP、MC1R、tyrp1和dct基因的克隆及皮肤转录组研究[D]. 雅安: 四川农业大学, 2019.

    ZENG L W. Molecular cloning of ASIP, MC1R, tyrp1 and dct gene and skin transcriptome study of Myxocyprinus Asiaticus[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese)
    [17] 陈帅龙. 豹纹鳃棘鲈体色变异相关基因的筛选与表达分析[D]. 海口: 海南大学, 2020.

    CHEN S L. Screening and expression analysis of body color variation related genes in Plectropomus leopardus[D]. Haikou: Hainan University, 2020. (in Chinese)
    [18] BRAASCH I, LIEDTKE D, VOLFF J N, et al. Pigmentary function and evolution of tyrp1 gene duplicates in fish [J]. Pigment Cell & Melanoma Research, 2009, 22(6): 839−850.
    [19] BRAASCH I, SCHARTL M, VOLFF J N. Evolution of pigment synthesis pathways by gene and genome duplication in fish [J]. BMC Evolutionary Biology, 2007, 7: 74. doi: 10.1186/1471-2148-7-74
    [20] 王若青, 王娜, 王仁凯, 等. 牙鲆tyrp1a和tyrp1b的鉴定及tyrp1a与mmu-miR-143-5p_R+2的调控关系 [J]. 渔业科学进展, 2018, 39(2):49−58.

    WANG R Q, WANG N, WANG R K, et al. The identification of tyrp1a and tyrp1b in Japanese flounder(Paralichthys olivaceus) and the regulation study of tyrp1a and mmu-mi R-143-5p_R+2 [J]. Progress in Fishery Sciences, 2018, 39(2): 49−58. (in Chinese)
    [21] 张艳苹, 王中铎, 郭昱嵩, 等. 红鳍笛鲷(Lutjnaus erythropterus)酪氨酸酶相关蛋白1基因克隆及表达分析 [J]. 海洋与湖沼, 2016, 47(2):390−399.

    ZHANG Y P, WANG Z D, GUO Y S, et al. Molecular cloning and expression of tyrp1 gene in Lutjanus erytheropterus [J]. Oceanologia et Limnologia Sinica, 2016, 47(2): 390−399. (in Chinese)
    [22] 肖婕, 王梦娅, 吴绍轩, 等. 豹纹鳃棘鲈酪氨酸酶Tyr基因家族的结构特征及组织表达分析 [J]. 中国水产科学, 2022, 29(5):653−664. doi: 10.12264/JFSC2021-0477

    XIAO J, WANG M Y, WU S X, et al. Bioinformatics and expression analysis of Tyrosinase protein family genes in leopard coral grouper [J]. Journal of Fishery Sciences of China, 2022, 29(5): 653−664. (in Chinese) doi: 10.12264/JFSC2021-0477
    [23] CHEN H, WANG J, DU J, et al. Analysis of recently duplicated TYRP1 genes and their effect on the formation of black patches in Oujiang-color common carp (Cyprinus carpio var.color) [J]. Animal Genetics, 2021, 52(4): 451−460. doi: 10.1111/age.13071
    [24] 许细丹. 酪氨酸酶对瓯江彩鲤和斑马鱼黑斑体色影响的研究[D]. 上海: 上海海洋大学, 2020.

    XU X D. Study on the effect of tyrosinase on black coloration in Oujiang color common carp and zebrafish[D]. Shanghai: Shanghai Ocean University, 2020. (in Chinese)
    [25] KRAUSS J, GEIGER-RUDOLPH S, KOCH I, et al. A dominant mutation in tyrp1A leads to melanophore death in zebrafish [J]. Pigment Cell & Melanoma Research, 2014, 27(5): 827−830.
    [26] WESTERFIELD M. The zebrafish book. A Guide for the laboratory use of Zebrafish(Danio rerio)(4th edition)[M]. Eugene, OR: University of Oregon Press, 2000.
    [27] LEAL E, ANGOTZI A R, GREGÓRIO S F, et al. Role of the melanocortin system in zebrafish skin physiology [J]. Fish & Shellfish Immunology, 2022, 130: 591−601.
    [28] LIU F, SUN F, KUANG G Q, et al. The insertion in the 3’ UTR of Pmel17 is the causal variant for golden skin color in Tilapia [J]. Marine Biotechnology, 2022, 24(3): 566−573. doi: 10.1007/s10126-022-10125-z
    [29] ESPINASA L, ROBINSON J, ESPINASA M. Mc1r gene in Astroblepus pholeter and Astyanax mexicanus: Convergent regressive evolution of pigmentation across cavefish species [J]. Developmental Biology, 2018, 441(2): 305−310. doi: 10.1016/j.ydbio.2018.07.016
    [30] ZHAO Z M, FU Y X, HEWETT-EMMETT D, et al. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution [J]. Gene, 2003, 312: 207−213. doi: 10.1016/S0378-1119(03)00670-X
    [31] 张文平, 张世勇, 刘洪岩, 等. 斑点叉尾鮰EGFL9基因变异位点与生长性状的关联分析 [J]. 福建农业学报, 2023, 38(3):253−261.

    ZHANG W P, ZHANG S Y, LIU H Y, et al. Variation sites on EGFL9 associated with growth of channel catfish [J]. Fujian Journal of Agricultural Sciences, 2023, 38(3): 253−261. (in Chinese)
    [32] NIE Z L, ZHAO N H, ZHAO H, et al. Cloning, expression analysis and SNP screening of the kiss1 gene in male Schizothorax biddulphi [J]. Genes, 2023, 14(4): 862. doi: 10.3390/genes14040862
    [33] FAN J J, MA D M, ZHU H P, et al. Gene structure, SNP screening and growth correlation analysis of the preproinsulin gene in grass carp (Ctenopharyngodon idellus) [J]. Journal of Genetics, 2021, 100: 48. doi: 10.1007/s12041-021-01289-z
    [34] 杨月静, 向梦斌, 叶祥益, 等. 齐口裂腹鱼SNP标记与生长性状的关联分析 [J]. 中国水产科学, 2018, 25(2):278−285. doi: 10.3724/SP.J.1118.2018.17202

    YANG Y J, XIANG M B, YE X Y, et al. Association analysis between SNP markers and growth-related traits in Schizothorax prenanti [J]. Journal of Fishery Sciences of China, 2018, 25(2): 278−285. (in Chinese) doi: 10.3724/SP.J.1118.2018.17202
    [35] 卫侃韵, 谢淑媚, 王沈同, 等. 缢蛏EGFR基因内含子1内SNP位点多态性与生长性状相关性 [J]. 水产学报, 2019, 43(2):483−491.

    WEI K Y, XIE S M, WANG S T, et al. Polymorphism of SNPs in EGFR intron 1 and its association with growth traits in Sinonovacula constricta [J]. Journal of Fisheries of China, 2019, 43(2): 483−491. (in Chinese)
    [36] 郑会芹. 山羊TYRP1基因序列分析及SNPs研究[D]. 保定: 河北农业大学, 2010.

    ZHENG H Q. Study on TYRP1 gene sequence and SNPs of goat[D]. Baoding: Hebei Agricultural University, 2010. (in Chinese)
    [37] CIRERA S, MARKAKIS M N, KRISTIANSEN T, et al. A large insertion in intron 2 of the TYRP1 gene associated with American Palomino phenotype in American mink [J]. Mammalian Genome, 2016, 27(3): 135−143.
    [38] SAWAYAMA E, NOGUCHI D, NAKAYAMA K, et al. Identification, characterization, and mapping of a novel SNP associated with body color transparency in juvenile red sea bream (Pagrus major) [J]. Marine Biotechnology, 2018, 20(4): 481−489. doi: 10.1007/s10126-018-9810-z
    [39] 黎学友, 谢明花, 黄承勤, 等. 湖栖鳍虾虎鱼皮肤和眼睛转录组比较 [J]. 水产学报, 2021, 45(8):1317−1326.

    LI X Y, XIE M H, HUANG C Q, et al. Comparative analysis of skin and eye transcriptome in the Gobiopterus lacustris [J]. Journal of Fisheries of China, 2021, 45(8): 1317−1326. (in Chinese)
    [40] LI Y R, GENG X, BAO L S, et al. A deletion in the Hermansky-Pudlak syndrome 4 (Hps4) gene appears to be responsible for albinism in channel catfish [J]. Molecular Genetics and Genomics: MGG, 2017, 292(3): 663−670. doi: 10.1007/s00438-017-1302-8
    [41] 李岩, 周燕, 雷骆, 等. 基于转录组测序探究乌鳢皮肤白化的分子机制 [J]. 水产科学, 2022, 41(5):715−726.

    LI Y, ZHOU Y, LEI L, et al. Exploration of molecular mechanism of skin albinism in albino northern snakehead Channa argus var. (Teleostei: Channidae) based on transcriptome sequencing [J]. Fisheries Science, 2022, 41(5): 715−726. (in Chinese)
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-04-01
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回