Metabolomics of Mulberry Fruits at Developmental Stages
-
摘要:目的
研究桑葚果实发育过程中的代谢组分变化规律。
方法以桑葚品种粤椹大十绿果期、转色期和成熟期的果实为样本材料,进行广泛靶向代谢组学分析,并基于差异富集代谢物(Differentially accumulated metabolites, DAMs)进行KEGG代谢途径富集分析。
结果从粤椹大十3个时期果实样本中检测到
1146 种代谢组分,以P<0.05且VIP>1.0为标准,其中483种代谢物被鉴定为DAMs,包括51种积累水平在整个果实发育过程中均显著差异的DAMs。2种类黄酮和1种花色苷在桑葚发育过程中显著提高。基于DAMs进行KEGG分析表明,α-亚麻酸代谢和亚油酸代谢在绿果期发育到转色期过程中显著富集,抗坏血酸和藻酸盐代谢在转色期发育到成熟期过程中显著富集,而亚油酸代谢和角质/木栓和蜡生物合成在整个果实发育过程中显著富集。进一步分析发现,尽管粤椹大十桑葚果实发育过程中包含6种上调积累和1种下调积累的亚油酸代谢组分,但从整体上看亚油酸积累水平呈下降趋势。结论51种DAMs可能持续参与桑葚果实整个发育过程,其中花色苷与类黄酮显著提高,亚油酸代谢途径中的7种关键代谢组分可能影响其品质风味形成。研究结果有助于更好地了解桑葚成熟过程中营养成分的动态变化规律,为揭示桑葚果实品质风味形成机制和选育优质桑葚种质奠定基础,同时也为桑葚采摘期的判定提供科学依据。
Abstract:ObjectiveChanges in metabolic substances at various developmental stages of mulberry fruits were studied.
MethodsA widely targeted metabolomic analysis was conducted on Morus alba cv. yueshen dashi fruits sampled at the stages of green fruit, color transition, and maturation. KEGG metabolic pathway enrichment was analyzed based on the differentially accumulated metabolites (DAMs).
ResultsA total of 1 146 metabolic substances were identified from the specimens at the fruit developmental stages. At P<0.05 and VIP>1.0, 483 metabolites were identified as DAMs, 51 DAMs showed significant differences in the accumulation throughout the whole fruit development process. The contents of two flavonoids and one anthocyanin increased significantly during the developmental stages. The DAMs based on the KEGG metabolic pathway analysis indicated α-linolenic acid and linoleic acid metabolisms to be significantly enriched from the green to the colored stage, while ascorbate and aldarate metabolisms significantly enhanced from the color transition period to maturity, whereas linoleic acid metabolism as well as cutin, suberine, and wax biosynthesis significantly augmented throughout the entire development process. Although there were 6 up-accumulated and one down-accumulated linoleic acid, overall, the accumulation was on a downward trend as the fruits developed.
ConclusionsThere were 51 DAMs that might involve in the mulberry fruit development. It was found that anthocyanins and flavonoids rose significantly and 7 key metabolic components in the linoleic acid metabolism pathway might affect the quality and flavor of the fruits as well. The research results contributed a better understanding of the dynamic change in the nutritional composition of ripening mulberries, laying the foundation for revealing the mechanism of quality and flavor formation and breeding high-quality germplasm. At the same time, it also provided a scientific basis for determining the optimal fruit picking time.
-
Keywords:
- Mulberry /
- fruit development /
- metabolomics /
- KEGG metabolic pathway /
- linoleic acid
-
-
图 6 桑葚果实发育过程中亚油酸代谢途径变化
红色表示该代谢物在对应样本中上调积累,绿色表示下调积累。从左往右对应的3种样本分别为绿果期、转色期和成熟期的桑葚果实。图例颜色从红到绿,表示log10(FPKM)值从大到小。
Figure 6. Changes in linoleic acid metabolism pathway in mulberry fruit development
Red indicates up-accumulation and green down-accumulation of metabolite in corresponding sample. Three corresponding samples from left to right are of mulberry fruits at green fruit, color transition, and maturation stages.
-
[1] BATIHA G E S, AL-SNAFI A E, THUWAINI M M, et al. Morus alba: A comprehensive phytochemical and pharmacological review [J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2023, 396(7): 1399−1413. DOI: 10.1007/s00210-023-02434-4
[2] 刘玮, 陈亮, 吴志明, 等. 3种不同产地桑葚籽油的脂肪酸成分分析 [J]. 食品研究与开发, 2015, 36(20):13−16. DOI: 10.3969/j.issn.1005-6521.2015.20.004 LIU W, CHEN L, WU Z M, et al. Analysis of fatty acid compositions of mulberry seed oil in three different regions [J]. Food Research and Development, 2015, 36(20): 13−16. (in Chinese) DOI: 10.3969/j.issn.1005-6521.2015.20.004
[3] 吴剑安, 唐翠明, 罗国庆, 等. 果桑品种“粤椹大10” 苗木快速高效繁育技术 [J]. 广东蚕业, 2006, 40(2):12−14. WU J A, TANG C M, LUO G Q, et al. Speediness and high efficiency multiplication technique of fruit mulberry variety \ “Yue Shen Da 10\” [J]. Guangdong Sericulture, 2006, 40(2): 12−14. (in Chinese)
[4] 张若彤, 李蒙, 齐一鸣, 等. 转录组和代谢组联合分析桑葚发育过程中可溶性糖和有机酸代谢的变化 [J]. 果树学报, 2024, 41(4):690−702. ZHANG R T, LI M, QI Y M, et al. Transcriptome and metabolome combined analysis metabolism change of soluble sugars and organic acids in mulberry fruit during development stages [J]. Journal of Fruit Science, 2024, 41(4): 690−702. (in Chinese)
[5] 孙志超, 郭新淼, 李蒙, 等. 2个桑树品种果实不同发育时期营养物质的变化 [J]. 果树学报, 2024, 41(4):703−711. SUN Z C, GUO X M, LI M, et al. Nutrientional compound changes in fruits of 2 mulberries(Morus alba)varieties at different development stages [J]. Journal of Fruit Science, 2024, 41(4): 703−711. (in Chinese)
[6] 刘淑桢, 韩静雯, 云泽, 等. 国庆1号温州蜜柑果实成熟过程中极性代谢物的变化 [J]. 中国农业科学, 2012, 45(21):4437−4446. DOI: 10.3864/j.issn.0578-1752.2012.21.012 LIU S Z, HAN J W, YUN Z, et al. Changes of polar metabolites in guoqing No. 1 Satsuma mandarine during fruit ripening [J]. Scientia Agricultura Sinica, 2012, 45(21): 4437−4446. (in Chinese) DOI: 10.3864/j.issn.0578-1752.2012.21.012
[7] WANG J Q, SUN L, XIE L, et al. Regulation of cuticle formation during fruit development and ripening in ‘Newhall’ navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling [J]. Plant Science, 2016, 243: 131−144. DOI: 10.1016/j.plantsci.2015.12.010
[8] 王乐飞, 古绍彬, 吴影. 基于UPLC-MS代谢组学技术的枣果皮黄酮类化合物分析 [J]. 食品科学, 2020, 41(24):155−161. DOI: 10.7506/spkx1002-6630-20191018-195 WANG L F, GU S B, WU Y. Analysis of flavonoids in fruit of jujube(Ziziphus jujuba)by UPLC-MS-based metabonomics [J]. Food Science, 2020, 41(24): 155−161. (in Chinese) DOI: 10.7506/spkx1002-6630-20191018-195
[9] 郭荣琨, 董宁光, 农惠兰, 等. 基于靶向代谢组学的山楂黄色和红色果皮呈色物质差异分析 [J]. 中国农业科学, 2024, 57(12):2439−2453. DOI: 10.3864/j.issn.0578-1752.2024.12.013 GUO R K, DONG N G, NONG H L, et al. Targeted metabolomics-based analysis of peel color differences between yellow and red hawthorn [J]. Scientia Agricultura Sinica, 2024, 57(12): 2439−2453. (in Chinese) DOI: 10.3864/j.issn.0578-1752.2024.12.013
[10] 刘晴晴, 李勇, 张明霞, 等. 紫色桑葚和白色桑葚总酚含量、抗氧化能力及代谢指纹图谱差异分析 [J]. 江苏农业学报, 2022, 38(3):813−820. DOI: 10.3969/j.issn.1000-4440.2022.03.029 LIU Q Q, LI Y, ZHANG M X, et al. Differences in total phenol content, antioxidant activity and metabolic fin-gerprint between purple mulberry and white mulberry [J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(3): 813−820. (in Chinese) DOI: 10.3969/j.issn.1000-4440.2022.03.029
[11] LAI R L, SHEN C G, FENG X, et al. Integrated metabolomic and transcriptomic analysis reveals differential flavonoid accumulation and its underlying mechanism in fruits of distinct Canarium album cultivars [J]. Foods, 2022, 11(16): 2527. DOI: 10.3390/foods11162527
[12] WISHART D S, TZUR D, KNOX C, et al. HMDB: The human metabolome database[J]. Nucleic Acids Research, 2007, 35(Database issue): D521-D526.
[13] HORAI H, ARITA M, KANAYA S, et al. MassBank: A public repository for sharing mass spectral data for life sciences [J]. Journal of Mass Spectrometry, 2010, 45(7): 703−714. DOI: 10.1002/jms.1777
[14] SUD M, FAHY E, COTTER D, et al. LMSD: LIPID MAPS structure database[J]. Nucleic Acids Research, 2007, 35(Database issue): D527-D532.
[15] OGATA H, GOTO S, SATO K, et al. KEGG Kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Research, 1999, 27(1): 29−34. DOI: 10.1093/nar/27.1.29
[16] 庞溢媛, 薛立英, 郑艳红, 等. 基于UHPLC-MS/MS代谢组学技术的不同采收期黄芩质量比较研究 [J]. 药学学报, 2017, 52(12):1903−1909. PANG Y Y, XUE L Y, ZHENG Y H, et al. Comparative study on quality of Scutellaria baicalensis Georgi in different harvest periods using UHPLC-MS/MS metabolomics technology [J]. Acta Pharmaceutica Sinica, 2017, 52(12): 1903−1909. (in Chinese)
[17] 秦亚东, 汪荣斌, 李林华, 等. 基于GC-TOF-MS非靶向代谢组学结香花不同花期代谢差异的研究 [J]. 现代中药研究与实践, 2022, 36(3):20−24. QIN Y D, WANG R B, LI L H, et al. Metabolic differences in the flower of Edgeworthia chrysantha lindl. from different flowering periods based on untargeted metabolomics using GC-TOF-MS approach [J]. Research and Practice on Chinese Medicines, 2022, 36(3): 20−24. (in Chinese)
[18] 席彩彩, 谷巍, 周晨, 等. 基于GC-TOF/MS的卷柏不同生长阶段代谢组学研究 [J]. 中成药, 2021, 43(12):3542−3547. DOI: 10.3969/j.issn.1001-1528.2021.12.056 XI C C, GU W, ZHOU C, et al. GC-TOF/MS-based metabolomics study of Selaginella in different growth stages [J]. Chinese Traditional Patent Medicine, 2021, 43(12): 3542−3547. (in Chinese) DOI: 10.3969/j.issn.1001-1528.2021.12.056
[19] 石丽雯, 陆柳印, 王娜, 等. 不同成熟度桑葚的品质分析 [J]. 经济林研究, 2024, 42(2):282−292. SHI L W, LU L Y, WANG N, et al. Quality analysis of mulberries with different maturity levels [J]. Non-wood Forest Research, 2024, 42(2): 282−292. (in Chinese)
[20] BIAN M H, FANG Y L, YUAN T M, et al. Dynamics of microbial community structure and metabolites during mulberry ripening [J]. Agriculture, 2024, 14(7): 1129. DOI: 10.3390/agriculture14071129
[21] 贺诗茹. 新疆桑葚主要植物化学物含量测定及抗氧化活性的研究[D]. 乌鲁木齐: 新疆医科大学, 2023 HE S R. Determination of main phytochemicals in Xinjiang mulberries and study on antioxidant activities[D]. Urumqi: Xinjiang Medical University, 2023. (in Chinese)
[22] 王振江, 肖更生, 刘学铭, 等. 桑椹花青素的研究进展 [J]. 蚕业科学, 2006, 32(1):90−94. DOI: 10.3969/j.issn.0257-4799.2006.01.016 WANG Z J, XIAO G S, LIU X M, et al. Research and application of mulberry anthocyanins [J]. Science of Sericulture, 2006, 32(1): 90−94. (in Chinese) DOI: 10.3969/j.issn.0257-4799.2006.01.016