• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百合叶烧病发病过程叶片细胞和差异表达基因分析

葛金涛 王江英 汤雪燕 孙明伟 腾年军 朱朋波 赵统利 吴秋月 邵小斌

葛金涛,王江英,汤雪燕,等. 百合叶烧病发病过程叶片细胞和差异表达基因分析 [J]. 福建农业学报,2022,37(2):224−232 doi: 10.19303/j.issn.1008-0384.2022.002.012
引用本文: 葛金涛,王江英,汤雪燕,等. 百合叶烧病发病过程叶片细胞和差异表达基因分析 [J]. 福建农业学报,2022,37(2):224−232 doi: 10.19303/j.issn.1008-0384.2022.002.012
GE J T, WANG J Y, TANG X Y, et al. Changes in Cell Structure and Gene Expression of Lily Leaves with Necrosis [J]. Fujian Journal of Agricultural Sciences,2022,37(2):224−232 doi: 10.19303/j.issn.1008-0384.2022.002.012
Citation: GE J T, WANG J Y, TANG X Y, et al. Changes in Cell Structure and Gene Expression of Lily Leaves with Necrosis [J]. Fujian Journal of Agricultural Sciences,2022,37(2):224−232 doi: 10.19303/j.issn.1008-0384.2022.002.012

百合叶烧病发病过程叶片细胞和差异表达基因分析

doi: 10.19303/j.issn.1008-0384.2022.002.012
基金项目: 连云港市农业科学院青年基金项目(QNJJ2004); 江苏省政策引导类计划项目(苏北科技专项)(SZ-LYG202039);江苏省农业科技自主创新资金[CX(20)3025]
详细信息
    作者简介:

    葛金涛(1987−),男,硕士,助理研究员,主要从事园艺作物育种研究(E-mail:672643419@qq.com

    通讯作者:

    邵小斌(1972−),男,学士,研究员,主要从事园艺作物育种与栽培技术研究(E-mail:382748523@qq.com

  • 中图分类号: S 682.29

Changes in Cell Structure and Gene Expression of Lily Leaves with Necrosis

  • 摘要:   目的  明确百合叶烧病发病过程中百合叶片细胞结构的变化,探究百合叶烧病发病的分子调控机理。  方法  通过扫描电镜和透射电镜观察东方百合Tarrango正常叶片、轻度叶烧叶片和重度叶烧叶片超微结构。并通过比较东方百合Tarrango正常叶片、叶烧叶片、正常叶片喷钙和叶烧叶片喷钙4种处理的转录组测序数据,对差异表达基因进行序列对比和分类分析。  结果  百合叶片近轴面表皮细胞大小随叶烧程度的加深而减小,而液泡失水是导致表皮细胞体积缩小的原因。转录组测序共获得349 537条unigenes,平均长度为513.25 bp。124 405条unigenes获得注释,占unigenes总数的35.59%。共发现7 185个差异表达基因,包括5 860个特异差异表达基因和1 325个共同差异表达基因。KEGG富集分析显示,“代谢途径”“丙酮酸代谢”“次生代谢产物的生物合成”和“光合作用生物的碳固定作用”的基因在4组试验处理都有富集。百合叶烧病发病过程中显著下调基因有FOLKPLD1_2、ATPeF1BKCS、CALMENOpel等;而在叶烧叶片喷钙后,表达量上调的基因有CALMCPKEIN2AUX1、PLD1_2和SORD等。  结论  缺钙是导致百合叶烧病的重要因素,由缺钙引起的液泡失水和细胞皱缩等病害表征可能受脱落酸、乙烯和生长素等激素调控。
  • 图  1  不同叶烧程度百合叶片

    注:A,百合Tarrango正常叶片;B,百合Tarrango轻度叶烧叶片;C,百合Tarrango重度叶烧叶片。图2同。

    Figure  1.  Leaves from different degrees of ULN-infection

    Note: A: Leaf from normal lily plant; B: Leaf from lily plant mildly infected by ULN; C: Leaf from lily plant severely infected by ULN. Same for Fig. 2.

    图  2  百合叶片近轴面超微结构

    Figure  2.  Ultrastructure of lily leaves in adaxial view

    图  3  百合叶片远轴面超微结构

    注:A,百合Tarrango重度叶烧叶片;B,百合Tarrango轻度叶烧叶片;C,百合Tarrango正常叶片。

    Figure  3.  Ultrastructure of lily leaves in abaxial view

    Note: A, Leaf from lily plant severely infected by ULN; B, Leaf from lily plant mildly infected by ULN; C, Leaf from normal lily plant.

    图  4  百合叶片透射电镜下超微结构

    注:A和B:百合Tarrango正常叶片;C和D:百合Tarrango轻度叶烧叶片;E和F:百合Tarrango重度叶烧叶片。

    Figure  4.  Ultrastructure of lily leaves shown by TEM

    Note: A and B: normal leaf of lily Tarrango; C and D: mildly ULN leaf of Lily Tarrango; E and F: severely Lily ULN leaf of Lily Tarrango.

    图  5  差异表达基因的表达谱分析

    注:A,差异表达基因的聚类分析;B,差异表达基因的数量;C,差异表达基因的主成分分析;D,差异基因维恩图分析。

    Figure  5.  Expression profiling of differentially expressed genes

    Note: A: Cluster analysis on differentially expressed genes; B: Number of differentially expressed genes; C: Principal component analysis on differentially expressed genes; D: Venn diagram of differential genes.

    图  6  差异表达基因的GO富集分析

    注:1,催化活性;2,结合;3,转运活性;4,结构分子活性;5,电子载体;6,核酸结合转录因子活性;7,酶调节活性;8,抗氧化活性;9,分子传感器活性;10,细胞组分;11,细胞器;12,膜部分;13,细胞器部分;14,细胞膜;15,高分子复合物;16,胞外区;17,类核;18,细胞连接;19,代谢过程;20,细胞过程;21,单一生物过程;22,生物调节;23,应激反应;24,定位;25,发育过程;26,多生物过程;27,免疫系统过程;28,组织细胞组成或生物起源;29,生殖过程;30,多细胞生物过程;31,繁殖;32,细胞外区域部分;33,细胞外基质;34,细胞外基质成分;35,运动;36,生长;37,突触部分。

    Figure  6.  GO enrichment analysis on differentially expressed genes

    Note: 1: catalytic activity; 2: binding; 3: transporter activity; 4: structural molecule activity; 5: electron carrier activity; 6: nucleic acid binding transcription factor activity; 7: enzyme regulator activity; 8: antioxidant activity; 9: molecular transducer activity; 10: cell part; 11: organelle; 12: membrane part;13: organelle part; 14: membrane; 15: macromolecular complex; 16: extracellular region; 17: nucleoid; 18: cell junction; 19: metabolic process; 20: cellular process; 21: single-organism process; 22: biological regulation; 23: response to stimulus; 24: localization; 25: developmental process; 26: multi-organism process; 27: immune system process; 28: cellular component organization or biogenesis; 29: reproductive process; 30: multicellular organismal process; 31: reproduction; 32: extracellular region part; 33: extracellular matrix; 34: extracellular matrix component; 35: locomotion; 36: growth; 37: synapse part.

    表  1  12个cDNA文库的过滤数据

    Table  1.   Clean data of 12 cDNA library

    样品
    Sample
    平均长度
    Average length/bp
    总序列数
    The total number of sequences
    总碱基数
    Total base number /bp
    Q20含量
    Q20 content /%
    Q30含量
    Q30 content /%
    GC含量
    GC /%
    TarCK1148.7046691744694303135598.1194.3250.55
    TarCK2148.7749717384739652791198.2694.6749.80
    TarCK3148.6340433794600957272798.1594.3552.27
    TarCa1148.7447758784710349344598.1594.4451.41
    TarCa2148.8740229314598883497998.0794.3052.04
    TarCa3149.0046500744692879017598.0794.2851.59
    TNCK1148.9843959714654924436498.1594.4250.78
    TNCK2148.7940479744602288169798.2394.5949.17
    TNCK3148.8745992514684684766198.0894.2149.91
    TNCa1149.0044762836666945284698.1094.4152.32
    TNCa2148.9646342564690323371598.0494.1551.03
    TNCa3148.8948524526722485839598.0994.3152.03
    合计 Total54139366280686769270
    下载: 导出CSV

    表  2  转录组序列组装分析

    Table  2.   Summary of transcriptome assembly

    序列类型
    Sequence type
    重叠群
    Contig
    序列
    Unigene
    最短序列长度 Minimum sequence Length/bp 25 201
    最长序列长度 Maximum sequence length/bp 15 734 11 377
    序列平均长度 Mean sequence length/bp 53.76 513.25
    N50长度 N50 length/bp 48 686
    (A+T)/% 51.94 55.72
    (C+G)/% 48.06 44.28
    序列总数 The total number of sequences 19 585 575 349 537
    总碱基数量 Total base number/bp 1 052 959 813 179 400 360
    下载: 导出CSV

    表  3  Unigene 的长度及数量统计

    Table  3.   Unigene length and quantity statistics

    长度
    Length/bp
    数量
    Number
    比例
    Percentage/%
    <200 0 0.00
    200~500 265 367 75.92
    500~1 000 44113 12.62
    1 000~1 500 17 752 5.08
    1 500~2 000 10 495 3.00
    ≥2 000 11 809 3.38
    总数 Total 349 537 100
    下载: 导出CSV

    表  4  显著差异表达基因

    Table  4.   Significantly differentially expressed genes

    对照组
    Group
    基因编号
    Gene ID
    差异倍数
    Log2 fold
    change
    基因名称
    KO_name
    基因定义
    KO_definition
    TarCK/TNCKDN74111_c0_g1_i2−6.76FOLK法呢醇醇激酶 Farnesol kinase
    TarCK/TNCKDN42826_c0_g2_i2−6.56PLD1_2 磷脂酶D1/2 Phospholipase D1/2
    TarCK/TNCKDN73032_c0_g2_i1−3.14ATPeF1B膜上ATP合酶 F-type H+-transporting ATPase subunit beta
    TarCK/TNCKDN59908_c0_g1_i2−1.88KCS3-酮脂酰辅酶A合成酶基因 3-ketoacyl-CoA synthase
    TarCK/TNCKDN88233_c0_g1_i2−1.08ENO烯醇酶 Enolase
    TarCK/TNCKDN45172_c0_g1_i1−1.00CALM钙调蛋白 Calmodulin
    TarCK/TNCKDN75575_c0_g1_i16.00AAO3脱落醛氧化酶 Abscisic-aldehyde oxidase
    TNCK/TNCaDN75425_c0_g1_i6−4.83ABFABA响应元件结合因子 ABA responsive element binding factor
    TNCK/TNCaDN89025_c0_g1_i3−2.34MFP2烯酰辅酶A水合酶/3-羟酰辅酶A脱氢酶 Enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase
    TNCK/TNCaDN10149_c0_g1_i11.09AUX1生长素流入载体蛋白 Auxin influx carrier
    TNCK/TNCaDN36010_c0_g1_i11.20CALM钙调蛋白 Calmodulin
    TNCK/TNCaDN81084_c0_g4_i21.29CPK钙依赖性蛋白激酶 Calcium-dependent protein kinase
    TNCK/TNCaDN132576_c0_g1_i11.64CML钙结合蛋白CML Calcium-binding protein CML
    TNCK/TNCaDN55671_c1_g1_i82.01PLD1_2磷脂酶D1/2 Phospholipase D1/2
    TNCK/TNCaDN1778_c0_g3_i12.45SORDL-艾杜糖醇-2-脱氢酶 L-iditol 2-dehydrogenase
    TNCK/TNCaDN48191_c0_g1_i12.61EIN2乙烯不敏感蛋白2 Ethylene-insensitive protein 2
    下载: 导出CSV
  • [1] CHANG Y C, ALBANO J P, MILLER W B. William B Miller. Oriental hybrid lily cultivars vary in susceptibility to upper leaf necrosis [J]. Acta Horticulturae, 2008, 766(766): 433−440.
    [2] CHANG Y C, MILLER W B. The relationship between leaf enclosure, transpiration, and upper leaf necrosis on Lilium 'Star gazer' [J]. Journal of the American Society for Horticultural Science, 2004, 129(1): 128−133. doi: 10.21273/JASHS.129.1.0128
    [3] CHANG Y C, GRACE-MARTIN K, MILLER W B. Efficacy of exogenous calcium applications for reducing upper leaf necrosis in lilium `Star Gazer' [J]. Hortscience A Publication of the American Society for Horticultural Science, 2004, 39(2): 272−275.
    [4] TSAI Y H, SUSILO H, CHANG Y. Effects of temperature and defoliation on upper leaf necrosis in lilium ‘star gazer’ [J]. Acta Horticulturae, 2011, 886(886): 289−297.
    [5] 杨爽. 设施百合品种筛选与“叶烧病”发生机理的研究[D]. 北京: 北京林业大学, 2012.

    YANG S. Studies on screening and mechanism of the upper leaf necroses of facility lily cultivars[D]. Beijing: Beijing Forestry University, 2012. (in Chinese)
    [6] MORTAZAVI S N, KARIMI V, AZIMI M H. Pre-harvest foliar application of humic acid, salicylic acid and calcium chloride to increase quantitative and qualitative traits of Lilium longiflorum cut flowers [J]. Journal of Science & Technology of Greenhouse Culture, 2015, 6(3): 37−46.
    [7] MIRABBASI N, NIKBAKHT A, ETEMADI N, et al. Effect of different concentrations of potassium silicate, nano-silicon and calcium chloride on concentration of potassium, calcium and magnesium, chlorophyll content and number of florets of Asiatic lily cv. 'Brunello' [J]. Journal of Science & Technology of Greenhouse Culture, 2013, 4(14): 41−50.
    [8] FITZPATRICK A H, BHANDARI J, CROWELL D N. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis [J]. The Plant Journal, 2011, 66(6): 1078−1088. doi: 10.1111/j.1365-313X.2011.04572.x
    [9] LI S, HUANG M, DI Q, et al. The functions of a cucumber phospholipase D alpha gene (CsPLDα) in growth and tolerance to hyperosmotic stress [J]. Plant Physiology and Biochemistry, 2015, 97: 175−186. doi: 10.1016/j.plaphy.2015.10.006
    [10] TODD J, POST-BEITTENMILLER D, JAWORSKI J G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana [J]. The Plant Journal, 1999, 17(2): 119−130. doi: 10.1046/j.1365-313X.1999.00352.x
    [11] SNEDDEN W A, FROMM H. Calmodulin as a versatile calcium signal transducer in plants [J]. The New Phytologist, 2001, 151(1): 35−66. doi: 10.1046/j.1469-8137.2001.00154.x
    [12] VOLL L M, HAJIREZAEI M R, CZOGALLA-PETER C, et al. Antisense inhibition of enolase strongly limits the metabolism of aromatic amino acids, but has only minor effects on respiration in leaves of transgenic tobacco plants [J]. The New Phytologist, 2009, 184(3): 607−618. doi: 10.1111/j.1469-8137.2009.02998.x
    [13] SUN H, HAO P, GU L, et al. Pectate lyase-like Gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton [J]. Plant Science, 2020, 293: 110395. doi: 10.1016/j.plantsci.2019.110395
    [14] KHAN M, IMRAN Q M, SHAHID M, et al. Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana [J]. BMC Plant Biology, 2019, 19(1): 602. doi: 10.1186/s12870-019-2210-3
    [15] 时欢, 李蓉, 高玉莹, 等. 文心兰乙烯不敏感基因EIN2的克隆及表达分析 [J]. 西北植物学报, 2018, 38(9):1613−1619.

    SHI H, LI R, GAO Y Y, et al. Cloning and expression of ethylene insensitivity gene EIN2 in oncidesa [J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(9): 1613−1619.(in Chinese)
    [16] VANDENBUSSCHE F, PETRÁSEK J, ZÁDNÍKOVÁ P, et al. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings [J]. Development (Cambridge, England), 2010, 137(4): 597−606. doi: 10.1242/dev.040790
    [17] 王东, 牛蓓, 宋君, 等. 基于银耳转录组测序的多糖代谢途径分析 [J]. 西南农业学报, 2019, 32(6):1347−1352.

    WANG D, NIU B, SONG J, et al. Study on fructose and mannose metabolism pathway of Tremella fuciformis based on transcriptome [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(6): 1347−1352.(in Chinese)
    [18] FINKELSTEIN R, GAMPALA S S L, LYNCH T J, et al. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3 [J]. Plant Molecular Biology, 2005, 59(2): 253−267. doi: 10.1007/s11103-005-8767-2
    [19] ARENT S, CHRISTENSEN C E, PYE V E, et al. The multifunctional protein in peroxisomal beta-oxidation: Structure and substrate specificity of the Arabidopsis thaliana protein MFP2 [J]. The Journal of Biological Chemistry, 2010, 285(31): 24066−24077. doi: 10.1074/jbc.M110.106005
    [20] 王五宏, 钟新民, 李必元, 等. 盐钙胁迫下大白菜干烧心病的发生及矿质营养分配 [J]. 核农学报, 2012, 26(8):1204−1208.

    WANG W H, ZHONG X M, LI B Y, et al. Effects of calcium and salt stress on tipburn and nutrition distribution of Chinese cabbage [J]. Acta Agriculturae Nucleatae Sinica, 2012, 26(8): 1204−1208.(in Chinese)
    [21] 程涣, 苏同兵, 于拴仓, 等. 大白菜钙运输基因ECA和钙响应基因CAS在缺钙胁迫下的表达分析 [J]. 植物生理学报, 2015, 51(4):566−572.

    CHENG H, SU T B, YU S C, et al. Expression analysis of Ca2+ transport and response genes, ECA and CAS, in cabbage under calcium deficiency condition [J]. Plant Physiology Journal, 2015, 51(4): 566−572.(in Chinese)
    [22] 王娟, 王倩, 陈清. 结球莴苣“烧边”成因及其调控措施的研究进展 [J]. 中国蔬菜, 2005, 25(B10):32−35.

    WANG J, WANG Q, CHEN Q. Research progress on causes and control measures of "edge burning" in lettuce [J]. China Vegetables, 2005, 25(B10): 32−35.(in Chinese)
    [23] WELTI R, LI W, LI M, et al. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis [J]. The Journal of Biological Chemistry, 2002, 277(35): 31994−32002. doi: 10.1074/jbc.M205375200
    [24] ZHANG Y, ZHU H, ZHANG Q, et al. Phospholipase 1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis [J]. The Plant Cell, 2009, 21(8): 2357−2377. doi: 10.1105/tpc.108.062992
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  81
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 录用日期:  2021-11-19
  • 修回日期:  2021-12-30
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回