Generating fresh sweet-waxy corn by using molecular marker-assisted selection technology
-
摘要:
目的 创制优质甜糯玉米新自交系,探索玉米育种改良新途径,助力福建鲜食玉米产业发展。实现同一个果穗上同时出现甜、糯粒的玉米新品种。 方法 以生产上主推的京科糯2000为材料,经三代系谱选育出优质糯玉米种质GMC013,利用其与甜玉米雪甜 7401 杂交、自交四代;结合分子标记辅助选择和田间选择,聚合玉米胚乳淀粉合成途径中的甜质基因sh2和糯质基因wx,系谱选育优质甜、糯玉米新自交系。结果 利用分子标记辅助选择技术成功创制出甜玉米自交系GM102和糯玉米自交系GM104和GM112。田间试验表明,自交系在生育期、株高、穗位高、穗长、穗粗、鲜百粒重和出籽率等方面达到甜、糯玉米关于品质与外观粒型的认定标准。 结论 利用分子辅助选择技术结合田间选择可精准、高效地创制新的优异玉米自交系,为福建鲜食玉米品种选育提供重要的种质储备与遗传改良资源。 Abstract:Objective To generate new variety of corn that has both sweet and waxy kernels on the same ear of sweet and waxy corn, explore new ways of rice breeding and improvement, and build the Fujian sweet-waxy corn brand. Method Using the main material of Jingkenuo 2000, a high-quality glutinous corn variety, we have developed the new germplasm GMC013 through pedigree breeding. This germplasm was hybridized with the sweet corn variety Xuetian 7401 and self-pollinated. By employing molecular marker-assisted selection and field selection methods, we have consolidated the sweet gene sh2 and the glutinous gene wx from the starch synthesis pathway in corn, creating a new high-quality sweet and glutinous fresh-eating corn germplasm.Result Molecular marker-assisted selection technology has successfully developed sweet variety GM102 and glutinous varieties GM104 and GM112. Field experiments indicate that these inbred lines meet the quality and appearance grain type standards for sweet and glutinous varieties in terms of growth duration, plant height, ear height, ear length, ear thickness, fresh weight of 100 grains, and seed setting rate. Conclusion The use of molecular-assisted selection techniques, combined with field selection, can precisely and efficiently create new superior maize germplasm, providing important genetic resources and reserves for maize variety breeding in Fujian. -
Key words:
- Fresh sweet -waxy corn /
- Marker-assisted selection /
- sh2 /
- wx
-
表 1 自交系农艺性状特征
Table 1. Traits of inbred lines in agronomic characteristics
自交系
Inbred
Lines株高
Plant
height/
cm穗位高
Ear height/
cm株型
Plant
type穗长
Ear
length/
cm穗粗
Ear
thickness/
cm秃尖长
Bald
peak/
cm穗型
Ear
type穗行数
Number of
Rows粒色
Grain
color鲜百粒重
Fresh hundred
grains heavy/g鲜出籽 率
Fresh seed
extraction rate/%GMC104 195.5 72.8 半紧凑
Semi-compact14.1 4.1 0 筒型
Cylindrical14 白色
White24.5 72.5 GMC112 185.3 73.5 半紧凑
Semi-compact15.4 4.2 0 筒型
Cylindrical14 白色
White25.3 73.8 京科糯
2000 Jingkenuo2000
(CK)275.0 133.0 半紧凑
Semi-compact21.9 5.3 1.2 锥型
Cone14 白色
White37.1 68.6 GMC102 178.2 65.5 半紧凑
Semi-compact13.4 4.1 0 筒锥型
Tube cone type13 白色
White15.5 71.5 雪甜7401
Xuetian7401(CK)164.8 36.6 平展 Flat 20.7 4.9 0.5 长锥
Long cone15 白色
White40.8 62.9 -
[1] CHEN L R, GUO Y Q, LI X Y, et al. Phenolics and related in vitro functional activities of different varieties of fresh waxy corn: A whole grain [J]. BMC Chemistry, 2021, 15(1): 14. doi: 10.1186/s13065-021-00740-7 [2] 赵久然, 卢柏山, 史亚兴, 等. 我国糯玉米育种及产业发展动态 [J]. 玉米科学, 2016, 24(4):67−71.ZHAO J R, LU B S, SHI Y X, et al. Development trends of waxy corn breeding and industry in China [J]. Journal of Maize Sciences, 2016, 24(4): 67−71. (in Chinese) [3] WANG C F, LIU H R, LIU C X, et al. Effects of slightly acidic electrolyzed water on the quality and antioxidant capacity of fresh red waxy corn during postharvest cold storage [J]. Frontiers in Plant Science, 2024, 15: 1428394. doi: 10.3389/fpls.2024.1428394 [4] LI Z Q, HONG T N, SHEN G H, et al. Amino acid profiles and nutritional evaluation of fresh sweet-waxy corn from three different regions of China [J]. Nutrients, 2022, 14(19): 3887. doi: 10.3390/nu14193887 [5] 宫捷, 孙磊磊, 张丽萍, 等. 甜糯双隐性基因型玉米种质的创制与评价 [J]. 华南农业大学学报, 2019, 40(2):6−13. doi: 10.7671/j.issn.1001-411X.201806010GONG J, SUN L L, ZHANG L P, et al. Creation and evaluation for corn germplasm of double recessive sweet-waxy genotype [J]. Journal of South China Agricultural University, 2019, 40(2): 6−13. (in Chinese) doi: 10.7671/j.issn.1001-411X.201806010 [6] 戴钎萱, 李子园, 田耀加, 等. 不同品种玉米对草地贪夜蛾生长发育及繁殖的影响 [J]. 应用生态学报, 2020, 31(10):3273−3281.DAI Q X, LI Z Y, TIAN Y J, et al. Effects of different corn varieties on development and reproduction of Spodoptera frugiperda [J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3273−3281. (in Chinese) [7] CHEN B, FENG S L, HOU J F, et al. Genome-wide transcriptome analysis revealing the genes related to sugar metabolism in kernels of sweet corn [J]. Metabolites, 2022, 12(12): 1254. doi: 10.3390/metabo12121254 [8] 中国农业科学院生物技术研究所, 三亚中国农业科学院国家南繁研究院. 一种甜玉米Sh2基因、检测Sh2基因型的引物组合及应用: CN202310612063.1[P]. 2023-08-08. [9] 河南农业大学. 用于检测糯玉米waxy基因的功能性分子标记及应 用: CN202110407150.4[P]. 2021-06-08.Henan Agricultural University. Functional molecular marker for waxy gene detection in waxy maize and its application: CN202110407150.4[P]. 2021-06-08. (in Chinese) [10] 李水琴, 罗吉, 朱志妍, 等. 不同鲜食玉米灌浆期子粒主要营养成分的积累动态 [J]. 玉米科学, 2019, 27(2):77−85.LI S Q, LUO J, ZHU Z Y, et al. Dynamic of the main nutrient ingredients accumulated in different fresh corn grains during filling stage [J]. Journal of Maize Sciences, 2019, 27(2): 77−85. (in Chinese) [11] WU X Y, WU S Y, LONG W J, et al. New Waxy allele wx-Reina found in Chinese waxy maize [J]. Genetic Resources and Crop Evolution, 2019, 66(4): 885−895. doi: 10.1007/s10722-019-00763-z [12] CHAIKAM V, NAIR S K, MARTINEZ L, et al. Marker-assisted breeding of improved maternal haploid inducers in maize for the tropical/subtropical regions [J]. Frontiers in Plant Science, 2018, 9: 1527. doi: 10.3389/fpls.2018.01527 [13] CHEN C, XIAO Z J, ZHANG J W, et al. Development of in vivo haploid inducer lines for screening haploid immature embryos in maize [J]. Plants, 2020, 9(6): 739. doi: 10.3390/plants9060739 [14] 姚文华, 韩学莉, 汪燕芬, 等. 我国甜玉米育种研究现状与发展对策 [J]. 中国农业科技导报, 2011, 13(2):1−8.YAO W H, HAN X L, WANG Y F, et al. Research status and development strategy for sweet corn breeding in China [J]. Journal of Agricultural Science and Technology, 2011, 13(2): 1−8. (in Chinese) [15] 刘蔚楠, 万忠, 甘阳英, 等. 2015年广东甜玉米产业发展形势与对策建议 [J]. 广东农业科学, 2016, 43(3):12−16.LIU W N, WAN Z, GAN Y Y, et al. Development situation and countermeasures of Guangdong sweet corn industry in 2015 [J]. Guangdong Agricultural Sciences, 2016, 43(3): 12−16. (in Chinese) [16] LABROO M R, STUDER A J, RUTKOSKI J E. Heterosis and hybrid crop breeding: A multidisciplinary review [J]. Frontiers in Genetics, 2021, 12: 643761. doi: 10.3389/fgene.2021.643761 [17] MELCHINGER A. E. , GUMBER R K. Overview of heterosis and heterotic groups in agronomic crops. Concepts. Breed. Heterosis[J]. Crop Plants, 1998, 25: 29-44. [18] TIAN D G, CHEN Z Q, LIN Y, et al. Two novel gene-specific markers at the Pik locus facilitate the application of rice blast resistant alleles in breeding [J]. Journal of Integrative Agriculture, 2021, 20(6): 1554−1562. doi: 10.1016/S2095-3119(20)63272-5 [19] GOUDA P K, SAIKUMAR S, VARMA C M K, et al. Marker-assisted breeding of Pi-1 and Piz-5 genes imparting resistance to rice blast in PRR78 restorer line of Pusa RH-10 Basmati rice hybrid [J]. Plant Breeding, 2013, 132(1): 61−69. doi: 10.1111/pbr.12017 [20] 侯智. 玉米病虫害绿色防控技术 [J]. 农业知识, 2021(16):13−16.HOU Z. Green prevention and control technology of maize diseases and insect pests [J]. Agriculture Knowlege, 2021(16): 13−16. (in Chinese) [21] 赵福成, 朱上骏, 夏明星, 等. 水果甜玉米雪甜7401绿色高效栽培技术 [J]. 浙江农业科学, 2019, 60(5):749−750.ZHAO F C, ZHU S J, XIA M X, et al. Green and high efficiency cultivation technology of sweet corn Xuetian 7401 [J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(5): 749−750. (in Chinese)