• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

一株茶渣分解菌Fb的分离及其应用

Isolation and Application of Microbes Capable of Decomposing Tea Dregs

  • 摘要:
      目的  筛选高温高效分解茶渣的菌株,为茶渣开发利用提供理论依据。
      方法  利用高温特殊生境分离方法,从废弃茶渣中分离筛选较高产纤维素酶和蛋白酶的高温菌,对其中高产酶活力的菌株进行形态学、生理生化特性以及生长特性等研究;并克隆其16S rDNA基因序列和菌株gyrB基因测序,进行系统发育学分析;同时对该菌株分解茶渣效果进行验证。
      结果  试验表明,分离筛选获得分解茶渣的高温菌5株,其中Fb菌产生的纤维素酶、蛋白酶的活力均最高。Fb属贝莱斯芽孢杆菌(Bacillus velezensis),可耐受55℃高温,最适生长条件:42~45 ℃、pH 5.0~7.0、16 h、盐度1.0%~6.0%、装液量0.12 mL·min−1、摇床转速120 r·min−1。茶渣添加Fb菌发酵7 d后,与对照组比,粗蛋白提高14.88%(P<0.05);除胱氨酸、蛋氨酸和组氨酸发酵外,其他14种氨基酸含量均显著提高(P<0.05),且氨基酸总量提高5.98%;粗纤维下降9.69%,其中性洗涤纤维、酸性洗涤纤维和木质素分别下降10.72%、4.47%和11.37%(P<0.05)。
      结论  首次报道贝莱斯芽孢杆菌Fb能高效分解茶渣,提高茶渣的营养价值。

     

    Abstract:
      Objective   Microorganisms that can efficiently decompose tea dregs at high temperature were screened for potential waste treatment application.
      Method   A high temperature special habitat separation method was employed to isolate cellulase and protease-producing bacteria on tea dregs. Morphological, physiochemical, and growth characteristics of selected strains were examined prior to 16S rDNA cloning for sequencing. Gene sequences of the candidates, along with gyrB, were subjected to phylogenetic analysis for species identification. Decomposing capacity of the isolated strains on tea dregs was determined for final selection.
      Results   Five thermophiles exhibiting the desired properties were isolated. Among them, Fb showed the highest enzymatic activities and was found to be a strain of Bacillus velezensis. It was further characterized with a high temperature tolerance up to 55 ℃ and the optimal culture conditions of 42-45 ℃, pH 5.0-7.0, 16 h incubation, 1.0-6.0% salinity, 30 mL 250 min−1 filling volume, and 120 rpm shaker speed. After Fb inoculation and incubation for 7 d, the crude protein in the resulting tea dregs significantly increased by 14.88% (P<0.05), the contents of 14 amino acids, except cystine, methionine, and histidine, significantly increased (P<0.05), the total amino acids increased by 5.98%, the crude fiber decreased by 9.69%, and the neutral detergent fiber, acid detergent fiber, and lignin decreased by 10.72%, 4.47%, and 11.37%, respectively (P<0.05).
      Conclusion  For the first time, B. velezensis Fb was identified to be capable of efficiently decomposing tea dregs with a significantly improved nutritional profile on the substrate. It could conceivably become a bioagent for treating the waste material.

     

/

返回文章
返回