• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

人参根、茎叶及其根际土壤中重金属污染评价及迁移能力分析

冉文倩, 彭韵洁, 王奇, 赵博雅, 张平平, 时东方, 陈丽娜, 刘春明

冉文倩,彭韵洁,王奇,等. 人参根、茎叶及其根际土壤中重金属污染评价及迁移能力分析 [J]. 福建农业学报,2023,38(11):1358−1366. DOI: 10.19303/j.issn.1008-0384.2023.11.012
引用本文: 冉文倩,彭韵洁,王奇,等. 人参根、茎叶及其根际土壤中重金属污染评价及迁移能力分析 [J]. 福建农业学报,2023,38(11):1358−1366. DOI: 10.19303/j.issn.1008-0384.2023.11.012
RAN W Q, PENG Y J, WANG Q, et al. Migration of Heavy Metals in Rhizosphere Soil to Ginseng Roots, Stems, and Leaves [J]. Fujian Journal of Agricultural Sciences,2023,38(11):1358−1366. DOI: 10.19303/j.issn.1008-0384.2023.11.012
Citation: RAN W Q, PENG Y J, WANG Q, et al. Migration of Heavy Metals in Rhizosphere Soil to Ginseng Roots, Stems, and Leaves [J]. Fujian Journal of Agricultural Sciences,2023,38(11):1358−1366. DOI: 10.19303/j.issn.1008-0384.2023.11.012

人参根、茎叶及其根际土壤中重金属污染评价及迁移能力分析

基金项目: 吉林省教育厅科学研究项目(JJKH20230924KJ)
详细信息
    作者简介:

    冉文倩(2002 — ),女,主要从事天然药物分析研究,E-mail:3161818400@qq.com

    通讯作者:

    陈丽娜(1984 — ),女,博士,副研究员,主要从事天然药物分析研究,E-mail:chenlina4321@163.com

    刘春明(1964 —),女,博士,教授,主要从事天然药物分析研究,E-mail:ccsf777@163.com

  • 中图分类号: S646.9

Migration of Heavy Metals in Rhizosphere Soil to Ginseng Roots, Stems, and Leaves

  • 摘要:
      目的  探究人参根、茎叶及其根际土壤中重金属污染程度及迁移能力。
      方法  对来自吉林省3个产区的15份人参样本中元素Al、V、Cr、Cd、Pb、Mn、Co、Ni、Cu、Zn、Ba等进行分析测定,采用单因子污染指数法、内梅罗综合指数法对根际土壤元素Cd、Pb、Cr、Cu、Ni、Zn等进行污染评价,分析人参不同部位对其根际土壤中重金属的富集特性及各元素间的相关性。
      结果  人参根、茎叶及根际土壤中Al元素含量最高,根、茎叶变异系数范围分别为:12.07%~58.43%,10.02%~87.96%。根际土壤中有13份样品属于安全、清洁水平,2份属于警戒级、尚清洁水平,其中Cd元素是主要污染物。茎叶和根对各元素的富集趋势相似,BCF平均值相差较大,但均表现为对Cu、Zn、Ba、Cd的富集能力较强。
      结论  人参种植要采取手段监测与管控单因子污染指数值最大的Cd元素含量,避免土壤镉污染。人参根、茎叶与土壤元素含量的相关性比较复杂,土壤中部分元素在植物吸收、转运过程中存在协同或拮抗作用。
    Abstract:
      Objective  Heavy metal pollution in rhizosphere soil and its migration to the roots, stems, and leaves of ginseng plants grown on the land were studied.
      Methods  Contents of Al, V, Cr, Cd, Pb, Mn, Co, Ni, Cu, Zn, and Ba in randomly collected 15 batches of ginseng specimens from three producing areas in Jilin Province were analyzed. Pollution of rhizosphere soil by Cd, Pb, Cr, Cu, Ni, and Zn was evaluated using the single factor pollution index and Nemerow composite index methods. Accumulation of heavy metals in different parts of a ginseng plant was correlated with the pollution on the corresponding soil.
      Results   Of all the tested heavy metals, Al in the roots and stems/leaves of the ginseng plants was the highest pollutant in content. The variation coefficient on the roots ranged 12.07-58.43% and that on the stems and leaves 10.02-87.96%. Out of 15 rhizosphere soil samples, 13 were considered safe and clean, and two moderately clean with due warning, which contained a high level of Cd. The ginseng roots and stems/leaves were similar in accumulating the pollutants but significantly different on mean BCFs and all high on Cu, Zn, Ba, and Cd.
      Conclusion   It is crucial that ginseng be cultivated on land with stringent control on heavy metal pollution for safe consumption. Constant monitoring the soil conditions to avoid a high single factor pollution index on Cd was particularly important. The relationship between the heavy metals in ginseng plants and rhizosphere soil was complex, as certain synergistic and/or antagonistic effects might interfere with the absorption and transport of the harmful elements.
  • 绵羊肺炎支原体Mycoplasma ovipneumoniae, Mo是引起绵羊和山羊支原体性肺炎的主要病原体之一[1],羊感染发病后病程较长,康复羊亦可长期带菌,因此消灭困难。羔羊感染发病后死亡率高,通常病死率为30%~50%,甚至高达80%[2-3]。羊支原体性肺炎在全世界养羊国家均有存在,我国四川、贵州、内蒙古、青海、广西、福建等地均有该病发生的报道[4-5],对养殖户造成了严重的经济损失,限制了养羊业的健康发展。

    绵羊肺炎支原体与其他引起羊支原体性肺炎的病原之间缺乏交叉免疫反应,免疫预防困难,且其所引起疾病的症状与传染性胸膜肺炎极为相似,因此很有必要建立快速准确检测绵羊肺炎支原体的方法。当前绵羊肺炎支原体常用的检测方法有分离鉴定法、常规PCR法、血清学方法和实时荧光定量PCR。由于支原体的分离鉴定法、常规PCR法和血清学方法存在费时费力、灵敏度低、特异性差等缺点,不能满足大批量样品的实时监测;而实时荧光定量PCR方法灵敏度高,操作简单,可进行批量检测,已有Yang等[6]、程振涛等[7]、尹正军[8]、王华[9]分别根据p113基因、16S rRNA、tuf基因和NA基因建立了SYBR Green Ⅰ和TaqMan实时荧光定量PCR方法。林裕胜等[10]P80基因建立了检测羊口疮病毒和绵羊肺炎支原体的双重PCR方法。但目前尚未见关于P80基因荧光定量PCR方法检测绵羊肺炎支原体的报道。本研究基于绵羊肺炎支原体P80基因建立了绵羊肺炎支原体染料法SYBR Green Ⅰ实时荧光定量PCR方法,以期为该病的检测提供参考。

    山羊支原体山羊肺炎亚种模式株F38和山羊支原体山羊亚种核酸由中国农业科学院兰州兽医研究所储岳峰研究员馈赠;大肠杆菌、多杀性巴氏杆菌、绵羊肺炎支原体FJ01-CL、莱氏无胆甾原体、金黄色葡萄球菌、牛支原体、丝状支原体山羊亚种,溶血性曼氏杆菌,均为本研究室分离、鉴定和保存;96份疑似羊支原体性肺炎鼻拭子样品,为2014年9月至2018年6月采集于福建省内山羊场。

    荧光定量PCR仪,购自eppendorf公司;染料SYBR Premix Ex Taq试剂(200次)、RNase-Free Water、DNA Marker,均购自宝生物工程(大连)有限公司;质粒提取试剂盒,购自Omega公司;细菌基因组DNA抽提试剂盒,购自生工生物工程(上海)有限公司;胶回收试剂盒,购自康宁生命科学有限公司。

    根据GenBank公布的绵羊肺炎支原体P80(GenBank No.KM435069.1)基因,在其保守区用Beacon Designer 7.9设计1对特异性引物(P80F:5′-CCT TAT ACA CGC TAT GGT-3′/P80R:5′-CGA TGT TAG ATT CTT CCT ATC-3′),引物由宝生物工程(大连)有限公司合成。

    参考文献[11-12]的方法提取绵羊肺炎支原体的DNA和质粒,-70℃保存备用。

    按照参考文献[11]建立25 μL反应体系:上、下游引物(10 μmol·μL)各0.5 μL,染料试剂SYBR Premix Ex Taq酶12.5 μL,模板2 μL,RNase-Free水8.5 μL。初步反应条件为:95℃ 30 s;95℃ 5 s,退火温度以2℃为梯度从50℃依次增加到62℃,30 s,共40个循环;退火延伸时检测荧光信号,以产生的荧光值(△Rn)最高和最小的Ct值,并且在熔解曲线中无非特异性峰值为最佳优化标准。

    按照参考文献[12]换算公式将测定的阳性重组质粒的OD260值换算为拷贝数浓度,然后进行10倍倍比稀释,按照上述优化条件进行荧光定量PCR扩增。

    在上述优化条件下,分别对绵羊肺炎支原体、山羊支原体山羊亚种、牛支原体、丝状支原体山羊亚种等核酸进行荧光定量PCR检测,检验该方法的特异性。

    以不同稀释浓度的标准品为模版,用建立的荧光定量PCR方法进行检测;同时用林裕胜等[12]建立的绵羊肺炎支原体TaqMan实时荧光定量PCR方法进行检测,比较两种方法的敏感性。

    以1×107、1×105、1×103copies·μL-1等3个浓度的标准品参照参考文献[12]进行组内和组间重复试验。

    应用建立的荧光定量PCR方法对采集的96份疑似羊支原体性肺炎的鼻拭子样品进行检测,同时与林裕胜等[12]建立的TaqMan实时荧光定量PCR方法进行比较,评估该方法的准确性。

    绵羊肺炎支原体FJ01-CL质粒P80部分基因重组质粒经PCR和测序鉴定,电泳图片可见扩增出与预期大小一致的条带,为126 bp(图 1);将测序结果与GenBank公布的绵羊肺炎支原体P80基因(GenBank No.KM435069.1)进行比对,两者的相似性为100%。

    图  1  绵羊肺炎支原体阳性质粒扩增
    注M为100 bp DNA Ladder;1为绵羊肺炎支原体FJ01-CL质粒DNA;2为阴性对照。
    Figure  1.  Amplified positive plasmid of M. ovipneumoniae

    通过对绵羊肺炎支原体荧光定量PCR反应条件的优化,获得最佳反应条件为:95℃ 30 s预变性;95℃ 5 s,60℃ 30 s,共40个循环。从图 2可以看出,在1×101~1×107copies·μL-1具有良好线性关系,标准曲线相关系数R2=1.00,扩增效率E=97.6%。由图 3可见,当Tm=(79.5±0.23)℃时,没有非特异性扩增产物,仅有单特异性峰生成。

    图  2  绵羊肺炎支原体荧光定量PCR标准曲线
    Figure  2.  Standard curve of M. ovipneumoniae detected by RT-qPCR
    图  3  绵羊肺炎支原体荧光定量PCR熔解曲线
    Figure  3.  Melting curve of M. ovipneumoniae detected by RT-qPCR

    利用上述优化方法分别对绵羊肺炎支原体、丝状支原体山羊亚种、山羊支原体山羊肺炎亚种等核酸进行荧光定量PCR检测,结果(图 4)可见,除绵羊肺炎支原体能扩增出S型曲线外,其他羊常见病原均无扩增。

    图  4  绵羊肺炎支原体荧光定量PCR特异性试验结果
    Figure  4.  Specificity test on M. ovipneumoniae detection by RT-qPCR

    灵敏性试验结果显示,建立的荧光定量PCR方法与TaqMan实时荧光定量PCR方法敏感性一致,对阳性标准品的最低检测值均为10 copies ·μL-1,表明建立的方法灵敏度高。

    选取1×107、1×105和1×103copies ·μL-1的阳性标准品进行组内和组间重复试验,结果(表 1)可知,3份不同稀释度模板组内变异系数为0.64%~1.78%,组间变异系数为0.69%~1.65%,具有良好的重复性。

    表  1  绵羊肺炎支原体实时荧光定量PCR的重复性试验结果
    Table  1.  Repeatability of M.ovipneumoniae detection by RT-qPCR
    重组质粒Mo
    浓度/
    (copies·μL-1)
    组内重复组间重复
    Ct平均值±
    标准差
    变异系数
    /%
    Ct平均值±
    标准差
    变异系数
    /%
    1×10713.52±0.191.4113.53±0.181.33
    1×10520.19±0.130.6420.13.±0.140.69
    1×10326.35±0.471.7826.12±0.431.65
    下载: 导出CSV 
    | 显示表格

    分别利用本研究建立的SYBR Green Ⅰ荧光定量PCR和林裕胜等[12]建立的TaqMan实时荧光定量PCR对从福建省内采集的96份临床疑似羊支原体性肺炎的鼻拭子样品进行DNA检测,比较两者结果的符合率。结果(表 2)表明,二者检测结果完全一致,阳性率均为67.7%。

    表  2  SYBR Green Ⅰ荧光定量PCR和TaqMan荧光定量PCR法临床样品检测结果比较
    Table  2.  M. ovipneumoniae detections on clinical samples using SYBR Green Ⅰ RT-qPCR and TaqMan RT-qPCR
    检测方法样品数阳性
    样品数
    阴性
    样品数
    阳性率
    /%
    SYBR Green Ⅰ荧光定量PCR96653167.7
    TaqMan荧光定量PCR96653167.7
    下载: 导出CSV 
    | 显示表格

    绵羊肺炎支原体是引起羊支原体性肺炎的主要病原,在我国羊群中的感染率很高。羊支原体性肺炎临床症状以高热、咳嗽、流涕为特征,病死率高,严重制约了养羊产业的健康发展[1]。目前福建省大多数羊场均存在该病[4]。由于羊支原体性肺炎与山羊传染性胸膜肺炎临床上很容易混淆,同时,绵羊肺炎支原体分离培养困难、耗时长,不适于该病的快速诊断,因此,很有必要建立绵羊肺炎支原体快速、特异和敏感的检测方法,为羊支原体性肺炎病的科学防控提供技术支持。

    普通PCR检测样品过程中,需要在反应结束后,将扩增产物在琼脂糖胶上电泳后才能得到检测结果,整个操作过程较为繁琐,费时费力,在样品量多的情况下容易出现污染,而且容易假阳性[13]。而荧光定量PCR在加样后整个过程都可以在仪器上实时监控,减少后续电泳和凝胶成像步骤,极大地减少了人力。荧光定量PCR又分为染料法和探针法,染料法与探针法相比,具有成本低、且引物设计简单,容易操作等优势[14]

    绵羊肺炎支原体P80基因编码膜蛋白,虽然其免疫特性尚未深入研究,但已用于构建遗传进化树,比较不同菌株之间的亲缘关系[15],并且已有研究根据该基因序列建立了常规PCR方法[10],应用于临床样品的检测。本研究采用染料法SYBR Green Ⅰ根据P80基因保守序列设计特异性引物建立了绵羊肺炎支原体荧光定量PCR检测方法。研究结果显示,本研究建立的方法特异性强,对丝状支原体山羊亚种、牛支原体、山羊支原体山羊肺炎亚种、山羊支原体山羊亚种等羊常见病原均无反应;标准曲线具有良好的线性关系,相关系数R2为1.00,扩增效率为97.6%;组内和组间变异系数均小于2%,说明该方法具有很高的精确度和良好的稳定性。Yang等[6]、程振涛等[7]、尹正军[8]、王华[9]分别建立了绵羊肺炎支原体实时荧光定量PCR方法,其最低检测限分别为3、10、22、5 copies· μL-1。本研究建立的方法最低检测限为10 copies· μL-1,与程振涛等[7]依据16S rRNA基因建立的染料法和林裕胜等[12]依据p113基因建立的TaqMan荧光定量PCR方法的敏感性一致,与Yang等[6]和王华[9]依据p113基因和NA基因建立的染料法敏感性相当。应用本研究建立的方法对福建省内96份鼻拭子样品进行检测并与TaqMan荧光定量PCR法进行比较,结果显示,二者敏感性一致,表明P80基因作为靶基因应用于绵羊肺炎支原体的检测是可行的,本研究建立的方法可以用于绵羊肺炎支原体的准确快速检测。

    96份鼻拭子样品中绵羊肺炎支原体检测的阳性率为67.7%。如此高的阳性率与养殖户疫苗使用不当有一定关系,结合本研究室近几年检测结果来看,引起福建省羊支原体性肺炎的病原是绵羊肺炎支原体和丝状支原体山羊亚种,福建省尚未检测到山羊传染性胸膜肺炎病原。而福建省养殖户当前免疫的疫苗主要有小反刍兽疫弱毒疫苗、山羊传染性胸膜肺炎灭活疫苗、口蹄疫疫苗和羊痘疫苗,很少用绵羊肺炎支原体和丝状支原体山羊亚种二联灭活苗进行免疫,因此导致羊支原体性肺炎发病率居高不下。

    综上所述,本研究建立的绵羊肺炎支原体SYBR Green Ⅰ实时荧光定量PCR可用于绵羊肺炎支原体的准确快速检测和流行病学调查。

  • 图  1   人参采样点示意图

    Figure  1.   Schematic diagram of ginseng sampling sites

    图  2   人参根与茎叶元素间的相关性

    Figure  2.   Correlation between elements in roots and stems/leaves of a ginseng plant

    图  3   人参茎叶与根际土壤元素间的相关性

    Figure  3.   Correlation between elements in ginseng stems/leaves and rhizosphere soil

    图  4   人参根与根际土壤元素间的相关性

    Figure  4.   Correlation between elements in ginseng roots and rhizosphere soil

    表  1   农用地土壤污染风险筛选值

    Table  1   Values for screening pollution risk on agricultural land               (单位:mg·kg−1

    元素
    Element
    农用地土壤污染风险筛选值
    Risk screening value of soil pollution in agricultural land
    pH≤5.55.5<pH≤6.56.5<pH≤7.5pH>7.5
    Cd0.30.30.30.6
    Hg1.31.82.43.4
    As40403025
    Pb7090120170
    Cr150150200250
    Cu5050100100
    Ni6070100190
    Zn200200250300
    下载: 导出CSV

    表  2   内梅罗综合污染指数法对土壤环境质量评价分级标准

    Table  2   Standards for classifying soil quality by Nemerow comprehensive pollution index method

    综合污染指数(P综合
    Composite pollution index
    污染等级
    Pollution level
    污染评价
    Pollution assessment
    P综合≤0.7 安全
    Safe
    清洁
    Clean
    0.7<P综合≤1.0 警戒级
    Alert level
    尚清洁
    Relatively clean
    1.0<P综合≤2.0 轻度污染
    Slight pollution
    开始受污染
    Start to be polluted
    2.0<P综合≤3.0 中度污染
    Moderate pollution
    受中度污染
    Moderately polluted
    P综合>3.0 重度污染
    Heavy pollution
    受污染已相当严重
    Heavy polluted
    下载: 导出CSV

    表  3   人参根样本中重金属和有害元素检测结果

    Table  3   Heavy metals and harmful elements detected in ginseng roots (单位:mg·kg−1

    编号
    Number
    AlVCrCdPbMnCoNiCuZnBa
    1-114750.651.200.110.0444.060.192.749.8523.1227.00
    1-214211.522.460.210.2472.450.263.488.7923.9529.18
    1-311920.521.550.120.10100.110.202.7510.3221.3317.96
    1-413900.561.280.11042.800.172.7710.1121.6526.40
    1-513661.511.520.200.2070.790.253.138.2322.0426.40
    2-19040.260.170.14077.250.112.137.2914.0314.80
    2-211820.401.540.160.0798.500.162.979.9119.1322.60
    2-312520.541.410.190.15103.320.202.5412.1523.9732.26
    2-414250.611.610.130116.740.223.4010.8128.1824.67
    2-511970.401.390.180.08100.830.162.9710.0223.5722.40
    3-115500.541.390.09039.560.212.9711.9723.8729.19
    3-220020.782.320.13092.960.303.359.9623.9635.54
    3-313020.551.080.14046.830.173.2712.0623.9052.15
    3-414310.501.400.15036.390.163.1911.5221.9128.32
    3-519910.772.180.10091.430.313.189.0725.6333.23
    平均值
    Average value
    1405.330.671.500.140.1375.600.202.9910.1422.6828.14
    标准差
    Standard deviation
    286.880.370.550.040.0727.440.060.361.423.158.62
    CV%20.4154.3636.5125.8358.4336.3027.1312.0714.0513.8930.64
    下载: 导出CSV

    表  4   人参茎叶样本中重金属和有害元素检测结果

    Table  4   Heavy metals and harmful elements detected in ginseng stems/leaves (单位:mg·kg−1

    编号
    Number
    AlVCrCdPbMnCoNiCuZnBa
    1-12984.802.142.580.090.71287.160.423.029.9035.6659.44
    1-22099.191.581.900.180.67417.750.423.3811.5732.9864.70
    1-33396.543.343.120.140.92512.100.684.3214.2832.2868.65
    1-42989.242.082.340.090.67298.070.412.919.6933.4560.72
    1-52050.261.932.180.220.89412.350.504.0914.1429.6864.07
    2-11384.901.022.160.410.59249.320.232.626.8529.0860.60
    2-23790.233.463.170.181.11455.840.593.8411.2430.5665.08
    2-31457.440.922.800.371.61188.560.232.027.7530.8366.61
    2-41421.410.551.020.240.04264.360.131.423.8326.6163.77
    2-54014.673.022.510.120.87469.180.513.209.1426.1964.62
    3-11607.111.371.590.170.57212.980.302.8213.6327.5276.80
    3-21663.521.271.300.070.48354.390.323.4111.3128.4260.58
    3-32033.261.551.610.070.66360.100.342.5312.8125.2069.63
    3-41611.221.171.280.130.41209.900.252.2511.5728.6277.60
    3-51461.311.321.360.070.48339.090.333.6511.1820.7952.07
    平均值
    Average value
    2264.341.782.060.170.71335.410.383.0310.5929.1965.00
    标准差
    Standard deviation
    919.790.890.690.100.35102.050.150.792.863.736.51
    CV%10.0261.4936.3461.4949.7587.9649.7517.9810.0229.3510.02
    下载: 导出CSV

    表  5   人参根际土壤样本中重金属和有害元素检测结果

    Table  5   Heavy metals and harmful elements detected in ginseng rhizosphere soil (单位:mg·kg−1

    编号
    Number
    AlVCrCdPbMnCoNiCuZnBa
    1-173136.9354.8043.900.5624.072406.0518.9165.7731.1488.82223.50
    1-286154.5144.1833.690.3516.782740.7710.6553.5828.2973.20206.61
    1-364333.7450.9337.370.2816.682022.7316.5745.3523.6381.00238.75
    1-479783.4152.4140.720.5135.222375.4717.4054.9026.8180.26225.23
    1-581160.5945.1235.580.2714.332401.3410.9342.8623.2778.89216.75
    2-184922.8740.7335.740.2913.802307.788.4034.8120.1967.81226.59
    2-283016.4536.4922.660.2011.952151.348.4833.7419.3263.37207.71
    2-385159.4543.6427.920.2713.982263.859.3133.3318.6069.02206.82
    2-490096.3039.3726.040.2914.462546.098.1434.5820.2591.58211.79
    2-594330.8044.1633.450.2414.032355.7010.0640.1222.59103.99243.51
    3-187839.3642.3031.290.2516.202600.089.4035.9621.3581.41186.96
    3-287511.3837.8530.370.2616.332302.128.7539.5921.6667.49173.98
    3-385706.2339.0428.460.2416.422271.628.5340.1224.8291.98176.27
    3-484904.0941.9431.350.2315.953264.039.2234.8320.8677.97186.68
    3-586765.8037.5729.330.2313.813092.778.2532.8217.6865.45226.58
    平均值
    Average value
    83654.7943.3732.520.3016.932473.4510.8741.4922.7078.82210.52
    下载: 导出CSV

    表  6   人参根际土壤重金属污染评价

    Table  6   Evaluation on heavy metal pollution of ginseng rhizosphere soil

    编号
    Number
    单因子污染指数
    Single factor pollution index
    内梅罗综合污染指数
    Nemerow composite pollution index
    污染等级
    Pollution level
    污染水平
    Pollution level
    CdPbCrCuNiZn
    1-11.850.200.220.310.660.360.97警戒级 Alert level尚清洁 Relatively clean
    1-21.160.140.170.280.540.290.62安全 Safe清洁 Clean
    1-30.950.140.190.240.450.320.51安全 Safe清洁 Clean
    1-41.720.290.200.270.550.320.90警戒级 Alert level尚清洁 Relatively clean
    1-50.890.120.180.230.430.320.48安全 Safe清洁 Clean
    2-10.950.110.180.200.350.270.51安全 Safe清洁 Clean
    2-20.680.100.110.190.340.250.37安全 Safe清洁 Clean
    2-30.890.120.140.190.330.280.47安全 Safe清洁 Clean
    2-40.980.120.130.200.350.370.52安全 Safe清洁 Clean
    2-50.810.120.170.230.400.420.44安全 Safe清洁 Clean
    3-10.820.130.160.210.360.330.44安全 Safe清洁 Clean
    3-20.880.140.150.220.400.270.47安全 Safe清洁 Clean
    3-30.810.140.140.250.400.370.44安全 Safe清洁 Clean
    3-40.770.130.160.210.350.310.42安全 Safe清洁 Clean
    3-50.780.120.150.180.330.260.42安全 Safe清洁 Clean
    下载: 导出CSV

    表  7   人参的BCF平均值

    Table  7   Mean BCF of ginseng

    采样地
    Sample site
    Al V Cr Mn Co Ni Cu Zn Ba Cd
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    茎叶
    Stem
    leaf

    Root
    J1 0.036 0.018 0.045 0.020 0.063 0.043 0.164 0.028 0.034 0.016 0.071 0.058 0.460 0.359 0.409 0.280 0.286 0.115 0.433 0.436
    J2 0.027 0.014 0.045 0.011 0.083 0.045 0.141 0.043 0.038 0.019 0.074 0.080 0.386 0.501 0.380 0.278 0.294 0.108 1.002 0.637
    J3 0.020 0.018 0.033 0.015 0.048 0.051 0.115 0.022 0.034 0.023 0.073 0.085 0.558 0.515 0.350 0.297 0.392 0.202 0.452 0.524
    下载: 导出CSV
  • [1] 李成华, 薛长松. 从人参药性历史记载的变化看单味药药性成因 [J]. 中国药学杂志, 2022, 57(19):1596−1600.

    LI C H, XUE C S. Origin study of medicinal properties of single drug from the history of Panax ginseng medicinal properties [J]. Chinese Pharmaceutical Journal, 2022, 57(19): 1596−1600.(in Chinese)

    [2] 李倩, 柴艺汇, 高洁, 等. 人参现代药理作用研究进展 [J]. 贵阳中医学院学报, 2019, 41(5):89−92. DOI: 10.16588/j.cnki.issn1002-1108.2019.05.022

    LI Q, CHAI Y H, GAO J, et al. Research progress on modern pharmacological effects of ginseng [J]. Journal of Guiyang University of Chinese Medicine, 2019, 41(5): 89−92.(in Chinese) DOI: 10.16588/j.cnki.issn1002-1108.2019.05.022

    [3]

    RATAN Z A, HAIDERE M F, HONG Y H, et al. Pharmacological potential of ginseng and its major component ginsenosides [J]. Journal of Ginseng Research, 2021, 45(2): 199−210. DOI: 10.1016/j.jgr.2020.02.004

    [4] 高健, 吕邵娃. 人参化学成分及药理作用研究进展 [J]. 中医药导报, 2021, 27(1):127−130,137.

    GAO J, LYU S W. Research progress in chemical constituents and pharmacological action of renshen(ginseng) [J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2021, 27(1): 127−130,137.(in Chinese)

    [5]

    JIN D, ZHANG Y Q, ZHANG Y H, et al. Panax ginseng C. A. Mey. as medicine: The potential use of Panax ginseng C. A. Mey. as a remedy for kidney protection from a pharmacological perspective [J]. Frontiers in Pharmacology, 2021, 12: 734151. DOI: 10.3389/fphar.2021.734151

    [6] 梁尧, 李刚, 曹庆军, 等. 人参产地土壤重金属污染现状及其修复技术的研究进展 [J]. 中药材, 2013, 36(10):1709−1713.

    LIANG Y, LI G, CAO Q J, et al. Research progress on heavy metal pollution in soil of ginseng producing area and its remediation technology [J]. Journal of Chinese Medicinal Materials, 2013, 36(10): 1709−1713.(in Chinese)

    [7] 左湘熙, 孙海, 钱佳奇, 等. 东北不同产地农田栽培人参品质与参根矿质元素的相关分析 [J]. 吉林农业大学学报, 2022, 44(3):307−312.

    ZUO X X, SUN H, QIAN J Q, et al. Correlation analysis of ginseng quality and ginseng root mineral elements cultivated in farmland of different producing areas in northeast China [J]. Journal of Jilin Agricultural University, 2022, 44(3): 307−312.(in Chinese)

    [8] 邸文瑞, 冯雯. 铅锌污染土壤修复治理应用技术分析 [J]. 皮革制作与环保科技, 2023, 4(5):133−135.

    DI W R, FENG W. Analysis of application technology of remediation and treatment lead-zinc contaminated soil [J]. Leather Manufacture and Environmental Technology, 2023, 4(5): 133−135.(in Chinese)

    [9] 方明中, 孙海敏, 汪铖程. 镉污染土壤植物提取技术研究进展 [J]. 广东化工, 2023, 50(5):143−144,162.

    FANG M Z, SUN H M, WANG C C. Review on phytoextraction of cadmium-contaminated soil [J]. Guangdong Chemical Industry, 2023, 50(5): 143−144,162.(in Chinese)

    [10] 杨曼, 赵丽娅, 钟金梅, 等. 铜污染土壤中植物修复技术的应用研究进展 [J]. 现代农业科技, 2023(3):159−164,169.

    YANG M, ZHAO L Y, ZHONG J M, et al. Research progress on application of phytoremediation technology in copper contaminated soil [J]. Modern Agricultural Science and Technology, 2023(3): 159−164,169.(in Chinese)

    [11] 陈安娜, 孙敏, 李博. 微波消解-原子吸收光谱法测定竹荪中镍含量 [J]. 浙江农业科学, 2021, 62(8):1594−1595,1632.

    CHEN A N, SUN M, LI B. Determination of nickel in Dictyophora indusiata by microwave digestion-atomic absorption spectrometry [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(8): 1594−1595,1632.(in Chinese)

    [12] 迟鸿悦, 李文影, 李乐乐, 等. ICP-MS法测定人参中6种重金属元素 [J]. 吉林中医药, 2018, 38(8):954−957.

    CHI H Y, LI W Y, LI L L, et al. Determination of heavy metal elements in ginseng by ICP-MS [J]. Jilin Journal of Chinese Medicine, 2018, 38(8): 954−957.(in Chinese)

    [13] 韩小丽, 张小波, 郭兰萍, 等. 中药材重金属污染现状的统计分析 [J]. 中国中药杂志, 2008, 33(18):2041−2048.

    HAN X L, ZHANG X B, GUO L P, et al. Statistical analysis of residues of heavy metals in Chinese crude drugs [J]. China Journal of Chinese Materia Medica, 2008, 33(18): 2041−2048.(in Chinese)

    [14] 李莉, 赵晓松. 吉林省东部山区人参栽培基地土壤污染现状与评价 [J]. 农业环境科学学报, 2005, 24(2):403−406.

    LI L, ZHAO X S. Investigation and assessment on pollution of ginseng cultivation soil in the east mountain areas of Jilin Province [J]. Journal of Agro-Environmental Science, 2005, 24(2): 403−406.(in Chinese)

    [15] 张亚玉, 孙海, 高明, 等. 吉林省人参土壤中重金属污染水平及生物有效性研究 [J]. 土壤学报, 2011, 48(6):1306−1313.

    ZHANG Y Y, SUN H, GAO M, et al. Pollution level and bioavailability of heavy metals in ginseng soil Jilin Province [J]. Acta Pedologica Sinica, 2011, 48(6): 1306−1313.(in Chinese)

    [16] 杨仁贵, 王美玲, 芮蕊, 等. 华山松-三七种植模式下矿质元素分布特征及重金属污染评价 [J]. 山东农业科学, 2023, 55(5):127−133.

    YANG R G, WANG M L, RUI R, et al. Distribution characteristics of mineral elements and pollution evaluation of heavy metals in Pinus armandii-Panax notoginseng planting pattern [J]. Shandong Agricultural Sciences, 2023, 55(5): 127−133.(in Chinese)

    [17] 中国农业部. 中华人民共和国农业行业标准: NY/T 1121.1—2016[S]. 2006-7-10.
    [18] 王奇, 陈丽娜, 彭韵洁, 等. 五味子中金属元素分析及膳食风险评估 [J]. 食品安全质量检测学报, 2022, 13(4):1310−1317.

    WANG Q, CHEN L N, PENG Y J, et al. Analysis of metallic elements in Schisandra chinensis and assessment of dietary risk [J]. Journal of Food Safety & Quality, 2022, 13(4): 1310−1317.(in Chinese)

    [19] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018.
    [20] 李浪, 孙燕, 刘妮, 等. 红托竹荪与覆土土壤重金属污染评价及迁移能力分析 [J]. 福建农业学报, 2021, 36(7):836−842. DOI: 10.19303/j.issn.1008-0384.2021.07.013

    LI L, SUN Y, LIU N, et al. Content and migration of heavy metals in Dictyophora rubrovalvata and soil [J]. Fujian Journal of Agricultural Sciences, 2021, 36(7): 836−842.(in Chinese) DOI: 10.19303/j.issn.1008-0384.2021.07.013

    [21] 唐功政, 刘国栋, 高润青, 等. 利用单因子污染指数与内梅罗综合指数进行土壤重金属污染程度评级 [J]. 科技风, 2019(13):125−126.

    TANG G Z, LIU G D, GAO R Q, et al. Using single factor pollution index and Nemerow comprehensive index to grade soil heavy metal pollution degree [J]. Technology Wind, 2019(13): 125−126.(in Chinese)

    [22] 吴涵, 何忠俊, 孟溪, 等. 三七-土壤系统重金属分布特征及健康风险评价 [J]. 农业环境科学学报, 2023, 42(7):1477−1486. DOI: 10.11654/jaes.2022-1047

    WU H, HE Z J, MENG X, et al. Distribution characteristics and health risk assessment of heavy metals in a Panax notoginseng-soil system [J]. Journal of Agro-Environment Science, 2023, 42(7): 1477−1486.(in Chinese) DOI: 10.11654/jaes.2022-1047

    [23] 罗增明, 剧永望, 张慧娟, 等. 三七及种植土壤重金属污染特征与风险评价 [J]. 中国环境科学, 2022, 42(12):5775−5784.

    LUO Z M, JU Y W, ZHANG H J, et al. Heavy metals pollution characteristic in Panax notoginseng and planting soil and the associated risk assessment [J]. China Environmental Science, 2022, 42(12): 5775−5784.(in Chinese)

    [24] 魏春雁, 刘笑笑, 宋志峰, 等. 不同产地中药材及其栽培土壤中重金属含量比较研究 [J]. 东北农业科学, 2017, 42(4):39−43.

    WEI C Y, LIU X X, SONG Z F, et al. Comparison of heavy metal contents in Chinese herbal medicine and their cultivated soils from different habitats [J]. Journal of Northeast Agricultural Sciences, 2017, 42(4): 39−43.(in Chinese)

    [25] 国家药典委员会. 中华人民共和国药典-一部: 2010年版[M]. 北京: 中国医药科技出版社, 2010.
    [26] 沈晓君, 蔡广知, 齐晋楠, 等. 人参等7种吉林省道地药材中重金属检测方法研究 [J]. 长春中医药大学学报, 2010, 26(4):585−586.

    SHEN X J, CAI G Z, QI J N, et al. Study on detection methods of heavy metals in seven genuine medicinal materials in Jilin Province, such as ginseng [J]. Journal of Changchun University of Traditional Chinese Medicine, 2010, 26(4): 585−586.(in Chinese)

    [27] 曾林, 周涛, 代祖洋, 等. ICP-MS测定大曲中23种无机元素 [J]. 现代食品, 2023, 29(9):148−151.

    ZENG L, ZHOU T, DAI Z Y, et al. Determination of 23 inorganic elements in daqu by ICP-MS [J]. Modern Food, 2023, 29(9): 148−151.(in Chinese)

    [28] 李瑞仙, 刘婧晶, 李玉泽. 铝灰主要污染成分及其对周围土壤环境的影响和治理措施 [J]. 矿产勘查, 2019, 10(6):1513−1516.

    LI R X, LIU J J, LI Y Z. Main pollution components of aluminum ash and their influence on surrounding soil environment and control measures [J]. Mineral Exploration, 2019, 10(6): 1513−1516.(in Chinese)

    [29] 薛永, 王苑螈, 姚泉洪, 等. 植物对土壤重金属镉抗性的研究进展 [J]. 生态环境学报, 2014, 23(3):528−534.

    XUE Y, WANG Y Y, YAO Q H, et al. Research progress of plants resistance to heavy metal Cd in soil [J]. Ecology and Environmental Sciences, 2014, 23(3): 528−534.(in Chinese)

    [30] 黄珍华, 沈智达, 施辉能, 等. 三七中药材种植产地土壤重金属污染特征及风险评价 [J]. 生态与农村环境学报, 2022, 38(5):645−653.

    HUANG Z H, SHEN Z D, SHI H N, et al. Pollution characteristics and risk assessment of soil heavy metals in Panax notoginseng planting fields [J]. Journal of Ecology and Rural Environment, 2022, 38(5): 645−653.(in Chinese)

    [31] 曹志洪. 施肥与土壤健康质量: 论施肥对环境的影响(3) [J]. 土壤, 2003, 35(6):450−455.

    CAO Z H. Effect of fertilization on soil health quality—Effect of fertilization on environment quality (3) [J]. Soils, 2003, 35(6): 450−455.(in Chinese)

    [32] 霍跃文, 杨雁, 石亚娜, 等. 化肥减量施用对三七生长及药用成分的影响 [J]. 西南农业学报, 2020, 33(11):2558−2564. DOI: 10.16213/j.cnki.scjas.2020.11.022

    HUO Y W, YANG Y, SHI Y N, et al. Effect of reducing chemical fertilizer on growth and medicinal compositions of Panax notoginseng [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(11): 2558−2564.(in Chinese) DOI: 10.16213/j.cnki.scjas.2020.11.022

  • 期刊类型引用(1)

    1. 张靖鹏,江锦秀,林裕胜,游伟,刘道泉,毛坤明,江斌,胡奇林. 山羊地方性鼻内肿瘤病毒(ENTV-2)SYBR-GreenⅠ实时荧光定量PCR检测方法的建立与应用. 福建农业学报. 2021(07): 779-784 . 本站查看

    其他类型引用(5)

图(4)  /  表(7)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  232
  • PDF下载量:  43
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-07-12
  • 网络出版日期:  2023-11-19
  • 刊出日期:  2023-11-27

目录

/

返回文章
返回