Effects of Selenium and Arbuscular Mycorrhizal Fungi Applications on Growth, Photosynthesis, and Selenium Accumulation of Amaranthus tricolor L.
-
摘要:
目的 探明丛枝菌根真菌(Arbuscular mycorrhizal fungi, AMF)在苋菜富硒栽培中的生物效应,综合评价AMF对不同硒形态处理下苋菜生长和硒积累的影响。 方法 采用盆栽试验,分析了土施外源硒和接种AMF对苋菜光合作用、生长状况、苋菜红素以及硒积累的影响。 结果 硒酸钠、亚硒酸钠和L-硒代半胱氨酸处理均降低了苋菜红素含量,但对菌根侵染率和菌根依赖性均无显著影响,同时显著提高了苋菜叶片叶绿素a、b含量、蒸腾速率(Tr)、气孔导度(Gs)、净光合速率(Pn)和胞间CO2浓度(Ci),其中L-硒代半胱氨酸处理效果最佳,说明外源硒处理对苋菜的生长有一定的正效应。另外,接种AMF对不同硒处理下苋菜的生长也有促进作用,且提高了叶片苋菜红素含量,同时增强了光合能力和根茎叶硒含量的积累。 结论 接种AMF和外源硒处理均能提高苋菜的光合能力和硒积累能力,从而促进苋菜生长和提高苋菜营养品质,两者交互处理可作为提高蔬菜富硒栽培的有效措施。 Abstract:Objective Amaranth cultivation enriched by applications of selenium and arbuscular mycorrhizal fungi (AMF) was investigated. Methods In a pot experiment, selenium and AMF were added to the soil in cultivating Amaranthus tricolor L. seedlings. Effects on the photosynthesis, growth, and selenium accumulation of the plants were monitored. Results The selenium treatment significantly increased the contents of chlorophyll a and b, transpiration rate (Tr), stomatal conductance (Gs), net photosynthetic rate (Pn), and intercellular CO2 concentration (Ci) but reduced the amaranthine and not significantly affected the infection rate of or dependence on the mycorrhizae of the seedlings. On the other hand, AMF along with the application of various selenium compounds promoted the amaranth growth and increased the leaf amaranthine content, photosynthetic capacity, and selenium accumulation in the roots, stems and leaves. Conclusion Combined AMF and selenium applications benefited the photosynthesis and nutritional quality of A. tricolor. -
图 1 不同硒处理对苋菜的菌根侵染率的影响
①不同小写字母表示P < 0.05水平差异显著;②N-0为土壤中未接种AMF且硒含量为0 mg·kg−1、F-0.5为土壤中接种AMF且硒含量为0.5 mg·kg−1、F-2.5为土壤中接种AMF且硒含量为2.5 mg·kg−1。图2同。
Figure 1. Effect of selenium treatments on mycorrhizal infection rate of amaranth
①Data with different lowercase letters indicate significant differences at P<0.05; ②N-0: soil without AMF and selenium applications; F-0.5: soil inoculated with AMF and added selenium at concentration of 0.5 mg·kg−1; F-2.5: soil inoculated with AMF and added selenium at concentration of 2.5 mg·kg−1. Same for Fig. 2.
图 3 接种 AMF 和硒处理对苋菜叶绿素 a 含量的影响
①不同小写字母表示相同硒处理下未接种AMF和接种AMF之间的显著差异(P < 0.05);不同大写字母表示相同AMF接种下不同形态硒处理之间的显著差异(P < 0.05);②N-0为土壤中未接种AMF且硒含量为0 mg·kg−1、F-0为土壤中接种AMF且硒含量为0 mg·kg−1、N-0.5为土壤中未接种AMF且硒含量为0.5 mg·kg−1、F-0.5为土壤中接种AMF且硒含量为0.5 mg·kg−1、N-2.5为土壤中未接种AMF且硒含量为2.5 mg·kg−1、F-2.5为土壤中接种AMF且硒含量为2.5 mg·kg−1。下同。
Figure 3. Effect of AMF and selenium applications on chlorophyll a content in amaranth
①Data with different lowercase letters indicate significant differences between treatments with and without inoculated AMF under same selenium treatment at P<0.05;those with different capital letters indicate significant differences between different selenium treatments under same AMF treatment at P<0.05;②N-0: soil without AMF and selenium applications; F-0: soil inoculated with AMF but no selenium addition; N-0.5: soil without AMF inoculation but was added with selenium at concentration of 0.5 mg·kg−1; F-0.5: soil inoculated with AMF and added selenium at concentration of 0.5 mg·kg−1; N-2.5: soil without AMF inoculation but was added with selenium at concentration of 2.5 mg·kg−1; F-2.5: soil inoculated with AMF and added selenium at concentration of 2.5 mg·kg−1. Same for below.
表 1 接种AMF对不同硒处理苋菜生物量及生长指标的影响
Table 1. Effects of AMF inoculation on biomass and growth indicators of amaranth under different selenium treatments
硒处理
Selenium addition/
(mg·kg−1)株高
Plant height/
cm茎粗
Stem diameter/
mm总生物量
Total biomass/
(g·盆−1)叶干重
Leaf dry weight/
(g·盆−1)茎干重
Stem dry weight/
(g·盆−1)地下部干重
Subterranean
part dry weight/
(g·盆−1)Non-AMF AMF Non-AMF AMF Non-AMF AMF Non-AMF AMF Non-AMF AMF Non-AMF AMF 对照CK 14.49±0.08dB 17.97±0.97dA 4.76±0.29dB 5.70±0.20cA 1.89±0.05dB 2.35±0.02dA 0.67±0.03cB 0.86±0.03eA 0.41±0.04cB 0.55±0.07cA 0.81±0.03cB 0.94±0.06cA 亚硒
酸钠
Selenite0.5 16.26±1.11cdB 19.17±1.19cdA 5.24±0.26cdB 6.14±0.49cA 2.11±0.07cB 2.61±0.03cA 0.78±0.10cB 0.99±0.05eA 0.46±0.04cB 0.62±0.04cA 0.87±0.08cA 1.01±0.09bcA 2.5 17.12±1.34cB 20.21±1.35cA 5.30±0.28cB 6.23±0.33cA 2.53±0.06bB 3.12±0.06bA 1.03±0.05bB 1.36±0.07cA 0.51±0.06cB 0.65±0.06cA 0.99±0.08bA 1.11±0.04bA 硒酸钠
Selenate0.5 15.00±0.85cdB 18.74±0.82cdA 5.16±0.05cdB 5.81±0.16cA 1.70±0.08dB 2.1±0.01eA 0.71±0.05cB 0.92±0.10eA 0.44±0.08cB 0.58±0.04cA 0.56±0.04dA 0.60±0.07eA 2.5 23.32±0.73aB 25.25±0.82aA 7.11±0.12aB 7.89±0.25aA 2.63±0.02bB 3.34±0.27bA 1.09±0.09bB 1.52±0.10bA 0.86±0.06aB 1.07±0.11aA 0.68±0.07dA 0.76±0.06dA 有机硒
Organic
selenium0.5 17.14±1.42cB 20.01±0.30cA 5.27±0.40cdB 6.06±0.44cA 2.23±0.21cB 2.84±0.07cA 0.82±0.12cB 1.14±0.10dA 0.50±0.02cB 0.65±0.00cA 0.92±0.07bcB 1.05±0.03bcA 2.5 20.03±1.16bB 22.68±0.98bA 6.27±0.17bB 7.01±0.04bA 3.12±0.03aB 3.83±0.12aA 1.32±0.04aB 1.75±0.07aA 0.66±0.06bB 0.83±0.06bA 1.14±0.03aB 1.24±0.03aA 小写字母表示相同AMF接种下不同形态硒处理间的显著差异(P < 0.05);大写字母表示相同硒处理下Non-AMF和AMF之间的显著差异(P < 0.05)。下同。
Data with lowercase letters on same column indicate significant differences between different selenium treatments with same AMF inoculation at P<0.05; those with different uppercase letters on same row indicate significant differences between treatments with and without inoculated AMF under same selenium treatment at P<0.05. Same for below.表 2 接种AMF和不同硒处理对苋菜光合指标的影响
Table 2. Effect of AMF inoculation on photosynthetic indexes of amaranth under different selenium treatments
硒处理
Selenium addition/ (mg·kg−1)蒸腾速率Tr/
(mmol·m−2·s−1)气孔导度Gs/
(mmol·m−2·s−1)净光合速率Pn/
(µmol·m−2·s−1)胞间CO2浓度Ci/
(μmol·mol−1)Non-AMF AMF Non-AMF AMF Non-AMF AMF Non-AMF AMF 对照CK 0.79±0.03fB 1.08±0.10eA 17.84±0.42dB 29.15±1.48eA 2.25±0.04dB 4.53±0.12dA 114.2±1.74fB 144.6±0.10fA 亚硒酸钠
Selenite0.5 1.19±0.14eB 1.97±0.19dA 33.67±1.06bcB 55.74±3.35abA 3.94±0.53cB 5.63±0.10cA 161.4±2.02eB 199.6±0.95eA 2.5 1.72±0.03aB 2.59±0.05abA 38.94±1.14aB 57.91±1.10aA 6.63±0.72bB 9.33±0.38abA 202.1±1.32bB 226.7±1.25dA 硒酸钠
Selenate0.5 1.35±0.05dB 2.29±0.01cA 31.36±1.87cB 45.20±1.35dA 3.62±0.25cB 5.26±0.24cA 169.1±3.24dB 225.8±1.19dA 2.5 1.61±0.04bB 2.32±0.03cA 34.61±0.62bB 56.96±0.37abA 8.50±0.01aB 9.42±0.43abA 201.5±2.75bB 249.5±3.93cA 有机硒
Organic selenium0.5 1.48±0.01cB 2.44±0.24bcA 33.81±1.08bB 54.49±0.15bA 6.99±0.64bB 9.08±0.40bA 189.8±1.21cB 269.7±3.58bA 2.5 1.68±0.03abB 2.80±0.03aA 37.71±0.96aB 50.26±1.32cA 8.37±0.48aB 9.85±0.24aA 237.4±2.66aB 306.0±5.34aA -
[1] HADRUP N, RAVN-HAREN G. Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review [J]. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 2021, 67: 126801. doi: 10.1016/j.jtemb.2021.126801 [2] 谢邦廷. 典型地球化学景观区硒地球化学特征及生态效应[D]. 北京: 中国地质大学(北京), 2017.XIE B T. Geochemical characteristics and ecological effects of selenium in typical geochemical landscapes[D]. Beijing: China University of Geosciences, 2017. (in Chinese) [3] CHEN S C, ZHAO H J, ZOU C C, et al. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings [J]. Frontiers in Microbiology, 2017, 8: 2516. doi: 10.3389/fmicb.2017.02516 [4] LI X, CHEN A Y, YU L Y, et al. Effects of β-cyclodextrin on phytoremediation of soil co-contaminated with Cd and BDE-209 by arbuscular mycorrhizal amaranth [J]. Chemosphere, 2019, 220: 910−920. doi: 10.1016/j.chemosphere.2018.12.211 [5] SANMARTÍN C, GARMENDIA I, ROMANO B, et al. Mycorrhizal inoculation affected growth, mineral composition, proteins and sugars in lettuces biofortified with organic or inorganic selenocompounds [J]. Scientia Horticulturae, 2014, 180: 40−51. doi: 10.1016/j.scienta.2014.09.049 [6] ORLOVSKAYA O A, YATSEVICH K K, VAKULA S I, et al. Characterization of high molecular weight glutenin subunits in wild emmer wheat (Triticum dicoccoides) [J]. Cytology and Genetics, 2020, 54(3): 199−205. doi: 10.3103/S009545272003010X [7] 唐玉霞, 王慧敏, 刘巧玲, 等. 河北省麦田土壤硒的含量、形态及其有效性研究 [J]. 华北农学报, 2010, 25(S1):194−197.TANG Y X, WANG H M, LIU Q L, et al. Study on the content, speciation and availability of selenium in wheat field soil of Hebei Province [J]. Acta Agriculturae Boreali-Sinica, 2010, 25(S1): 194−197. (in Chinese) [8] KAUR M, SHARMA S. Influence of selenite and selenate on growth, leaf physiology and antioxidant defense system in wheat (Triticum aestivum L. ) [J]. Journal of the Science of Food and Agriculture, 2018, 98(15): 5700−5710. doi: 10.1002/jsfa.9117 [9] 黄太庆, 江泽普, 邢颖, 等. 亚硒酸钠不同施用方法对水稻硒富集及转化的影响 [J]. 西南农业学报, 2021, 34(2):311−319.HUANG T Q, JIANG Z P, XING Y, et al. Effects of different sodium selenite application methods on Se accumulation and transformation in rice [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(2): 311−319. (in Chinese) [10] YU Y, LUO L, YANG K, et al. Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils [J]. Pedobiologia, 2011, 54(5/6): 267−272. [11] LI J, LIU R F, WU B Y, et al. Influence of arbuscular mycorrhizal fungi on selenium uptake by winter wheat depends on the level of selenate spiked in soil[J]. Chemosphere, 2022, 291(Pt 2): 132813. [12] 苗秀妍. 丛枝菌根真菌和微肥施用对大豆生长及锌、硒积累的影响[D]. 南宁: 广西大学, 2019.MIAO X Y. Effects of arbuscular mycorrhizal fungi inoculation and trace element fertilization on growth and accumulation of zinc and selenium in soybean[D]. Nanning: Guangxi University, 2019. (in Chinese) [13] CHEN X, ZHANG Z Y, GU M H, et al. Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain [J]. The Science of the Total Environment, 2020, 748: 141166. doi: 10.1016/j.scitotenv.2020.141166 [14] LUO W Q, LI J, MA X N, et al. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat [J]. Plant and Soil, 2019, 438(1): 71−83. [15] DURÁN P, ACUÑA J J, ARMADA E, et al. Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress [J]. Journal of Soil Science and Plant Nutrition, 2016, 16(1): 201−225. [16] MUNIER-LAMY C, DENEUX-MUSTIN S, MUSTIN C, et al. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass [J]. Journal of Environmental Radioactivity, 2007, 97(2/3): 148−158. [17] 黄仁华, 陆云梅, 黄炜. 丛枝菌根真菌(AMF)对137Cs污染土壤下宿根高粱生长、根际磷酸酶和富集核素的影响 [J]. 农业环境科学学报, 2013, 32(5):953−959.HUANG R H, LU Y M, HUANG W. Influences of arbuscular mycorrhizal fungi(AMF)on the growth, phosphatase activities and radioactive nuclide bioconcentration of sorghum haipense at soil contaminated with 137 Cs [J]. Journal of Agro-Environment Science, 2013, 32(5): 953−959. (in Chinese) [18] 吴鹏, 吕剑, 郁继华, 等. 褪黑素对盐碱复合胁迫下黄瓜幼苗光合特性和渗透调节物质含量的影响 [J]. 应用生态学报, 2022, 33(7):1901−1910.WU P, LYU J, YU J H, et al. Effects of melatonin on photosynthetic properties and osmoregulatory substance contents of cucumber seedlings under salt-alkali stress [J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1901−1910. (in Chinese) [19] 黄丽华, 李芸瑛, 穆晓琨, 等. 苋菜红素的提取纯化及抗氧化活性分析 [J]. 湖北农业科学, 2016, 55(13):3411−3415.HUANG L H, LI Y Y, MU X K, et al. Extraction and purification of red pigment from Amaranthus tricolor L. and analysis of its antioxidant activity [J]. Hubei Agricultural Sciences, 2016, 55(13): 3411−3415. (in Chinese) [20] SARKER U, OBA S. Leaf pigmentation, its profiles and radical scavenging activity in selected Amaranthus tricolor leafy vegetables [J]. Scientific Reports, 2020, 10: 18617. doi: 10.1038/s41598-020-66376-0 [21] 黄仁华, 杨会玲, 陆云梅. 贮藏温度对富硒栽培猕猴桃品质和硒组分的影响 [J]. 核农学报, 2015, 29(8):1525−1531.HUANG R H, YANG H L, LU Y M. Effects of storage temperature on quality and selenium component of kiwifruit with Se-enriched cultivation [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(8): 1525−1531. (in Chinese) [22] WEI Q Y, GOULART B L, DEMCHAK K, et al. Interactive effects of mycorrhizal inoculation and organic soil amendments on nitrogen acquisition and growth of highbush blueberry [J]. Journal of the American Society for Horticultural Science, 2002, 127(5): 742−748. doi: 10.21273/JASHS.127.5.742 [23] 陈雪. 丛枝菌根真菌对水稻硒吸收、积累的机理研究[D]. 南宁: 广西大学, 2019.CHEN X. The mechanism of arbuscular mycorrhizal fungi inoculation on selenium uptake andaccumulation in rice[D]. Nanning: Guangxi University, 2019. (in Chinese) [24] LI J, AWASTHI M K, XING W J, et al. Arbuscular mycorrhizal fungi increase the bioavailability and wheat (Triticum aestivum L. ) uptake of selenium in soil [J]. Industrial Crops and Products, 2020, 150: 112383. doi: 10.1016/j.indcrop.2020.112383 [25] 刘铭铭, 李衍素, 孙锦, 等. 两种丛枝菌根真菌扩繁比较及其对玉米促生的研究 [J]. 农业科技通讯, 2018, (4):63−67.LIU M M, LI Y S, SUN J, et al. Comparison of propagation of two arbuscular mycorrhizal fungi and their effects on maize growth [J]. Bulletin of Agricultural Science and Technology, 2018(4): 63−67. (in Chinese) [26] DA SILVA D F, CIPRIANO P E, DE SOUZA R R, et al. Biofortification with selenium and implications in the absorption of macronutrients in Raphanus sativus L [J]. Journal of Food Composition and Analysis, 2020, 86: 103382. doi: 10.1016/j.jfca.2019.103382 [27] SMOLEŃ S, BARANSKI R, LEDWOŻYW-SMOLEŃ I, et al. Combined biofortification of carrot with iodine and selenium [J]. Food Chemistry, 2019, 300: 125202. doi: 10.1016/j.foodchem.2019.125202 [28] WU Z C, XU S J, SHI H Z, et al. Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage [J]. Ecotoxicology and Environmental Safety, 2018, 166: 157−164. doi: 10.1016/j.ecoenv.2018.09.085 [29] 黄思杰, 刘丹丹, 杨育文, 等. 外源硒对紫色生菜生理指标及营养品质的影响 [J]. 分子植物育种, 2023, 21(18):6126−6133.HUANG S J, LIU D D, YANG Y W, et al. Effect of exogenous selenium on physiological indicators and nutritional quality of purple lettuce [J]. Molecular Plant Breeding, 2023, 21(18): 6126−6133. (in Chinese) [30] ZAHEDI S M, HOSSEINI M S, MEYBODI N D H, et al. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality [J]. South African Journal of Botany, 2019, 124: 350−358. doi: 10.1016/j.sajb.2019.05.019 [31] ZAHEDI S M, ABDELRAHMAN M, HOSSEINI M S, et al. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles [J]. Environmental Pollution, 2019, 253: 246−258. doi: 10.1016/j.envpol.2019.04.078 [32] GOLOB A, NOVAK T, MARŠIĆ N K, et al. Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes) and increases their contents in tubers [J]. Plant Physiology and Biochemistry: PPB, 2020, 150: 234−243. doi: 10.1016/j.plaphy.2020.02.044 [33] GOLOB A, STIBILJ V, NEČEMER M, et al. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum [J]. Journal of Photochemistry and Photobiology B, Biology, 2018, 180: 51−55. doi: 10.1016/j.jphotobiol.2018.01.018 [34] 钟松臻, 张宝军, 张木, 等. 硒对水稻光合作用及抗氧化作用的影响 [J]. 中国土壤与肥料, 2017, (4):134−139.ZHONG S Z, ZHANG B J, ZHANG M, et al. Effects of selenium on photosynthesis and antioxidation of rice [J]. Soil and Fertilizer Sciences in China, 2017(4): 134−139. (in Chinese) [35] 柴明艳. 红苋菜提取物抗氧化活性的研究 [J]. 食品研究与开发, 2016, 37(12):19−23.CHAI M Y. Antioxidant activity of extracts from Amaranthus tricolor L [J]. Food Research and Development, 2016, 37(12): 19−23. (in Chinese) [36] 陈雪, 沈方科, 张增裕, 等. 硒肥和土壤类型对水稻硒吸收的影响 [J]. 西南农业学报, 2017, 30(9):2010−2016.CHEN X, SHEN F K, ZHANG Z Y, et al. Effects of soil type and selenium application on assimilation of selenium in rice [J]. Southwest China Journal of Agricultural Sciences, 2017, 30(9): 2010−2016. (in Chinese) [37] 黄思思, 余侃, 唐一龙, 等. 生物有机硒对绿茶产量、品质及硒含量的影响 [J]. 茶叶通讯, 2020, 47(4):610−616.HUANG S S, YU K, TANG Y L, et al. Effect of bioorganic selenium on yield, quality and selenium content of green tea [J]. Journal of Tea Communication, 2020, 47(4): 610−616. (in Chinese)