Effects of Red and Blue LED Light at Night on Growth and Leaf Quality of Tea Plants
-
摘要:
目的 探索红蓝LED光源补光对贵州茶区春茶产量和品质的影响,为春茶高品质栽培提供理论依据。 方法 通过随机区组试验,设夜间不补光(CK)、LED1(红蓝光质比0.81)补光、LED2(红蓝光质比1.65)补光和LED3(红蓝光质比2.10)补光等4种处理,于茶树新梢开始生长时进行不同光源补光处理(21d),研究不同光源补光对春季茶树芽叶生长和品质的影响。 结果 不同补光处理均能促进茶树芽叶生长及提高茶叶品质,不同红蓝光质比表现不同,其中以蓝光占比最大的LED1处理(红蓝光质比0.81)的补光效果最好,与不补光(对照)相比,可显著增加单芽和一芽二叶的芽头数量(47.4%和74.89%)、重量(12.36%和41.56%);显著增加一芽一叶和一芽二叶的总叶绿素(25.61%和12.61%)、多酚(23.42%和23.29%)和游离氨基酸含量(32.23%和29.38%),降低酚氨比(-8%和-11.1%)。 结论 早春低温弱光环境下的茶园应用红蓝光质比为0.81的LED灯进行补光,可延长茶树光合作用时间,提高光合效率,实现高产优质。 Abstract:Objective Effects of red and blue LEDs applied at night in early spring on the growth and tea quality of Qianmei 601 (Camellia sinensis) were studied for the application at plantations in Guizhou. Method Red and blue LEDs at a ratio of 0.81, 1.65 or 2.1 were shone on the tea plants at night for 21 days at a plantation for the experimentation. Result The lighting promoted the bud and leave growth and improved the tea quality. Different red-to-blue light ratios produced different results. The treatment with a 0.81 ratio significantly increased the fresh leaf weight, bud density, total chlorophylls, total polyphenols, and free amino acids in the leaves and decreased the polyphenols/amino acids ratio as compared to control that grew under natural conditions. Conclusion Supplementing light at night with red and blue LEDs at 0.81 ratio on tea plants in early spring when the sunlight and temperature are relatively low appeared beneficial for the biomass buildup and quality improvement. -
表 1 试验用LED灯泡的光电特性
Table 1. Specifications of LEDs
处理
Treat-ment红蓝LED组件数量比
Chip number ratio of red & blue最大入射波长
Peak wavelengeh Λp/nm光合有效辐射
Photosynthetically active radiation PAR/W光合量子通量
Photosynthetic photon flux/(μmol·s-1)光子通量
Yield photon flux
/(μmol·s-1·W-1)红蓝光质比Photosynthetic photon flux ratio of red light & blue light LED1 1:1 457.4 & 662.8 2.49 11.01 4.42 0.81 LED2 2:1 456.6 & 661.0 2.20 10.37 4.70 1.65 LED3 3:1 455.8 & 660.2 2.08 10.01 4.79 2.10 表 2 不同LED灯茶园补光21d后对茶树新梢芽叶的生长影响
Table 2. Growth of buds on Qianmei 601 plants under LED settings for 21 days
处理
Treatment百芽鲜重Fresh weight of 100/(个·g-1) 发芽密度Bud density/(个·m-2) 单芽
Apical bud一芽一叶
Apical bud and subtending one leaf一芽二叶
Apical bud and subtending two leaves单芽
Apical bud一芽一叶
Apical bud and subtending one leaf一芽二叶
Apical bud and subtending two leavesCK 6.886±0.71b 15.909±1.10b 20.675±2.61b 365±79b 286±57a 219±52b LED1 7.737±0.70a 17.348±3.19a 29.267±1.69a 538±86a 229±51a 383±55a LED2 7.023±0.42b 14.314±1.65bc 22.483±2.46b 617±116a 191±39a 271±68b LED3 6.873±0.43b 13.345±1.56c 21.700±1.13b 737±143a 254±46a 209±36b 注:表中同一指标用不同小写字母标识表示处理间差异显著(P < 0.01)。表 3、4同。
Note:Different letter within a columnindicates the significantly difference at the 1% levels.The same as table 3-4.表 3 不同LED灯茶园补光21d后对茶树新梢芽叶的色素影响
Table 3. Chlorophyll in buds of Qianmei 601 plants under LED settings for 21 days
处理
Treatment一芽一叶Apical bud and subtending one leaf 一芽二叶Apical bud and subtending two leaves 总叶绿素
Total Chlorophylls/%类胡萝卜素
Carotenoids/%花黄素
Flavone/(mg·g-1)总叶绿素
Total Chlorophylls/%类胡萝卜素
Carotenoids/%花黄素
Flavone/(mg·g-1)CK 0.701±0.015b 0.241±0.017a 7.19±0.68b 0.904±0.07c 0.296±0.017a 7.45±0.58b LED 1 0.892±0.008a 0.212±0.015a 6.08±1.25b 1.018±0.017a 0.241±0.017b 6.77±0.79b LED2 0.850±0.016a 0.210±0.014a 7.14±0.80b 1.008±0.034a 0.256±0.019b 9.32±1.10a LED3 0.756±0.063ab 0.220±0.017a 9.43±0.49a 0.943±0.024b 0.257±0.0164b 10.71±1.20a 表 4 不同LED灯茶园补光21d后对茶树叶片多酚及游离氨基酸含量的影响
Table 4. Polyphenols and amino acids in leaves of Qianmei plants under LED settings for 21 days
处理
Treatment一芽一叶Apical bud and subtending one leaf 一芽二叶Apical bud and subtending two leaves 多酚
Total ployphenols/%游离氨基酸
Free amino acid/%酚氨比 多酚
Total ployphenols/%游离氨基酸
Free amino acid/%酚氨比 CK 23.91±1.35c 2.091±0.199c 11.52±1.33b 22.67±0.73c 1.838±0.178c 12.6±1.03b LED 1 29.51±0.89a 2.765±0.303a 10.60±1.10c 27.95±0.96a 2.378±0.221a 11.2±1.01c LED2 28.0±0.56ab 2.479±0.243b 11.38±1.05b 25.57±0.63b 1.947±0.179b 13.22±1.23a LED3 25.96±0.65b 1.968±0.188c 13.28±1.25a 24.05±0.53c 1.772±0.179d 13.69±1.42a -
[1] YAMAMOTO T, JUNEJA L R, KIM M.Chemistry and applications of green tea[M]. New York:CRC press, 1997:160. [2] WEI C L, YANG H, WANG S B, et al.Draft genome sequence of Camellia sinensis var.sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proc Natl Acad Sci, 2018, 115(18):4151-4158. doi: 10.1073/pnas.1719622115 [3] ZHOU Q Q, CHEN Z D, LEE J, et al.Proteomic analysis of tea plants (Camellia sinensis) with purple young shoots during leaf development[J]. PLOS ONE, 2017, 12(5): 11-18. http://www.ncbi.nlm.nih.gov/pubmed/28520776 [4] DONG C, FU Y, LIU G, et al.Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticumaestivum L.) at different growth stages in BLSS[J]. Adv Space Res, 2014, 53:1557-1566. doi: 10.1016/j.asr.2014.02.004 [5] HU D, LI L, LI Y, et al.Gas equilibrium regulation by closed-loop photo bioreactor built on system dynamics, fuzzy inference system and computer simulation[J]. Comput Electron Agric, 2014, 103: 114-121. doi: 10.1016/j.compag.2014.02.002 [6] MASSA G D, KIM H H, WHEELERRM, et al.Plant productivity in response to LED lighting[J]. Hort Science, 2008, 43: 951-956. http://agris.fao.org/openagris/search.do?recordID=US201301566148 [7] MORROW R C.LED lighting in horticulture[J]. Hort Science, 2008, 43: 1947-1950. http://d.old.wanfangdata.com.cn/Conference/8380085 [8] BROWN C S, SCHUERGER A C, SAGER J C.Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting[J]. Journal of the American Society of Horticultural Science, 1995, 120: 808-813. doi: 10.21273/JASHS.120.5.808 [9] TENNESSEN D J, SLNGSAAS E L, SHARKEY T D.Light-emitting diodes as a light source for photosynthesis research[J]. Photosynthesis Research, 1994, 39:85-92. doi: 10.1007/BF00027146 [10] CURREY C J, LOPEZ R G.Cuttings of Impatiens, Pelargonium, and Petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance[J]. HortScience, 2013, 48:428-434. doi: 10.21273/HORTSCI.48.4.428 [11] 刘厚诚.植物照明研究与应用新进展[J].照明工程学报, 2018, 29(4):3. http://d.old.wanfangdata.com.cn/Periodical/zmgcxb201804030LIU H C.New progress in research and application of plant lighting[J]. China Illuminating Engineering Journal, 2018, 29(4):3.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zmgcxb201804030 [12] 刘文科.LED植物工厂光质生物学研究与应用现状[J].中国农业科技导报, 2018, 20(10):9-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykjdb201810002LIU W K.Research on spectral biology of plant factory with LED lighting and application status[J]. Journal of Agricultural Science and Technology, 2018, 20(10):9-14.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykjdb201810002 [13] 张彤, 李成宇, 池建义, 等.稀土LED植物补光灯在设施农业上的应用[J].照明工程学报, 2018, 29(4):22-24. doi: 10.3969/j.issn.1004-440X.2018.04.004ZHANG T, LI C Y, CHI J Y, et al.Application of rare earth LED lights for plant in protected agriculture[J]. China Illuminating Engineering Journal, 2018, 29(4):22-24.(in Chinese) doi: 10.3969/j.issn.1004-440X.2018.04.004 [14] OWEN W G, LOPEZ R G.End-of-production supplemental lighting with red and blue light-emitting Diodes (LEDs) influences red pigmentation of four lettuce varieties[J]. Hort Science, 2015, 5:676-684. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af194f012a9c3bda59dcbbaafcb0e5d2 [15] RABINOWITCH E I.Photosynthesis and related processes[M]. New York:Interscience Publishers, Inc, 1945. [16] MCCREE K J.The action spectrum, absorptance and quantum yield of photosynthesis in crop plants[J]. Agricultural Meteorology, 1972, 9: 191-216. doi: 10.1016-0002-1571(71)90022-7/ [17] GOINS G D, YOTIO N C, SANWO M M, et al.Photo morphogenesis, photosynthesis, and seed yield of wheat plants grown under light emitting diodes(LEDs)with or without supplemental blue lighting[J]. J Exp Bot, 1997, 48: 1407-1413. doi: 10.1093/jxb/48.7.1407 [18] 朱旗.茶学概论[M].北京:中国农业出版社, 2013:24-26.ZHU Q.Overview of Tea Science[M]. Beijing: China Agriculture Press, 2013:24-26.(in Chinese) [19] 姚江, 胡建程, 谢丰镐.茶叶中叶绿素研究[J].浙江农业大学学报, 1990, 16(4):421-426. http://d.old.wanfangdata.com.cn/Periodical/ahnykx201120043YAO J, HU J C, XIE F H.Study on chlorophyll constituents of tea[J]. Acta Agriculturae University Zhejiang, 1990, 16 (4):421- 426.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ahnykx201120043 [20] 范培珍, 薄晓培, 王梦馨, 等.4个等级内山六安瓜片茶叶氨基酸的组成及差异[J].安徽农业大学学报, 2017, 44(1):14-21. http://d.old.wanfangdata.com.cn/Periodical/ahnydxxb201701003FAN P Z, BO X P, WANG M X, et al.Similarities and differences in composition of amino acids in four grades of Liu'anNeishanGuapianTea[J]. Journal of Anhui Agricultural University, 2017, 44(1):14-21.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ahnydxxb201701003 [21] 余涛, 胡波, 孙睿, 等.茶叶光谱与叶绿素、茶氨酸、茶多酚含量关系分析[J].遥感技术与应用, 2016, 31(5):872-878. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201605005YU T, HU B, SUN R, et al.Relationship between tea spectra and contents of chlorophyll, theanine an polyphenols[J]. Remote Sensing Technology and Application, 2016, 31(5):872-878.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201605005 [22] KOWALLIK W.Blue light effects on respiration[J]. Annu Rev Plant Physiol, 1982, 33: 51-72. doi: 10.1146/annurev.pp.33.060182.000411 [23] 孙君, 朱留刚, 林志坤, 等.茶树光合作用研究进展[J].福建农业学报, 2015, 30 (12):1231-1237. doi: 10.3969/j.issn.1008-0384.2015.12.018SUN J, ZHU L G, LIN Z K, et al.Research progress on photosynthesis of tea plants[J]. Fujian Journal Agricultural Sciences, 2015, 30(12):1231-1237.(in Chinese) doi: 10.3969/j.issn.1008-0384.2015.12.018