Nutritional Value and Amino Acids in Tuna Steam-cooking Liquid
-
摘要:
目的 明确金枪鱼蒸煮液蛋白的营养结构及功能特征氨基酸组成,为开发金枪鱼蒸煮液蛋白活性肽提供理论支持。 方法 采用液相色谱法及液质联用色谱法、全自动氨基酸解析金枪鱼蒸煮液蛋白的分子质量分布及氨基酸组成,评价其营养价值及潜在活性功能。 结果 金枪鱼蒸煮液蛋白与固形物比为76%,以酸溶性蛋白为主,分子质量< 1000 Da肽组分达到83.26%;必需氨基酸指数EAAI为20.64、生物价为10.80;游离氨基酸仅占总氨基酸含量的17.86%;羟脯氨酸的含量占总蛋白的3.29%,占总氨基酸含量的7.16%,且羟脯氨酸主要以蛋白肽形式存在,占羟脯氨酸的63.83%。具有ACE抑制活性的特征氨基酸占比为19.63%,具抗黄嘌呤氧化酶活性的特征氨基酸占比为9.71%,促成骨细胞增殖活性的特征氨基酸占比为27.27%,且促成骨细胞增殖功能与蛋白浓度密切相关。 结论 金枪鱼蒸煮液的蛋白主要为胶原蛋白小分子肽,具有较好的促成骨细胞增殖功能活性和抗氧化活性、ACE抑制活性、抗黄嘌呤氧化酶活性功能。 Abstract:Objective Nutritional value and amino acids (AAs) in tuna steam-cooking liquid were analyzed. Methods The tuna processing liquid was collected for chemical determinations by liquid chromatography-mass spectrometry and an amino acid analyzer. Results The solids in the liquid contained 76% protein which was 83.26% acid soluble peptides of less than 1,000 Da in molecular weight. The essential amino acid index of the liquid was 20.64 with a biological value of 10.80. Of the total AAs, 17.86% were free AAs; 19.63%, ACE-inhibiting; 9.71%, anti-xanthine oxidase; 27.27%, bone cell proliferation-promoting; and 7.16 %, hydroxyproline (which was 3.29% of the total protein with 63.83 % in the form of peptides). The bone cell proliferation promotion function was closely related to the protein concentration of the liquid. Conclusion The protein in the tuna steam-cooking liquid was mainly small molecule peptides derived from collagen. -
Key words:
- Tuna /
- peptides /
- nutritional evaluation /
- amino acids /
- functional activity
-
表 1 金枪鱼蒸煮液氨基酸组成
Table 1. AAs in tuna steam-cooking liquid (N=3)
编号
number名称
name呈味特征
Taste
characteristics水解氨基酸
含量
Hydrolyzed amino
acid content/%游离氨基酸
含量
Free amino
acid content/%1 天冬氨酸 Asp 鲜 2.96±0.10 0.07±0.00 2 苏氨酸 Thr 甜 1.32±0.01 0.06±0.00 3 丝氨酸 Ser 甜 1.34±0.01 0.01±0.00 4 谷氨酸 Glu 鲜 5.81±0.10 0.18±0.00 5 甘氨酸 Gly 甜 7.02±0.00 0.25±0.03 6 丙氨酸 Ala 甜 4.17±0.00 1.30±0.01 7 胱氨酸 Cys — 0.37±0.00 0.05±0.00 8 缬氨酸 Val 苦 1.34±0.01 0.48±0.00 9 蛋氨酸 Met 苦 0.68±0.00 0.06±0.00 10 异亮氨酸 Ile 苦 0.77±0.01 0.27±0.00 11 亮氨酸 Leu 苦 1.73±0.01 0.71±0.03 12 酪氨酸 Tyr — 0.39±0.01 0.13±0.01 13 苯丙氨酸 Phe 苦 0.92±0.00 0.17±0.00 14 赖氨酸 Lys — 2.63±0.00 0.60±0.01 15 组氨酸 His 苦 5.37±0.10 1.32±0.00 16 精氨酸 Arg 苦 2.17±0.01 0.25±0.00 17 脯氨酸 Pro — 3.62±0.10 0.45±0.00 18 羟脯氨酸 Hyp — 3.29±0.10 1.19±0.01 19 γ-氨基丁酸 GABA — — 0.04±0.00 20 天冬酰胺 Asn — — 0.02±0.00 21 谷氨酰胺 Gln — — 0.59±0.00 总计
total45.92 8.20 —表示未检测。
— indicates not detected.表 2 金枪鱼蒸煮液蛋白氨基酸组成评分
Table 2. Evaluation scores on AAs in tuna steam-cooking liquid
必需氨基酸
essential amino acid金枪鱼蒸煮液
Tuna cooking Liquid/%FAO/WHO模式
FAO/WHO mode全鸡蛋蛋白
Whole egg protein/%AAS/% CS/% 异亮氨酸 Ile 0.77 4.0 5.4 19.25 14.26 亮氨酸 Leu 1.73 7.0 8.6 43.25 20.11 赖氨酸 Lys 2.63 5.5 7.0 47.82 37.57 蛋氨酸 Met+胱氨酸 Cys 1.05 3.5 5.7 30.00 18.42 苯丙氨酸 Phe+酪氨酸 Tyr 1.31 6.0 9.3 21.83 14.09 苏氨酸 Thr 1.32 4.0 4.7 33.00 28.09 缬氨酸 Val 1.34 5.0 6.6 26.80 20.30 总量 total 10.15 36.0 47.3 EAAL% 20.64 BV% 10.80 NI 0.94 注:FAO/WHO模式和全鸡蛋蛋白含量参考文献《红曲黄酒糟蛋白酶解物制备工艺优及营养评价》[15]。
References on FAO/WHO model and whole egg protein [15].表 3 不同功能活性的特征氨基酸
Table 3. AAs with different functional activities
功能
function特征氨基酸组分
Characteristic amino acid components特征氨基酸占比
Proportion of characteristic
amino acids /%抗氧化能力
Antioxidant capacity脯氨酸(Pro)、丙氨酸(Ala)、酪氨酸(Tyr)、缬氨酸(Val)、
甘氨酸(Gly)、组氨酸(His)、赖氨酸(Lys)35.68 ACE抑制活性
ace inhibitory activity缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、
脯氨酸(Pro)、甘氨酸(Gly)10.84 XOD抑制活性
XOD inhibitory activity色氨酸(Trp)、酪氨酸(Tyr)、苯丙氨酸(Phe)、组氨酸(His) 9.71 促成骨细胞增殖活性
Promoting bone cell proliferation activity甘氨酸(Gly)、羟脯氨酸(Hyp)、酪氨酸(Tyr)、苯丙氨酸(Phe) 27.27 -
[1] 王新宇, 谷秀, 位正鹏, 等. 响应面法优化金枪鱼蒸煮液发酵制备海鲜调味基料工艺 [J]. 食品工业科技, 2021, 42(21):166−172.WANG X Y, GU X, WEI Z P, et al. Optimization of preparation of seafood flavor condiment base from tuna cooking liquor by fermentation [J]. Science and Technology of Food Industry, 2021, 42(21): 166−172.(in Chinese) [2] 叶孟亮. 牦牛骨胶原蛋白肽抗骨质疏松作用机制研究[D]. 北京: 中国农业科学院, 2019.YE M L. Study on anti-osteoporosis mechanism of yak bone collagen peptide[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) [3] LIU L, LI S S, ZHENG J X, et al. Safety considerations on food protein-derived bioactive peptides [J]. Trends in Food Science & Technology, 2020, 96: 199−207. [4] 黄莹莹. 固定化酶制备牡蛎ACE抑制肽及抗氧化肽[D]. 哈尔滨: 哈尔滨工业大学, 2013HUANG Y Y. The preparation of ACE inhibitory peptides and antioxidative peptides from oyster by immobilized enzyme[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese) [5] CHEN X, FANG F, WANG S Y. Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via Maillard reaction [J]. Food and Chemical Toxicology, 2020, 137: 111115. doi: 10.1016/j.fct.2020.111115 [6] YANG Q, CAI X X, YAN A N, et al. A specific antioxidant peptide: Its properties in controlling oxidation and possible action mechanism [J]. Food Chemistry, 2020, 327: 126984. doi: 10.1016/j.foodchem.2020.126984 [7] 张露, 叶秀云, 谢金盛, 等. 酶解鲭鱼罐头蒸煮液制备生物活性肽 [J]. 福州大学学报(自然科学版), 2014, 42(6):950−956.ZHANG L, YE X Y, XIE J S, et al. Study on enzymolysis of the canned mackerel cooking juice for preparing bioactive peptide [J]. Journal of Fuzhou University (Natural Science Edition), 2014, 42(6): 950−956.(in Chinese) [8] 林煌华, 谢友坪, 马瑞娟, 等. 复合酶制备鳀鱼蒸煮液水解肽及其抗氧化活性研究 [J]. 食品工业科技, 2020, 41(9):131−136,143.LIN H H, XIE Y P, MA R J, et al. Preparation of hydrolyzed peptides from anchovy cooking liquid by complex enzyme and its antioxidant activity [J]. Science and Technology of Food Industry, 2020, 41(9): 131−136,143.(in Chinese) [9] 王共明, 姜立生, 黄会, 等. 扇贝蒸煮液低聚肽的制备工艺优化及体外抗氧化研究 [J]. 中国食品添加剂, 2023, 34(6):91−100.WANG G M, JIANG L S, HUANG H, et al. Optimization of extraction process of oligopeptide from scallop cooking liquid and its antioxidant in vitro [J]. China Food Additives, 2023, 34(6): 91−100.(in Chinese) [10] 贾鹏禹, 孙蕊, 寇芳, 等. 柱前衍生化液相色谱法测定牛血清中游离氨基酸含量 [J]. 中国生物制品学杂志, 2018, 31(8):869−873.JIA P Y, SUN R, KOU F, et al. Determination of free amino acid content in bovine serum by precolumn derivatization-high performance liquid chromatography [J]. Chinese Journal of Biologicals, 2018, 31(8): 869−873.(in Chinese) [11] 许丹, 朱剑, 严忠雍, 等. 加工方式对金枪鱼鱼糜制品氨基酸组成和营养价值影响研究 [J]. 中国调味品, 2020, 45(11):74−80.XU D, ZHU J, YAN Z Y, et al. Amino acid composition and nutritional value of tuna surimi products prepared by different processing methods [J]. China Condiment, 2020, 45(11): 74−80.(in Chinese) [12] 舒聪涵. 金枪鱼骨胶原肽及其钙螯合物对成骨细胞的活性影响研究[D]. 舟山: 浙江海洋大学, 2021SHU C H. Effect of tuna bone collagen peptides and its calcium chelates on osteoblasts activity[D]. Zhoushan: Zhejiang Ocean University, 2021. (in Chinese) [13] 孙丽, 夏文水. 蒸煮对金枪鱼肉及其蛋白质热变性的影响 [J]. 食品与机械, 2010, 26(1):22−25.SUN L, XIA W S. Effect of steam cooking on muscle and protein heat-denature of tuna [J]. Food & Machinery, 2010, 26(1): 22−25.(in Chinese) [14] 李可欣, 丁慧璞, 周旭静, 等. 金枪鱼蒸煮汁的抗氧化性、脱腥处理及其风味沙拉酱的研制 [J]. 食品工业科技, 2020, 41(4):153−160.LI K X, DING H P, ZHOU X J, et al. Antioxidant and deodorizing treatment of tuna steamed juice and development of its flavor salad [J]. Science and Technology of Food Industry, 2020, 41(4): 153−160.(in Chinese) [15] 林晓婕, 何志刚, 梁璋成, 等. 红曲黄酒糟蛋白酶解物制备工艺优化及营养评价 [J]. 中国粮油学报, 2019, 34(1):43−49.LIN X J, HE Z G, LIANG Z C, et al. Optimization of preparation technology of Hongqu glutinous rice wine grains protein hydrolysate and nutrition value [J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(1): 43−49.(in Chinese) [16] 薛鹏, 赵雷, 荆金金, 等. 藜麦麸皮蛋白的氨基酸分析及营养价值评价 [J]. 食品研究与开发, 2019, 40(5):65−70.XUE P, ZHAO L, JING J J, et al. Amino acid analysis and nutritional evaluation of quinoa bran protein [J]. Food Research and Development, 2019, 40(5): 65−70.(in Chinese) [17] UDENIGWE C C, ALUKO R E. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates [J]. International Journal of Molecular Sciences, 2011, 12(5): 3148−3161.[PubMed doi: 10.3390/ijms12053148 [18] 张丰文, 董超, 周丽亚, 等. 抗氧化多肽来源、提取及检测的研究进展 [J]. 生物技术, 2021, 31(1):96−103, 64.ZHANG F W, DONG C, ZHOU L Y, et al. Research progress of antioxidant peptides [J]. Biotechnology, 2021, 31(1): 96−103, 64.(in Chinese) [19] MA Y Y, ZHANG D D, LIU M Q, et al. Identification of Antioxidant Peptides Derived from Tilapia (Oreochromis niloticus) Skin and Their Mechanism of Action by Molecular Docking [J]. Foods, 2022, 11(17): 2576−2576. doi: 10.3390/foods11172576 [20] LI X C, LIN J, HAN W J, et al. Antioxidant ability and mechanism of rhizoma Atractylodes macrocephala [J]. Molecules, 2012, 17(11): 13457−13472. doi: 10.3390/molecules171113457 [21] BOUGATEF A, NEDJAR-ARROUME N, MANNI LAÏLA, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins [J]. Food Chemistry, 2010, 118(3): 559−565. doi: 10.1016/j.foodchem.2009.05.021 [22] CUSHMAN D W, CHEUNG H S, SABO E F, et al. Development and design of specific inhibitors of angiotensin-converting enzyme [J]. The American Journal of Cardiology, 1982, 49(6): 1390−1394. doi: 10.1016/0002-9149(82)90348-4 [23] 郑炯, 邓惠玲, 林茂, 等. ACE抑制肽的酶法制备及其构效关系的研究进展 [J]. 食品工业科技, 2012, 33(15):418−422,427.ZHENG J, DENG H L, LIN M, et al. Research progress in preparation by enzyme hydrolysis and structure-activity relationship of ACE inhibitory peptides [J]. Science and Technology of Food Industry, 2012, 33(15): 418−422,427.(in Chinese) [24] YAN L J, SUN L C, CAO K Y, et al. Type I collagen from sea cucumber (Stichopus japonicus) and the role of matrix metalloproteinase-2 in autolysis [J]. Food Bioscience, 2021, 41: 100959. doi: 10.1016/j.fbio.2021.100959 [25] AHMED R, HAQ M, CHUN B S. Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus) [J]. International Journal of Biological Macromolecules, 2019, 135: 668−676. doi: 10.1016/j.ijbiomac.2019.05.213 [26] MIRZAEI M, MIRDAMADI S, SAFAVI M, et al. The stability of antioxidant and ACE-inhibitory peptides as influenced by peptide sequences [J]. LWT, 2020, 130: 109710. doi: 10.1016/j.lwt.2020.109710 [27] 闫洪波, 楚英珂, 李雯慧, 等. 海洋生物活性肽生物学和功能特性的研究进展 [J]. 食品科学, 2023, 44(7):18−28.YAN H B, CHU Y K, LI W H, et al. Advances in research on biological and functional properties of bioactive peptides derived from marine sources [J]. Food Science, 2023, 44(7): 18−28.(in Chinese) [28] 马永轩, 张名位, 魏振承, 等. 不同种类活性短肽的理化与功能特性比较 [J]. 中国粮油学报, 2016, 31(6):57−62.MA Y X, ZHANG M W, WEI Z C, et al. Comparison of physicochemical and functional properties of different active peptides [J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(6): 57−62.(in Chinese) [29] 李睿, 吴宗好, 陈卫东. 小分子多肽的来源新进展 [J]. 中南药学, 2016, 14(2):175−178.LI R, WU Z H, CHEN W D. New source development of small molecule polypeptide [J]. Central South Pharmacy, 2016, 14(2): 175−178.(in Chinese) [30] 唐开永, 周鸿翔, 田娅玲, 等. 低浓度小分子多肽含量测定方法的比较研究 [J]. 食品研究与开发, 2018, 39(16):144−148.TANG K Y, ZHOU H X, TIAN Y L, et al. Comparative study on the determination of low concentration small molecule peptide content [J]. Food Research and Development, 2018, 39(16): 144−148.(in Chinese) [31] 王力, 肖嵋方, 刘斌, 等. 海洋生物活性物质抗衰老作用研究进展 [J]. 食品工业科技, 2021, 42(22):433−441.WANG L, XIAO M F, LIU B, et al. Research progress on the anti-aging effect of marine bioactive substances [J]. Science and Technology of Food Industry, 2021, 42(22): 433−441.(in Chinese) [32] 李宇, 汪芳, 翁泽斌, 等. 酶法制备大豆蛋白成骨活性肽 [J]. 中国农业科学, 2021, 54(13):2885−2894.LI Y, WANG F, WENG Z B, et al. Preparation of soybean protein-derived pro-osteogenic peptides via enzymatic hydrolysis [J]. Scientia Agricultura Sinica, 2021, 54(13): 2885−2894.(in Chinese) [33] OHARA H, IIDA H, ITO K, et al. Effects of pro-hyp, a collagen hydrolysate-derived peptide, on hyaluronic acid synthesis using in vitro cultured synovium cells and oral ingestion of collagen hydrolysates in a guinea pig model of osteoarthritis [J]. Bioscience, Biotechnology, and Biochemistry, 2010, 74(10): 2096−2099. doi: 10.1271/bbb.100193