• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

桑葚不同果实发育阶段的代谢组学分析

钟秋珍, 林旗华, 张泽煌

钟秋珍,林旗华,张泽煌. 桑葚不同果实发育阶段的代谢组学分析 [J]. 福建农业学报,2024,39(9):1069−1075. DOI: 10.19303/j.issn.1008-0384.2024.09.008
引用本文: 钟秋珍,林旗华,张泽煌. 桑葚不同果实发育阶段的代谢组学分析 [J]. 福建农业学报,2024,39(9):1069−1075. DOI: 10.19303/j.issn.1008-0384.2024.09.008
ZHONG Q Z, LIN Q H, ZHANG Z H. Metabolomics of Mulberry Fruits at Developmental Stages [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1069−1075. DOI: 10.19303/j.issn.1008-0384.2024.09.008
Citation: ZHONG Q Z, LIN Q H, ZHANG Z H. Metabolomics of Mulberry Fruits at Developmental Stages [J]. Fujian Journal of Agricultural Sciences,2024,39(9):1069−1075. DOI: 10.19303/j.issn.1008-0384.2024.09.008

桑葚不同果实发育阶段的代谢组学分析

基金项目: 福建省属公益类科研院所基本科研专项(2020R1028002)
详细信息
    作者简介:

    钟秋珍(1973 —),女,高级农艺师,主要从事果树良种选育与栽培研究,E-mail:3249015@qq.com

    通讯作者:

    张泽煌(1973 —),男,研究员,主要从事果树良种选育与栽培研究,E-mail:419091816@qq.com

  • 中图分类号: S663.9

Metabolomics of Mulberry Fruits at Developmental Stages

  • 摘要:
    目的 

    研究桑葚果实发育过程中的代谢组分变化规律。

    方法 

    以桑葚品种粤椹大十绿果期、转色期和成熟期的果实为样本材料,进行广泛靶向代谢组学分析,并基于差异富集代谢物(Differentially accumulated metabolites, DAMs)进行KEGG代谢途径富集分析。

    结果 

    从粤椹大十3个时期果实样本中检测到1146种代谢组分,以P<0.05且VIP>1.0为标准,其中483种代谢物被鉴定为DAMs,包括51种积累水平在整个果实发育过程中均显著差异的DAMs。2种类黄酮和1种花色苷在桑葚发育过程中显著提高。基于DAMs进行KEGG分析表明,α-亚麻酸代谢和亚油酸代谢在绿果期发育到转色期过程中显著富集,抗坏血酸和藻酸盐代谢在转色期发育到成熟期过程中显著富集,而亚油酸代谢和角质/木栓和蜡生物合成在整个果实发育过程中显著富集。进一步分析发现,尽管粤椹大十桑葚果实发育过程中包含6种上调积累和1种下调积累的亚油酸代谢组分,但从整体上看亚油酸积累水平呈下降趋势。

    结论 

    51种DAMs可能持续参与桑葚果实整个发育过程,其中花色苷与类黄酮显著提高,亚油酸代谢途径中的7种关键代谢组分可能影响其品质风味形成。研究结果有助于更好地了解桑葚成熟过程中营养成分的动态变化规律,为揭示桑葚果实品质风味形成机制和选育优质桑葚种质奠定基础,同时也为桑葚采摘期的判定提供科学依据。

    Abstract:
    Objective 

    Changes in metabolic substances at various developmental stages of mulberry fruits were studied.

    Methods 

    A widely targeted metabolomic analysis was conducted on Morus alba cv. yueshen dashi fruits sampled at the stages of green fruit, color transition, and maturation. KEGG metabolic pathway enrichment was analyzed based on the differentially accumulated metabolites (DAMs).

    Results 

    A total of 1 146 metabolic substances were identified from the specimens at the fruit developmental stages. At P<0.05 and VIP>1.0, 483 metabolites were identified as DAMs, 51 DAMs showed significant differences in the accumulation throughout the whole fruit development process. The contents of two flavonoids and one anthocyanin increased significantly during the developmental stages. The DAMs based on the KEGG metabolic pathway analysis indicated α-linolenic acid and linoleic acid metabolisms to be significantly enriched from the green to the colored stage, while ascorbate and aldarate metabolisms significantly enhanced from the color transition period to maturity, whereas linoleic acid metabolism as well as cutin, suberine, and wax biosynthesis significantly augmented throughout the entire development process. Although there were 6 up-accumulated and one down-accumulated linoleic acid, overall, the accumulation was on a downward trend as the fruits developed.

    Conclusions 

    There were 51 DAMs that might involve in the mulberry fruit development. It was found that anthocyanins and flavonoids rose significantly and 7 key metabolic components in the linoleic acid metabolism pathway might affect the quality and flavor of the fruits as well. The research results contributed a better understanding of the dynamic change in the nutritional composition of ripening mulberries, laying the foundation for revealing the mechanism of quality and flavor formation and breeding high-quality germplasm. At the same time, it also provided a scientific basis for determining the optimal fruit picking time.

  • 图  1   不同发育时期的桑葚果实表型

    DS-Q、DS-Z和DS-C分别表示绿果期、转色期和成熟期。下同。

    Figure  1.   Phenotype of mulberry fruits at developmental stages

    DS-Q: Green fruit stage; DS-Z: color transition stage; and DS-C: maturity stage. Same for below.

    图  2   桑葚果实样本色谱图

    A和B分别表示正、负离子模式下色谱图。图中的数值表示每个样本的最大离子强度。

    Figure  2.   Chromatograms of mulberry fruits

    A and B: Chromatograms in positive and negative ion modes, respectively.

    图  3   基于代谢组学的不同发育阶段桑葚果实样本聚类

    Figure  3.   Clustering of mulberry fruits at various developmental stages based on metabolomics

    图  4   桑葚果实不同发育时期的差异富集代谢物鉴定

    A和B分别为差异富集代谢物的数目变化统计和韦恩图

    Figure  4.   Identification of DAMs of mulberry fruits at development stages

    A: Statistics of DAM changes; B: Venn diagram of DAM changes.

    图  5   基于桑葚果实不同发育时期DAMs的KEGG代谢途径富集分析

    A、B和C分别表示DS-Z vs DS-Q、DS-C vs DS-Z和DS-C vs DS-Q比较组。

    Figure  5.   KEGG metabolic pathway enrichment based on DAMs of mulberry fruits at developmental stages

    A: DS-Z vs DS-Q; B: DS-C vs DS-Z; C: DS-C vs DS-Q.

    图  6   桑葚果实发育过程中亚油酸代谢途径变化

    红色表示该代谢物在对应样本中上调积累,绿色表示下调积累。从左往右对应的3种样本分别为绿果期、转色期和成熟期的桑葚果实。图例颜色从红到绿,表示log10(FPKM)值从大到小。

    Figure  6.   Changes in linoleic acid metabolism pathway in mulberry fruit development

    Red indicates up-accumulation and green down-accumulation of metabolite in corresponding sample. Three corresponding samples from left to right are of mulberry fruits at green fruit, color transition, and maturation stages.

  • [1]

    BATIHA G E S, AL-SNAFI A E, THUWAINI M M, et al. Morus alba: A comprehensive phytochemical and pharmacological review [J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2023, 396(7): 1399−1413. DOI: 10.1007/s00210-023-02434-4

    [2] 刘玮, 陈亮, 吴志明, 等. 3种不同产地桑葚籽油的脂肪酸成分分析 [J]. 食品研究与开发, 2015, 36(20):13−16. DOI: 10.3969/j.issn.1005-6521.2015.20.004

    LIU W, CHEN L, WU Z M, et al. Analysis of fatty acid compositions of mulberry seed oil in three different regions [J]. Food Research and Development, 2015, 36(20): 13−16. (in Chinese) DOI: 10.3969/j.issn.1005-6521.2015.20.004

    [3] 吴剑安, 唐翠明, 罗国庆, 等. 果桑品种“粤椹大10” 苗木快速高效繁育技术 [J]. 广东蚕业, 2006, 40(2):12−14.

    WU J A, TANG C M, LUO G Q, et al. Speediness and high efficiency multiplication technique of fruit mulberry variety \ “Yue Shen Da 10\” [J]. Guangdong Sericulture, 2006, 40(2): 12−14. (in Chinese)

    [4] 张若彤, 李蒙, 齐一鸣, 等. 转录组和代谢组联合分析桑葚发育过程中可溶性糖和有机酸代谢的变化 [J]. 果树学报, 2024, 41(4):690−702.

    ZHANG R T, LI M, QI Y M, et al. Transcriptome and metabolome combined analysis metabolism change of soluble sugars and organic acids in mulberry fruit during development stages [J]. Journal of Fruit Science, 2024, 41(4): 690−702. (in Chinese)

    [5] 孙志超, 郭新淼, 李蒙, 等. 2个桑树品种果实不同发育时期营养物质的变化 [J]. 果树学报, 2024, 41(4):703−711.

    SUN Z C, GUO X M, LI M, et al. Nutrientional compound changes in fruits of 2 mulberries(Morus alba)varieties at different development stages [J]. Journal of Fruit Science, 2024, 41(4): 703−711. (in Chinese)

    [6] 刘淑桢, 韩静雯, 云泽, 等. 国庆1号温州蜜柑果实成熟过程中极性代谢物的变化 [J]. 中国农业科学, 2012, 45(21):4437−4446. DOI: 10.3864/j.issn.0578-1752.2012.21.012

    LIU S Z, HAN J W, YUN Z, et al. Changes of polar metabolites in guoqing No. 1 Satsuma mandarine during fruit ripening [J]. Scientia Agricultura Sinica, 2012, 45(21): 4437−4446. (in Chinese) DOI: 10.3864/j.issn.0578-1752.2012.21.012

    [7]

    WANG J Q, SUN L, XIE L, et al. Regulation of cuticle formation during fruit development and ripening in ‘Newhall’ navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling [J]. Plant Science, 2016, 243: 131−144. DOI: 10.1016/j.plantsci.2015.12.010

    [8] 王乐飞, 古绍彬, 吴影. 基于UPLC-MS代谢组学技术的枣果皮黄酮类化合物分析 [J]. 食品科学, 2020, 41(24):155−161. DOI: 10.7506/spkx1002-6630-20191018-195

    WANG L F, GU S B, WU Y. Analysis of flavonoids in fruit of jujube(Ziziphus jujuba)by UPLC-MS-based metabonomics [J]. Food Science, 2020, 41(24): 155−161. (in Chinese) DOI: 10.7506/spkx1002-6630-20191018-195

    [9] 郭荣琨, 董宁光, 农惠兰, 等. 基于靶向代谢组学的山楂黄色和红色果皮呈色物质差异分析 [J]. 中国农业科学, 2024, 57(12):2439−2453. DOI: 10.3864/j.issn.0578-1752.2024.12.013

    GUO R K, DONG N G, NONG H L, et al. Targeted metabolomics-based analysis of peel color differences between yellow and red hawthorn [J]. Scientia Agricultura Sinica, 2024, 57(12): 2439−2453. (in Chinese) DOI: 10.3864/j.issn.0578-1752.2024.12.013

    [10] 刘晴晴, 李勇, 张明霞, 等. 紫色桑葚和白色桑葚总酚含量、抗氧化能力及代谢指纹图谱差异分析 [J]. 江苏农业学报, 2022, 38(3):813−820. DOI: 10.3969/j.issn.1000-4440.2022.03.029

    LIU Q Q, LI Y, ZHANG M X, et al. Differences in total phenol content, antioxidant activity and metabolic fin-gerprint between purple mulberry and white mulberry [J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(3): 813−820. (in Chinese) DOI: 10.3969/j.issn.1000-4440.2022.03.029

    [11]

    LAI R L, SHEN C G, FENG X, et al. Integrated metabolomic and transcriptomic analysis reveals differential flavonoid accumulation and its underlying mechanism in fruits of distinct Canarium album cultivars [J]. Foods, 2022, 11(16): 2527. DOI: 10.3390/foods11162527

    [12]

    WISHART D S, TZUR D, KNOX C, et al. HMDB: The human metabolome database[J]. Nucleic Acids Research, 2007, 35(Database issue): D521-D526.

    [13]

    HORAI H, ARITA M, KANAYA S, et al. MassBank: A public repository for sharing mass spectral data for life sciences [J]. Journal of Mass Spectrometry, 2010, 45(7): 703−714. DOI: 10.1002/jms.1777

    [14]

    SUD M, FAHY E, COTTER D, et al. LMSD: LIPID MAPS structure database[J]. Nucleic Acids Research, 2007, 35(Database issue): D527-D532.

    [15]

    OGATA H, GOTO S, SATO K, et al. KEGG Kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Research, 1999, 27(1): 29−34. DOI: 10.1093/nar/27.1.29

    [16] 庞溢媛, 薛立英, 郑艳红, 等. 基于UHPLC-MS/MS代谢组学技术的不同采收期黄芩质量比较研究 [J]. 药学学报, 2017, 52(12):1903−1909.

    PANG Y Y, XUE L Y, ZHENG Y H, et al. Comparative study on quality of Scutellaria baicalensis Georgi in different harvest periods using UHPLC-MS/MS metabolomics technology [J]. Acta Pharmaceutica Sinica, 2017, 52(12): 1903−1909. (in Chinese)

    [17] 秦亚东, 汪荣斌, 李林华, 等. 基于GC-TOF-MS非靶向代谢组学结香花不同花期代谢差异的研究 [J]. 现代中药研究与实践, 2022, 36(3):20−24.

    QIN Y D, WANG R B, LI L H, et al. Metabolic differences in the flower of Edgeworthia chrysantha lindl. from different flowering periods based on untargeted metabolomics using GC-TOF-MS approach [J]. Research and Practice on Chinese Medicines, 2022, 36(3): 20−24. (in Chinese)

    [18] 席彩彩, 谷巍, 周晨, 等. 基于GC-TOF/MS的卷柏不同生长阶段代谢组学研究 [J]. 中成药, 2021, 43(12):3542−3547. DOI: 10.3969/j.issn.1001-1528.2021.12.056

    XI C C, GU W, ZHOU C, et al. GC-TOF/MS-based metabolomics study of Selaginella in different growth stages [J]. Chinese Traditional Patent Medicine, 2021, 43(12): 3542−3547. (in Chinese) DOI: 10.3969/j.issn.1001-1528.2021.12.056

    [19] 石丽雯, 陆柳印, 王娜, 等. 不同成熟度桑葚的品质分析 [J]. 经济林研究, 2024, 42(2):282−292.

    SHI L W, LU L Y, WANG N, et al. Quality analysis of mulberries with different maturity levels [J]. Non-wood Forest Research, 2024, 42(2): 282−292. (in Chinese)

    [20]

    BIAN M H, FANG Y L, YUAN T M, et al. Dynamics of microbial community structure and metabolites during mulberry ripening [J]. Agriculture, 2024, 14(7): 1129. DOI: 10.3390/agriculture14071129

    [21] 贺诗茹. 新疆桑葚主要植物化学物含量测定及抗氧化活性的研究[D]. 乌鲁木齐: 新疆医科大学, 2023

    HE S R. Determination of main phytochemicals in Xinjiang mulberries and study on antioxidant activities[D]. Urumqi: Xinjiang Medical University, 2023. (in Chinese)

    [22] 王振江, 肖更生, 刘学铭, 等. 桑椹花青素的研究进展 [J]. 蚕业科学, 2006, 32(1):90−94. DOI: 10.3969/j.issn.0257-4799.2006.01.016

    WANG Z J, XIAO G S, LIU X M, et al. Research and application of mulberry anthocyanins [J]. Science of Sericulture, 2006, 32(1): 90−94. (in Chinese) DOI: 10.3969/j.issn.0257-4799.2006.01.016

图(6)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  79
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2024-09-04
  • 网络出版日期:  2024-11-10
  • 刊出日期:  2024-09-27

目录

    /

    返回文章
    返回