• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

不同泡次对福建白茶内含物溶释的影响

刘乾刚, 陈曦

刘乾刚,陈曦. 不同泡次对福建白茶内含物溶释的影响 [J]. 福建农业学报,2020,35(10):1162−1170. DOI: 10.19303/j.issn.1008-0384.2020.10.015
引用本文: 刘乾刚,陈曦. 不同泡次对福建白茶内含物溶释的影响 [J]. 福建农业学报,2020,35(10):1162−1170. DOI: 10.19303/j.issn.1008-0384.2020.10.015
LIU Q G, CHEN X. Effects of Repeated Brewing on Dissolution of Fujian White Tea Components [J]. Fujian Journal of Agricultural Sciences,2020,35(10):1162−1170. DOI: 10.19303/j.issn.1008-0384.2020.10.015
Citation: LIU Q G, CHEN X. Effects of Repeated Brewing on Dissolution of Fujian White Tea Components [J]. Fujian Journal of Agricultural Sciences,2020,35(10):1162−1170. DOI: 10.19303/j.issn.1008-0384.2020.10.015

不同泡次对福建白茶内含物溶释的影响

基金项目: 国家标准化管理委员会-福建省市场监管局联合项目(KY0020088)
详细信息
    作者简介:

    刘乾刚(1962−),男,硕士研究生,副教授,研究方向:茶叶加工与品质化学(E-mail:351216893@qq.com)

  • 中图分类号: TS 272

Effects of Repeated Brewing on Dissolution of Fujian White Tea Components

  • 摘要:
      目的   探讨白茶不同泡次茶汤内含物溶释的特点和规律,为白茶工艺、品质改进及科学饮茶提供理论依据。
      方法   选择2个茶树品种不同茶叶等级共4个茶样,按白茶审评方法冲泡茶汤,测定3泡次内含物的溶出量、溶出率。
      结果   (1)4个茶样各内含物3泡总溶出量均值为多酚类(9.56 g·hg−1)>儿茶素(4.78 g·hg−1)>可溶性糖(4.26 g·hg−1)>茶褐素(3.98 g·hg−1)>茶红素(3.59 g·hg−1)>咖啡碱(3.26 g·hg−1)>氨基酸(2.38 g·hg−1)>黄酮(0.45 g·hg−1)>茶黄素(0.12 g·hg−1);3泡总溶出率均值为咖啡碱(78.95%)>黄酮(70.71%)>氨基酸(66.69%)>茶褐素(63.98%)>茶红素(61.97%)>多酚类(55.77%)>可溶性糖(53.27%)>儿茶素(40.42%)>茶黄素(31.34%),表没食子儿茶素没食子酸酯(EGCG)、茶氨酸(The)分别为43.31%、63.23%;(2)第1至第3泡溶出率,除茶红素、可溶性糖外,其余内含物呈下降趋势,其中咖啡碱、氨基酸、黄酮第1泡溶出率最高,其在4个茶样第1泡的溶出率均值分别为37.13%、31.54%、29.73%,且3泡总溶出率也高;(3)同一茶样3次冲泡中,水浸出物、多酚类、咖啡碱、黄酮、茶红素溶出量的增减程度均达到显著差异(P<0.05)水平,而咖啡碱、氨基酸溶出率逐次下降明显,降幅达9%以上;(4)不同茶样相同泡次之间,内含物溶出率总体上未表现出茶叶品种和等级之间的规律性差异。
      结论   除茶红素、可溶性糖外,其余内含物溶出量、溶出率为第1泡>第2泡>第3泡,但内含物之间的溶释效率存在明显差异,咖啡碱、氨基酸、黄酮等溶出较快,而多酚类、儿茶素及EGCG、The等高含量内含物或组分并未充分溶释,尤其是儿茶素、EGCG和表儿茶素没食子酸酯(ECG),其3泡总溶出率均低于50%。
    Abstract:
      Objective   The dissolved components in the brews of Fujian white teas were investigated.
      Method   4 local white tea products of 2 cultivar varieties and 2 quality grades were brewed by the standard procedures for sensory evaluation on white tea. The components in the 3 series of brewed teas were analyzed.
      Result  (1) After 3 series of brewing the average total dissolved amounts of the components were 9.56 g·hg−1 for polyphenol, 4.78 g·hg−1 for catechin, 4.26 g·hg−1 for soluble sugar, 3.98 g·hg−1 for theabrownine, 3.59 g·hg−1 for thearubigin, 3.26 g·hg−1 for caffeine, 2.38 g·hg−1 for amino acid, 0.45 g·hg−1 for flavone, and 0.12 g·hg−1 for theaflavin, the average total dissolved rates of the components were 78.95% for caffeine, 70.71% for flavone, 66.69% for amino acid, 63.98% for theabrownine, 63.23% for theanine, 61.97% for thearubigin, 55.77% for polyphenol, 53.27% for soluble sugar, 43.31% for EGCG, 40.42% for catechin, and 31.34% for theaflavin. (2) Except for thearubigin and soluble sugar, all the other components decreased in their dissolved amounts and rates from the 1st to the 3rd brewing, among which caffeine,amino acid and flavone showed the highest average dissolved rates of 37.13%,31.54%,29.73% respectively in the 1st brewing. (3) Polyphenol, caffeine, flavone or thearubigin differed significantly (P<0.05) between its dissolved amounts of 3 series of brewing of the same sample.The dissolved rates of caffeine and amino acid decreased significantly by more than 9% in one more brewing, while the dissolved rates of the components generally did not show regular differences between the varieties and the grades.
      Conclusion   The dissolved amounts and rates of the components tested, except for thearubigin and soluble sugar, declined from the 1st to the 3rd brewing. In 3 consecutive brewing, due to differences in solubility, caffeine, flavone and amino acid rapidly leached, polyphenol and theanine partly dissolved, and less than 50% of catechin, EGCG and ECG in the dry leaf dissolved in 3 brewings.
  • 【研究意义】桃是蔷薇科李属多年生落叶果树。桃果肉颜色有白、黄、红、绿等4种[1]。由于遗传资源以及果实综合经济性状等因素所限,红肉类型在国内外桃产业中所占比例较少。现有研究表明红肉桃果肉中总酚、花色苷含量及其抗氧化能力均高于白肉桃和黄肉桃[2-5],具有很好的保健价值。尤其在清除自由基[6]、延缓衰老[7]、提高人体免疫力[8]、防癌抗癌[9]等方面起着重要作用。但关注红肉桃果实中的类胡萝卜素含量变化的报道鲜见,特别是在套袋情况下相关组分的变化需要进一步明确。【前人研究进展】龚林忠[10]等对红、白、黄等3种不同果肉颜色的桃进行研究表明,红肉桃和白肉桃的果肉中类胡萝卜素含量随着果实的生长发育均呈下降趋势,果实成熟时几乎为零。章秋平[11]等对红、白、黄等3种不同果肉颜色的桃进行检测分析表明,随着果实成熟度的增加,天津水蜜等红肉桃果实中类胡萝卜素含量不断升高。许建兰[2]等对红、白、黄等3种不同果肉颜色的桃果实进行分析发现,半斤桃果实的类胡萝卜素总含量和花色苷含量均随着果实的生长发育呈逐渐上升的趋势。王少敏等[12]研究表明,红富士果实套袋后,3种色素含量明显低于对照。柳蕴芬[13]等采用黑色内袋的小林袋对大把撸红肉桃进行套袋处理,明显降低了类胡萝卜素总含量和花青苷含量。王安柱[14]和陈栋[15]等研究均表明,套袋降低成熟期桃果皮中叶绿素和类胡萝卜素含量,提高桃果皮中花青苷含量。说明不同遮光类型和强度处理对不同品种果实中色素含量有着差异影响。【本研究切入点】目前,对红肉桃果实发育阶段类胡萝卜素总含量的积累变化已经研究很多,且不同品种的红肉桃果实发育阶段类胡萝卜素总含量的积累变化差异也较大;同时,前期颜少宾[16]等对红、白、黄等3种不同果肉颜色的桃果实分析发现,红肉桃果肉中含有叶黄素、玉米黄素、β-胡萝卜素,但透光强度对红肉桃果实类胡萝卜素成分及其含量的影响等方面研究甚少。【拟解决的关键问题】本试验拟对红肉桃进行遮光处理,从而进一步分析不同透光强度对红肉桃果实发育过程中果肉色泽和类胡萝卜素成分及其含量的影响,为红肉桃果实类胡萝卜素代谢机理研究及针对性生产栽培提供依据和参考。

    试验材料为树体健壮、长势基本一致的5年生红肉桃品种半斤桃,砧木均为毛桃,定植株行距3 m×5 m,三主枝自然开心形,南北行向,常规栽培措施管理,种植于国家果树种质南京桃资源圃。

    试验所选用果袋:黄色单层纸袋,透光率50 %,规格198 mm × 153 mm,购自平度市金禾裕农果袋厂;外黄内黑双层袋,透光率0,规格198 mm × 153 mm,购自莱阳市爱华果袋厂。试验所用果袋的透光率采用Kurzanleitungtesto 540照度仪检测,重复3次。

    所用试剂丙酮、甲醇、甲基叔丁基醚、叶黄素、β-隐黄质、β-胡萝卜素、β-阿朴-8-胡萝卜醛、α-胡萝卜素、玉米黄素,均为分析纯以上级别。

    选择不同透光率的纸袋,在半斤桃盛花后40 d,在同一株树上选取大小、发育相对一致的正常半斤桃桃果实进行2种试验处理,即采用50%透光的黄色单层袋(I,50%透光处理)和0透光的外黄内黑双层袋(Ⅱ,0%透光处理)2种类型纸袋进行套袋,以不处理(100%透光)作为对照(CK),重复3次。处理前进行疏果,留果量基本一致,并喷施杀虫杀菌剂。果面开始转色为第一个采样点(即盛花后71 d);之后每隔10 d左右采1次,直至果实成熟(即在盛花后71、82、90、95 d进行采样)。每个处理套袋70个果,每处理按东、西、南、北4个方位随机采取果实10个,迅速带回实验室进行果肉色差的测定,每个果肉测4个点。果肉混合后液氮速冻,于−20 ℃保存备用。重复3次。

    采用Color Quest XE色差计测定果肉的色差A、B、L值,根据公式计算C、H值[16]。色差A值代表红色饱和度(正值代表红色,正值越大,红色越深);色差B值代表黄色饱和度(正值代表黄色,正值越大,黄色越深);色差L值代表亮度值;色差C值代表色彩饱和度;色差H值代表色度角(H=0,紫红色;H=90,黄色;H=180,绿色)。

    果肉类胡萝卜素组分叶黄素、玉米黄素、β-隐黄质、α-胡萝卜素、β-胡萝卜素等标准曲线的制备:以 0.005、0.010、0.050、0.100、0.250、0.500、0.750、1.000、5.000 mg·L−1 的标准使用溶液制作标准曲线。

    果肉类胡萝卜素成分的提取测定方法[17]:以丙酮为有机提取剂,不经过皂化直接提取。经过 0.22 mm 有机滤头过滤,采用 YMC-C30 色谱柱进行测定,流动相 A: 甲醇,流动相 B: 甲基叔丁基醚,流动相 C: 水;流速: 1.0 mL·min−1;UV 450 nm;温度为 25 ℃;时间:100 min;进样: 20 μL;梯度冲洗: 0~90 min,81%A/15%B/4%C~6%A/90%B/4%C;92 min,81%A/15%B/4%C。

    采用Excel和SPSS 24.0软件对数据进行统计,分析类胡萝卜素组分叶黄素、玉米黄素、β-隐黄质、α-胡萝卜素、β-胡萝卜素的含量及其分别与色差A、B、C、L、H值之间的相关系数和显著性水平。

    表1可以看出,随着果实的生长发育,对照组中半斤桃果肉色差A值逐渐升高,果肉色差L值呈逐渐降低,果肉色差B、C和H值呈现先降后升的趋势,且盛花后82 d是色差C和H值的转折点,而色差B值的转折点在盛花后90 d。

    表  1  不同透光率纸袋对半斤桃果实发育后期果肉色差的影响
    Table  1.  Effect of paper pouches differed in light-transmittance on chromatic aberration of sarcocarps of bagged Banjintao peaches at late stage of fruit development
    盛花后天数
    Days after full bloom/d
    处理
    Treatment
    色差A值
    Chromatism A value
    色差B值
    Chromatism B value
    色差C值
    Chromatism C value
    色差L值
    Chromatism L value
    色差H值
    Chromatism H value
    71 CK −1.25±1.31 a 16.33±3.96 a 16.42±3.97 a 56.05±2.61 a 86.33±0.95 a
    I −0.91±0.85 a 16.44±3.22 a 16.49±3.17 a 49.23±4.46 b 86.42±0.69 a
    −0.78±1.27 a 16.96±2.26 a 17.01±2.27 a 55.97±4.56 a 86.59±0.41 a
    82 CK 9.69±9.68 a 7.53±3.02 b 14.23±6.37 a 48.07±7.56 b 85.37±1.72 a
    I −0.93±1.35 b 14.94±1.91 a 15.02±1.95 a 58.66±6.27 a 86.14±0.50 a
    5.02±6.41 ab 8.22±3.49 b 11.18±3.84 a 55.88±7.86 ab 84.46±1.54 a
    90 CK 27.72±2.24 a 7.46±1.05 a 28.72±2.39 a 35.19±6.41 ab 88.00±0.17 a
    I 27.55±2.76 a 7.77±1.17 a 28.63±2.95 a 30.03±3.91 b 87.98±0.21 a
    31.52±4.88 a 8.25±1.44 a 32.58±5.08 a 39.84±2.42 a 88.19±0.37 a
    95 CK 33.00±2.24 a 9.16±1.53 a 34.26±2.54 a 35.40±1.61 c 88.32±0.13 a
    I 31.17±2.32 a 5.48±0.43 b 31.65±2.35 a 43.73±5.86 b 88.18±0.14 ab
    30.86±2.93 a 5.33±0.69 b 31.32±2.98 a 48.47±3.66 a 88.16±0.17 b
    注:表中CK代表对照,Ⅰ代表50%透光处理、Ⅱ代表0透光处理。数字为平均值±标准差;不同字母表示同一个品种在同一发育阶段中不同处理条件下在0.05水平差异显著。
    Notes: CK mean a comparison with no bagged, Ⅰmean 50% light transmission treatment, Ⅱ mean 0 light transmissiontreatment. Data in the table is mean ±SD. The different letters in the same row represent significant difference of the same varieties and the same developmental stages among different treatments at 0.05 level.
    下载: 导出CSV 
    | 显示表格

    与对照相比,不同透光率纸袋处理均对果肉色差C值没有影响;对果肉色差A值仅在盛花后82 d时有影响,即50%透光处理降低了果肉色差A值,0透光处理对果肉色差A值的影响在0.05水平差异不显著。不同透光率纸袋处理对果肉色差B、H值的影响不同,50%透光处理后,果肉色差B值呈先升后降的趋势,对色差H值没有影响;0透光处理仅在果实成熟时降低果肉色差B、H值。50%透光处理对色差L值的影响不呈规律;0透光处理在果实成熟前对色差L值影响不明显;果实成熟时,2个处理均显著提高果肉色差L值。

    随着果实的生长发育,对照组中半斤桃果肉叶黄素含量逐渐降低,果实成熟时降为0;玉米黄素含量逐渐升高,果实成熟时达到最大值,含量为0.805 7 μg·g−1;β-隐黄质均为0;α-胡萝卜素含量逐渐降低,在盛花后82 d至果实成熟,其含量均为0;β-胡萝卜素含量逐渐降低,果实成熟时其含量降为0.143 9 μg·g−1

    与对照相比,不同透光率纸袋处理的果肉类胡萝卜素组分的整体变化趋势与对照组基本一致,但不同透光率纸袋处理对果肉类胡萝卜素不同时期不同成分有着差异影响。如图1(1)所示,50%透光处理提高了果肉叶黄素含量,但果实成熟时,与对照组一致均降为0;0透光处理对果肉叶黄素含量呈先升后降再升的趋势,盛花后82 d为显著降低的关键点,盛花后90 d与对照组差异不明显,果实成熟时,显著提高了果肉叶黄素含量,其含量为0.21 μg·g−1。如图1(2)所示,仅在果实成熟时,50%透光处理提高了果肉玉米黄素含量。如图1(3)所示,2个处理对果肉β-隐黄质含量没有影响。如图1(4)所示,仅在盛花后82 d之前,2个处理提高了果肉α-胡萝卜素含量。如图1(5)所示,50%透光处理降低了果肉β-胡萝卜素含量;0透光处理呈先升后降的趋势,差异不显著;果实成熟时,2个处理果肉β-胡萝卜素含量均降为0,与对照组差异性显著。且对照组、50%透光处理、0透光处理的半斤桃果肉类胡萝卜素5个成分总含量在果实发育后期均无显著性差异,说明不同透光强度套袋处理对果肉类胡萝卜素5个成分的总含量没有影响。

    图  1  不同透光率纸袋对半斤桃果实发育后期果肉类胡萝卜素组分的影响
    注:表中CK代表对照,Ⅰ代表50%透光处理、Ⅱ代表0透光处理。不同字母表示同一个品种在同一发育阶段中不同处理条件下在0.05水平差异显著。
    Figure  1.  Effect of paper pouches differed in light-transmittance on carotenoids in sarcocarps of bagged Banjintao peaches at late stage of fruit development
    Notes: CK mean a comparison with no bagged, Ⅰ mean 50%light transmission treatment, Ⅱ mean 0light transmission treatment. The different letters in the same row represent significant difference of the same varieties and the same developmental stages among different treatments at 0.05 level.

    半斤桃果实发育后期果肉类胡萝卜素成分与色差指标的相关性如表2所示。半斤桃果肉β-隐黄质在果实发育过程均未检测到,在统计学上不进行相关性统计。叶黄素、β-胡萝卜素分别与红色饱和度A值、色彩饱和度C值、色度角H值在0.01%显著水平上负相关,与黄色饱和度B值、亮度L值在0.01%显著水平上正相关;玉米黄素则相反,即与红色饱和度A值、色彩饱和度C值、色度角H值在0.01%显著水平上正相关,与黄色饱和度B值、亮度L值在0.01%显著水平上负相关;α-胡萝卜素与红色饱和度A值、黄色饱和度B值、色彩饱和度C值的相关性同叶黄素和β-胡萝卜素,与色差L值在0.05%显著水平上正相关,与色度角H值在统计学上不相关。说明类胡萝卜素的各个成分与果肉色差指标有一定的相关性,且玉米黄素与红色饱和度的相关性系数达0.911。

    表  2  类胡萝卜素成分与色差指标的相关系数
    Table  2.  Correlation coefficient between carotenoids composition and color differences of peach sarcocarps
    参数
    Color parameters
    色差A值
    Chromatism A value
    色差B值
    Chromatism B value
    色差C值
    Chromatism C value
    色差L值
    Chromatism L value
    色差H值
    Chromatism H value
    叶黄素 xanthophylls−0.872**0.847**−0.731**0.623**−0.523**
    玉米黄素 zeaxanthins0.911**−0.674**0.898**−0.596**0.795**
    β-隐黄质 β-cryptoxanthin
    α-胡萝卜素 α-carotene−0.639**0.799**−0.429**0.414*−0.241
    β-胡萝卜素 β-carotene−0.886**0.820**−0.761**0.685**−0.609**
    注:*为0.05%显著水平差异;**为0.01%显著水平差异;−为无法计算。
    Note: * stands for P<0.05; ** stands for P<0.01;−can’t be counted.
    下载: 导出CSV 
    | 显示表格

    李玉阔[18]等采用不透光纸袋对2种类型红肉猕猴桃进行遮光处理,结果表明不透光纸袋对果肉和果心色度角并无显著影响。柳蕴芬[13]等对红肉桃品种“大把撸”进行遮光处理,结果表明遮光抑制了果肉花色苷积累和果肉变红。廖振军[19]等也发现,光照较弱时,桃果实中花青素含量较少,果实颜色不红。本研究结果表明,50%透光处理对色度角没影响,在盛花后82 d时能降低果肉红色饱和度,而0透光处理能降低果肉色度角、对红色饱和度没影响;说明不同透光率纸袋处理对果肉红颜色和色度角的影响不同的,但不同透光率纸袋处理对果肉色泽饱和度均没影响,且在果实成熟时,均能降低果肉黄色饱和度并提高果肉亮度值。这可能是不同试验处理采用不同透光试材及不同品种之间存在差异而导致结果不一样。因为果肉的颜色是由各种色素的不同比例所决定,同时还要受其他物质的影响[11],只从外观色泽及果肉色差变化不足以说明果肉色素的积累和变化。

    盛花后82 d是半斤桃果肉色差A值由负值转为正值的点,是色差C和H值呈现先降后升的转折点;同时,也是果肉叶黄素及α-胡萝卜素含量变化的关键转折点。许建兰[2]等研究也表明半斤桃果实成熟前20 d开始花色苷以较快的速率积累。因此,推测盛花后82 d左右可能是半斤桃果实色素代谢的重要关键时期,为今后半斤桃果实类胡萝卜素代谢的进一步研究提供参考。

    Brandi 等[20]研究表明,白肉桃和黄肉桃中的类胡萝卜素生物合成基因的表达水平无显著差异,白肉桃果肉之所以显白色,是因为在CCD(类胡萝卜素裂解双加氧酶)的作用下,其果肉中的类胡萝卜素发生了降解。半斤桃幼果期主要以叶黄素和β-胡萝卜素为主,说明半斤桃幼果期的类胡萝卜素生物合成途径可能与黄肉桃类似,是叶绿体途径[21]。随着果实的生长发育,叶绿体逐步转化为有色体[22],但果实成熟时,红肉桃与黄肉桃的呈色有色体存在较大差异。Wisutiamonkul[23]等研究表明,增强黄肉品种番木瓜中LCYb(番茄红素β-环化酶)基因的表达,果实中番茄红素含量保持较低水平,β-胡萝卜素和β-隐黄素含量则显著增高;抑制红肉品种番木瓜中LCYb基因的表达,果实中番茄红素含量持续增加,β-胡萝卜素和β-隐黄素含量则基本保持较低水平。在红肉品种柑橘果肉中LCYb基因的表达水平较低,这可能与果实中番茄红素的大量积累有关[23-25]。本研究也表明半斤桃果肉中β-胡萝卜素含量也随着果实生长发育逐渐降低,且检测不到β-隐黄质,是否与LCYb基因的表达水平有关,有待进一步验证。β-HY(β-羟基酶)分别以β-胡萝卜素为底物,合成β-隐黄素和玉米黄素,以α-胡萝卜素为底物,合成叶黄素[26-27]。遮光条件促进成熟期HYB基因的表达,β-胡萝卜素的含量降低,玉米黄素的含量增加[28]。本文50%透光处理佐证了这一观点;但0透光处理表现出降低β-胡萝卜素含量,对玉米黄素含量的影响不明显,反而提高了叶黄素含量。这是否是因为0透光处理,没有光照强度或影响了其他光质的射入,促进了β-HY以α-胡萝卜素为底物合成叶黄素途径,有待进一步研究。

    综上所述,50%透光处理对果肉B值的影响呈先升后降的趋势,对色差C、H值没有影响,且仅在盛花后82 d时降低了色差A值;0透光处理对果肉色差A、C值没有影响,且仅在果实成熟时降低了色差B、H值;不同透光率纸袋处理均在果实成熟时显著提高了果肉色差L值。不同透光率纸袋处理对果肉类胡萝卜素5个组分总含量、β-隐黄质、α-胡萝卜素均没有影响;果实成熟时,不同透光率纸袋处理均降低了果肉β-胡萝卜素含量,且50%透光处理显著提高了玉米黄素含量,0透光处理显著提高了叶黄素含量。叶黄素和玉米黄素在减少与衰老相关联的网膜黄斑退化和白内障等严重眼疾发生中起重要作用[29-30]。因此,在田间栽培生产过程中,可在盛花后40 d对半斤桃进行50%透光套袋处理,提高果肉玉米黄素含量,或用0透光套袋处理,提高果肉叶黄素含量。

  • 表  1   供试茶样及编号

    Table  1   Tea samples and codes

    茶样编号
    Tea No
    产地
    Place of origin
    茶树品种
    Cultivar
    品名、等级
    Product name & grade
    FD1 福建 政和 Zhenghe county, Fujian province 福鼎大白茶 Fuding big & white leaf 白牡丹一级 White peony of 1st grade
    FD3 福建 政和 Zhenghe county, Fujian province 福鼎大白茶 Fuding big & white leaf 白牡丹三级 White peony of 3rd grade
    ZD1 福建 政和 Zhenghe county, Fujian province 政和大白茶 Zhenghe big & white leaf 白牡丹一级 White peony of 1st grade
    ZD3 福建 政和 Zhenghe county, Fujian province 政和大白茶 Zhenghe big & white leaf 白牡丹三级 White peony of 3rd grade
    下载: 导出CSV

    表  2   不同泡次对水浸出物溶出量、溶出率的影响

    Table  2   Effects of repeated brewing on dissolved amount and rate of water extract

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1 溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 47.47±1.26 13.53±0.17 a 8.68±0.40 b 5.50±0.06 c 27.71 28.50 18.29 11.59 58.37
    FD3 47.70±1.34 12.37±0.27 a 8.39±0.21 b 5.34±0.13 c 26.10 25.93 17.59 11.19 54.72
    ZD1 46.18±0.36 12.67±0.55 a 8.58±0.18 b 6.20±0.60 c 27.45 27.44 18.58 13.43 59.44
    ZD3 47.11±0.31 12.23±0.70 a 9.02±0.11 b 6.04±0.49 c 27.29 25.96 19.15 12.82 57.93
    平均值 Mean values 47.12 12.70 8.67 5.77 27.14 26.96 18.40 12.26 57.62
    注:表中溶出量数据为平均值±标准偏差,同行数据之间小写字母(括号外)不同表示泡次之间差异达到显著水平(P<0.05);同列数据之间小写字母(括号内)不同表示茶样之间差异达到显著水平(P<0.05);未标注则表示同行或同列数据之间无显著差异。表3表57表911同。
    Note: Data are mean±standard deviation; those with different lowercase letters on same row indicate significant difference at P<0.05; those with different lowercase letters on same column (in parentheses) indicate significant difference at P<0.05; those without marked letter indicate no significant difference. Same for Table 3, 5-7, and 9-11.
    下载: 导出CSV

    表  3   不同泡次对可溶性糖溶出量、溶出率的影响

    Table  3   Effects of repeated brewing on dissolved amount and rate of soluble sugar

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1 溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 7.89±0.01 1.42±0.00 1.42±0.00 1.41±0.00 4.25 18.00 18.00 17.87 53.87
    FD3 8.07±0.01 1.42±0.00 1.42±0.00 1.42±0.00 4.26 17.60 17.60 17.60 52.79
    ZD1 7.98±0.02 1.42±0.00 1.42±0.00 1.42±0.00 4.26 17.79 17.79 17.79 53.38
    ZD3 8.02±0.01 1.42±0.00 1.42±0.00 1.41±0.00 4.25 17.71 17.71 17.58 52.99
    平均值 Mean values 7.99 1.42 1.42 1.42 4.26 17.78 17.78 17.71 53.27
    下载: 导出CSV

    表  4   不同泡次对氨基酸溶出量、溶出率的影响

    Table  4   Effects of repeated brewing on dissolved amount and rate of amino acid

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1 溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 4.35 1.46 1.00 0.50 2.96 33.33 22.99 11.49 67.81
    FD3 3.50 1.20 0.77 0.45 2.42 34.29 22.00 12.86 69.15
    ZD1 3.50 1.06 0.80 0.45 2.31 30.29 22.86 12.86 66.00
    ZD3 2.76 0.78 0.60 0.38 1.76 28.26 21.74 13.77 63.77
    平均值 Mean values 3.53 1.13 0.79 0.46 2.38 31.54 22.40 12.75 66.69
    下载: 导出CSV

    表  5   不同泡次对咖啡碱溶出量、溶出率的影响

    Table  5   Effects of repeated brewing on dissolved amount and rate of caffeine

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1 溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 4.54±0.20 1.67±0.11 a(a) 1.38±0.04 b(a) 0.65±0.04 c(a) 3.70 36.78 30.4 14.32 81.50
    FD3 4.08±0.09 1.66±0.03 a(a) 1.15±0.11 b(b) 0.61±0.10 c(a) 3.42 40.69 28.19 14.95 83.82
    ZD1 4.09±0.08 1.59±0.07 a(a) 1.10±0.03 b(bc) 0.57±0.02 c(ab) 3.26 38.88 26.89 13.94 79.71
    ZD3 3.76±0.11 1.21±0.06 a(b) 0.98±0.02 b(c) 0.47±0.06 c(b) 2.66 32.18 26.06 12.50 70.74
    平均值 Mean values 4.12 1.53 1.15 0.58 3.26 37.13 27.89 13.93 78.95
    下载: 导出CSV

    表  6   不同泡次对多酚类溶出量、溶出率的影响

    Table  6   Effects of repeated brewing on dissolved amount and rate of polyphenol

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 17.11±1.90 4.48±0.36 a(a) 3.31±0.37 b 2.24±0.31 c 10.03 26.18 19.35 13.09 58.62
    FD3 17.46±1.80 3.73±0.34 a(b) 3.05±0.21 b 2.05±0.14 c 8.83 21.36 17.47 11.74 50.57
    ZD1 16.59±0.68 3.75±0.32 b(b) 3.09±0.17 c 2.41±0.21 d 9.25 22.60 18.63 14.53 55.76
    ZD3 17.39±2.11 4.48±0.36 a(a) 3.30±0.37 c 2.33±0.31 d 10.11 25.76 18.98 13.40 58.14
    平均值 Mean values 17.14 4.11 3.19 2.26 9.56 23.98 18.6 13.19 55.77
    下载: 导出CSV

    表  7   不同泡次对黄酮溶出量、溶出率的影响

    Table  7   Effects of repeated brewing on dissolved amount and rate of flavone

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 0.59±0.05 0.22±0.01 a(a) 0.16±0.01 b(a) 0.12±0.00 c(a) 0.5 37.29 27.12 20.34 84.75
    FD3 0.73±0.06 0.20±0.01 a(b) 0.17±0.00 b(a) 0.13±0.00 c(a) 0.49 27.40 23.29 17.81 67.12
    ZD1 0.62±0.06 0.20±0.01 a(b) 0.15±0.01 b(a) 0.11±0.00 c(a) 0.46 33.33 25.00 18.33 76.67
    ZD3 0.67±0.04 0.14±0.00 a(c) 0.11±0.01 b(b) 0.09±0.00 c(b) 0.34 20.90 16.42 13.43 50.75
    平均值 Mean values 0.65 0.19 0.15 0.11 0.45 29.73 22.96 17.48 70.71
    下载: 导出CSV

    表  8   不同泡次对儿茶素溶出量、溶出率的影响

    Table  8   Effects of repeated brewing on dissolved amount and rate of catechin

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 10.80 1.70 1.60 1.10 4.40 15.74 14.81 10.19 40.74
    FD3 11.60 2.00 1.80 1.30 5.10 17.24 15.52 11.21 43.97
    ZD1 11.40 2.00 1.50 1.10 4.80 17.54 13.16 9.65 40.35
    ZD3 13.70 2.00 1.89 1.10 4.99 14.80 13.80 8.03 36.63
    平均值 Mean values 11.88 1.93 1.70 1.15 4.78 16.33 14.32 9.77 40.42
    下载: 导出CSV

    表  9   不同泡次对茶红素溶出量、溶出率的影响

    Table  9   Effects of repeated brewing on dissolved amount and rate of thearubigin

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 5.70±0.16 0.79±0.24 a 0.94±0.16 b 1.79±0.03 c 3.52 13.79 16.52 31.32 61.63
    FD3 5.99±0.09 0.81±0.01 a 0.96±0.03 b 1.83±0.02 c 3.60 13.59 16.02 30.60 60.22
    ZD1 5.82±0.25 0.79±0.01 a 0.98±0.05 b 1.89±0.03 c 3.66 13.62 16.78 32.40 62.79
    ZD3 5.62±0.18 0.79±0.00 a 0.95±0.01 b 1.81±0.02 c 3.55 14.08 16.95 32.19 63.21
    平均值 Mean values 5.78 0.80 0.96 1.83 3.59 13.77 16.57 31.63 61.97
    下载: 导出CSV

    表  10   不同泡次对茶黄素溶出量、溶出率的影响

    Table  10   Effects of repeated brewing on dissolved amount and rate of theaflavin

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1 溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 0.36±0.00 0.04±0.00 a(a) 0.04±0.00 a(a) 0.03±0.00 b 0.11 10.55 10.58 8.29 29.42
    FD3 0.38±0.00 0.04±0.00 a(a) 0.04±0.00 a(a) 0.03±0.00 b 0.11 11.53 10.03 8.04 29.60
    ZD1 0.34±0.00 0.04±0.00 a(a) 0.03±0.00 b(b) 0.03±0.00 b 0.1 10.60 10.21 9.41 30.22
    ZD3 0.35±0.00 0.06±0.00 a(b) 0.04±0.00 b(a) 0.03±0.00 c 0.13 17.18 10.71 8.25 36.14
    平均值 Mean values 0.36 0.05 0.04 0.03 0.12 12.46 10.38 8.50 31.34
    下载: 导出CSV

    表  11   不同泡次对茶褐素溶出量、溶出率的影响

    Table  11   Effects of repeated brewing on dissolved amount and rate of theabrownine

    茶样编号
    Tea No
    总量
    Total amount/(g·hg−1
    溶出量 Amount dissolved/(g·hg−1 溶出率 Ratio to total amount/%
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    第1泡
    1st brew
    第2泡
    2nd brew
    第3泡
    3rd brew
    合计
    Total
    FD1 6.13±0.07 1.37±0.11 a 1.42±0.09 a 1.13±0.05 b 3.92 22.39 23.2 18.39 63.98
    FD3 6.38±0.25 1.44±0.14 a 1.47±0.06 a 1.12±0.06 b 4.03 22.57 23.08 17.54 63.19
    ZD1 6.17±0.08 1.42±0.03 a 1.43±0.09 a 1.14±0.03 b 3.99 23.04 23.16 18.46 64.66
    ZD3 6.20±0.13 1.40±0.10 a 1.46±0.03 a 1.11±0.02 b 3.97 22.64 23.53 17.95 64.11
    平均值 Mean values 6.20 1.41 1.45 1.13 3.98 22.66 23.24 18.08 63.98
    下载: 导出CSV
  • [1] 张丹丹, 叶小辉, 赵峰, 等. 基于游离氨基酸组分的白茶滋味品质研究 [J]. 福建农业学报, 2016, 31(5):515−520. DOI: 10.3969/j.issn.1008-0384.2016.05.014

    ZHANG D D, YE X H, ZHAO F, et al. Flavor and amino acids of brewed white teas [J]. Fujian Journal of Agricultural Sciences, 2016, 31(5): 515−520.(in Chinese) DOI: 10.3969/j.issn.1008-0384.2016.05.014

    [2] 陈志达, 周辉, 陈兴华, 等. 福鼎白茶滋味品质的量化评价 [J]. 浙江大学学报(农业与生命科学版), 2020, 46(3):334−343.

    CHEN Z D, ZHOU H, CHEN X H, et al. Taste quantitative evaluation of Fuding white tea [J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2020, 46(3): 334−343.(in Chinese)

    [3] 周琼琼, 孙威江, 叶艳, 等. 不同年份白茶的主要生化成分分析 [J]. 食品工业科技, 2014, 35(9):351−354, 359.

    ZHOU Q Q, SUN W J, YE Y, et al. Study on the main biochemical components of white tea stored at different years [J]. Science and Technology of Food Industry, 2014, 35(9): 351−354, 359.(in Chinese)

    [4] 乔小燕, 李崇兴, 姜晓辉, 等. 不同等级CTC红碎茶生化成分分析 [J]. 食品工业科技, 2018, 39(10):83−89.

    QIAO X Y, LI C X, JIANG X H, et al. Comparative analysis on chemical characteristics of different grades CTC black tea [J]. Science and Technology of Food Industry, 2018, 39(10): 83−89.(in Chinese)

    [5] 向丽敏, 刘雅琼, 赖幸菲, 等. 不同茶类陈年茶的生化成分分析及其抗氧化活性 [J]. 现代食品科技, 2018, 34(4):56−62.

    XIANG L M, LIU Y Q, LAI X F, et al. Biochemical component analysis and antioxidant activities of different kinds of aged tea [J]. Modern Food Science and Technology, 2018, 34(4): 56−62.(in Chinese)

    [6] 王芳, 王飞权, 陈百文, 等. 冲泡条件对武夷肉桂生化成分浸出率和茶汤品质的影响 [J]. 食品工业, 2018, 39(1):72−75.

    WANG F, WANG F Q, CHEN B W, et al. Influence of brewing condition on the extraction rate and infusion quality of Wuyi-rougui tea [J]. The Food Industry, 2018, 39(1): 72−75.(in Chinese)

    [7] 眭红卫, 周圣弘. 冲泡方式对武夷岩茶茶多酚溶出量的影响研究 [J]. 食品研究与开发, 2017, 38(5):26−29. DOI: 10.3969/j.issn.1005-6521.2017.05.006

    SUI H W, ZHOU S H. Impacts of brewing method on tea polyphenols dissolution in Wuyi rock tea [J]. Food Research And Development, 2017, 38(5): 26−29.(in Chinese) DOI: 10.3969/j.issn.1005-6521.2017.05.006

    [8] 曹燕妮, 茆慧敏, 尚旭岚, 等. 冲泡条件对青钱柳茶主要内含物浸出规律的影响 [J]. 南京林业大学学报(自然科学版), 2017, 41(4):19−24.

    CAO Y N, MAO H M, SHANG X L, et al. Effect of brewing conditions on the leaching rate of Cyclocarya paliurus tea compounds [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(4): 19−24.(in Chinese)

    [9] 郭桂义, 和红州, 赵文净, 等. 冲泡水温、时间和茶水比对信阳毛尖茶感官品质的影响 [J]. 食品科技, 2010, 35(7):120−123.

    GUO G Y, HE H Z, ZHAO W J, et al. Influence on organoleptic evaluation of Xinyang Maojian tea of brewing temperature, brewing time and ratio of tea and water [J]. Food Science and Technology, 2010, 35(7): 120−123.(in Chinese)

    [10] 黄明军, 杨新河, 覃彩芹, 等. 青砖茶4种品质成分溶出动力学研究 [J]. 湖北工程学院学报, 2016, 36(6):37−41. DOI: 10.3969/j.issn.2095-4824.2016.06.008

    HUANG M J, YANG X H, QIN C Q, et al. Study on the digestion kinetics of four quality components in the qingzhuan brick tea [J]. Journal of Xiaogan University, 2016, 36(6): 37−41.(in Chinese) DOI: 10.3969/j.issn.2095-4824.2016.06.008

    [11] 孔祥瑞, 王让剑, 杨军, 等. 白茶感官品质与化学成分的相关和通径分析 [J]. 热带作物学报, 2013, 34(10):2014−2017. DOI: 10.3969/j.issn.1000-2561.2013.10.028

    KONG X R, WANG R J, YANG J, et al. Correlation and path analysis on organoleptic quality and chemical components in white tea [J]. Chinese Journal of Tropical Crops, 2013, 34(10): 2014−2017.(in Chinese) DOI: 10.3969/j.issn.1000-2561.2013.10.028

    [12] 刘东娜, 罗凡, 李春华, 等. 白茶品质化学研究进展 [J]. 中国农业科技导报, 2018, 20(4):79−91.

    LIU D N, LUO F, LI C H, et al. Research progress on quality chemistry of chinese white tea [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 79−91.(in Chinese)

    [13] 段红星, 孙围围. 福鼎白茶与景谷白茶内含成分与感官品质研究 [J]. 云南农业大学学报(自然科学版), 2016, 31(6):1091−1096.

    DUAN H X, SUN W W. Research on the components and sensory quality of fuding and jinggu white tea [J]. Journal of Yunnan Agricultural University (Natural Science), 2016, 31(6): 1091−1096.(in Chinese)

    [14] 陈曦, 刘乾刚. 白茶不同泡次茶汤中儿茶素、氨基酸组分的溶释 [J]. 福建茶叶, 2020, 42(6):12−16. DOI: 10.3969/j.issn.1005-2291.2020.06.008

    CHEN X, LIU Q G. Dissolution and release of catechins and aminoacids in white tea infusions with different series of brewing [J]. Tea in Fujian, 2020, 42(6): 12−16.(in Chinese) DOI: 10.3969/j.issn.1005-2291.2020.06.008

    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶叶感官审评方法: GB/T 23776- 2018[S]. 北京: 中国标准出版社, 2018.
    [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶水浸出物测定: GB/T 8305-2013[S]. 北京: 中国标准出版社, 2014.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313-2018[S]. 北京: 中国标准出版社, 2018.
    [18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶咖啡碱测定: GB/T 8312—2013[S]. 北京: 中国标准出版社, 2014.
    [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶叶中茶氨酸的测定高效液相色谱法: GB/T 23193—2017[S]. 北京: 中国标准出版社, 2017.
    [20] 张正竹. 茶叶生物化学试验教程[M]. 北京: 中国农业出版社, 2009: 44-47, 52-53, 91-95.
    [21]

    ROBINSON K M, KLEIN B P, LEE S Y. Utilizing the R-index measure for threshold testing in model caffeine solutions [J]. Food Quality and Preference, 2005, 16(4): 283−289. DOI: 10.1016/j.foodqual.2004.05.001

    [22]

    DRAGICEVIC N, DELIC V, CAO C, et al. Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer′s mice and cells [J]. Neuropharmacology, 2012, 63(8): 1368−1379. DOI: 10.1016/j.neuropharm.2012.08.018

    [23] 宛晓春. 茶叶生物化学[M]. 第3版. 北京: 中国农业出版社, 2003.
    [24] 陈丽如, 张娜, 杨更亮, 等. 茶色素的超声辅助提取及其稳定性研究 [J]. 江西农业大学学报, 2010, 32(3):608−612. DOI: 10.3969/j.issn.1000-2286.2010.03.035

    CHEN L R, ZHANG, YANG G L, et al. A study on the ultrasound-associated extractions of tea pigment and Its stability [J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(3): 608−612.(in Chinese) DOI: 10.3969/j.issn.1000-2286.2010.03.035

    [25] 张月玲, 龚淑英, 邵晓林. 碧螺春茶的主要呈味物质浸出规律的研究 [J]. 茶叶, 2006,32(2):88−92. DOI: 10.3969/j.issn.0577-8921.2006.02.008

    ZHANG Y L, GONG S Y, SHAO X L. A study on extractability of biluochun tea [J]. Journal of Tea, 2006,32(2): 88−92.(in Chinese) DOI: 10.3969/j.issn.0577-8921.2006.02.008

    [26]

    ZHANG H H, LI Y L, LV Y, et al. Influence of brewing conditions on taste components in Fuding white tea infusions [J]. Journal of the Science of Food and Agriculture, 2017, 97(9): 2826−2833. DOI: 10.1002/jsfa.8111

  • 期刊类型引用(2)

    1. 李佳思,刘迎庆,张永恒,张迎澳,肖烨子,刘露,余有本. 茶树CsNCED2启动子互作转录因子筛选及在非生物胁迫中的响应. 茶叶科学. 2023(03): 325-334 . 百度学术
    2. 赵彩良,张洁,唐锐敏,贾小云. 甘薯块根cDNA酵母文库的构建及IbNCED3启动子互作蛋白的筛选鉴定. 山西农业大学学报(自然科学版). 2022(04): 19-27 . 百度学术

    其他类型引用(2)

表(11)
计量
  • 文章访问数:  933
  • HTML全文浏览量:  244
  • PDF下载量:  23
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-05-25
  • 修回日期:  2020-08-03
  • 刊出日期:  2020-10-27

目录

/

返回文章
返回