• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

基于幼苗光合及叶绿素荧光参数的3种咖啡耐低温胁迫的综合评判

黄丽芳, 李金芹, 王晓阳, 董云萍, 龙宇宙, 段志强, 陈婷, 闫林

黄丽芳,李金芹,王晓阳,等. 基于幼苗光合及叶绿素荧光参数的3种咖啡耐低温胁迫的综合评判 [J]. 福建农业学报,2020,35(10):1063−1070. DOI: 10.19303/j.issn.1008-0384.2020.10.003
引用本文: 黄丽芳,李金芹,王晓阳,等. 基于幼苗光合及叶绿素荧光参数的3种咖啡耐低温胁迫的综合评判 [J]. 福建农业学报,2020,35(10):1063−1070. DOI: 10.19303/j.issn.1008-0384.2020.10.003
HUANG L F, LI J Q, WANG X Y, et al. Low-temp Tolerance of Coffea Seedlings Evaluated by Photosynthesis and Chlorophyll Fluorescence Indices [J]. Fujian Journal of Agricultural Sciences,2020,35(10):1063−1070. DOI: 10.19303/j.issn.1008-0384.2020.10.003
Citation: HUANG L F, LI J Q, WANG X Y, et al. Low-temp Tolerance of Coffea Seedlings Evaluated by Photosynthesis and Chlorophyll Fluorescence Indices [J]. Fujian Journal of Agricultural Sciences,2020,35(10):1063−1070. DOI: 10.19303/j.issn.1008-0384.2020.10.003

基于幼苗光合及叶绿素荧光参数的3种咖啡耐低温胁迫的综合评判

基金项目: 海南省自然科学基金项目(319QN318;2018CXTD342);中国热带农业科学院基本科研业务费专项(1630142020014)
详细信息
    作者简介:

    黄丽芳(1985-),女,硕士,助理研究员,研究方向:咖啡遗传育种(E-mail:hlf032@163.com

    通讯作者:

    闫林(1980-),女,博士,研究员,研究方向:咖啡种质资源与遗传育种(E-mail:yanlin2575@163.com

  • 中图分类号: S 571.2

Low-temp Tolerance of Coffea Seedlings Evaluated by Photosynthesis and Chlorophyll Fluorescence Indices

  • 摘要:
      目的  探索低温逆境胁迫对咖啡幼苗光合及叶绿素荧光参数的影响,为咖啡抗寒育种、引种栽培提供科学依据。
      方法  以3种咖啡幼苗为材料在8 ℃下分别持续0、24 、48 、72 h低温胁迫试验,观察叶片的叶绿素含量、气体交换参数及叶绿素荧光参数等指标的影响,利用隶属函数对咖啡的抗寒性进行综合评价。
      结果  (1)大粒种和小粒种咖啡幼苗随着低温胁迫时间的延长,叶绿素含量先上升后下降,中粒种咖啡幼苗总体是下降趋势。(2)3种咖啡幼苗的净光合速率下降是由非气孔因素导致的,净光合速率、蒸腾速率、气孔导度、水分利用效率和气孔限制值等光合参数在3种咖啡幼苗低温处理间差异不显著,处理和对照间差异显著。(3)在叶绿素荧光参数方面,3种咖啡幼苗的初始荧光总体水平上均有所上升,表明其PSII中心遭到低温胁迫的损伤程度较严重。非光化学猝灭系数呈先上升后下降趋势,PSII最大光化学效率、光化学猝灭系数、表观量子传递速率和实际光化学量子产量均下降,大粒种咖啡幼苗的下降幅度较中粒种和小粒种咖啡幼苗大,表明其叶片受低温胁迫损伤程度大。采用隶属函数法综合评判3种咖啡的抗寒能力,小粒种咖啡幼苗的平均隶属度最高,表明其抗寒能力较强,中粒种和大粒种咖啡幼苗的抗寒性则较弱。
      结论  综合不同的光合及荧光指标,运用隶属函数法能较全面地评判咖啡幼苗的抗寒性,避免了单一指标评判的片面性,其鉴定结果准确可靠。
    Abstract:
      Objective  Tolerance to low-temperature stress of seedlings of 3 Coffea varieties was evaluated using photosynthetic as well as chlorophyll fluorescence indices for an improved prediction on cold-resistance of the plants for breeding and new cultivar introduction.
      Method  Seedlings of 3 varieties of coffee cultivars were treated under 8 ℃ for 0, 24, 48 or 72 h. Effects of the low-temp stress on chlorophyll (Chl), gas exchange indices, and Chl fluorescence measurements of the leaves were monitored. Tolerance of the seedlings to low-temp treatments was evaluated using the membership function method.
      Result  (1) The prolonged low-temp stress caused Chl to initially increase in Coffea liberica and C. arabica seedlings and declined later but decrease continuously in C. canephora. (2) The decreased Pn in seedlings was caused by non-stomatal factors. Pn, Tr, Gs, WUE, and Ls did not significantly differ among the treatments on 3 varieties under low-temp stress but did significantly between the treatments and control. (3) The total initial fluorescence (Fo) on the 3 varieties increased indicating the occurrence of significant damage to PSH. The non-photochemical quenching coefficient (qN) had a firstly-increase-then-decline pattern with the larger decreases on the maximum photochemical efficiency (Fv/Fm), photochemical quenching coefficient (qP), apparent quantum transfer rate (ETR), and actual photochemical quantum yield (ΦPSII) of PSII in C. liberica reflecting a greater damaging effect on its leaves than in the other two varieties. According to the analysis by the membership function method, C. arabica seedlings was most cold tolerant among the three varieties.
      Conclusion  By using the photosynthetic and fluorescence indices on coffee seedlings in combination, the membership function method could accurately determine the low-temp tolerance of Coffea cultivars for breeding and/or new variety selection.
  • 【研究意义】磺胺类药物(Sulfonamides, SAs)是一类用于细菌性疾病的预防与治疗的化学治疗药物[1-2]。该药物因抑菌效果好、价格低廉而被广泛应用于治疗奶牛中频发的乳房炎,故而在牛奶中被检测出的概率很高。SAs在动物性食品中容易残留,长期摄入含SAs的奶制品,将危及人体健康[3]。因此,包括中国在内的许多国家都制定了食品和饲料中SAs的最大允许残留限量和相应的检测方法[4-5]。高效液相色谱-质谱联用是检测SAs在牛奶中残留量的标准方法[6],但由于SAs在牛奶中的浓度低,且牛奶中有如脂肪、蛋白质等干扰物的影响[7],选择性分离牛奶中痕量SAs的前处理显得尤为重要。【前人研究进展】对食品中SAs提取的传统方法为液液萃取,但需消耗大量有机溶剂,共萃取杂质较多,步骤繁杂[8]。而新兴的方法,如超临界萃取[9-10],虽具有环保、快速、无副反应、选择性高等优点,但其需专门的仪器,运行和维护费用昂贵。固相微萃取[11-12]相比于其他萃取方法,操作简便,有机溶剂用量极少,但检测结果相对标准偏差较大。磁性固相萃取[13](Magnetic solid phase extraction, MSPE)是以磁性或可磁化的材料作为吸附剂的一种分散固相萃取技术,具有萃取面积更大、简单便捷、可重复使用且能避免杂质干扰等诸多优点[14-16]。王露等[17]和Tolmacheva等[18]用MSPE对牛乳中的4种SAs进行富集萃取后用HPLC检测其残留量,均取得较为理想的效果。MSPE的核心在于磁性吸附剂,设计并合成具有高效吸附性能的磁性吸附剂是MSPE的关键所在。【本研究切入点】共价有机骨架(Covalent organic frameworks, COFs)[19-20]是一类由有机单体通过共价键形成有周期性网络结构的晶体聚合物。COFs具有比表面积高、密度轻、易修饰及结构稳定等优点。COFs广泛应用于样品前处理中,包含固相萃取、固相微萃取及磁性固相萃取等[21-23]。SNW-1是由三聚氰胺和对苯二胺在一定条件下制备而成的一种席夫碱型COFs[24]。相比其他COFs,SNW-1的合成原料便宜、易得,而且SNW-1具有较高的比表面积。目前,磁性SNW-1的制备及其在样品前处理中的应用还未见相关报道。【拟解决的关键问题】本文通过水热合成法制备磁性SNW-1(Fe3O4@SNW-1),将其作为磁性固相萃取的吸附剂,在萃取与洗脱效果的关键参数上进行优化,结合高效液相色谱,为牛奶中5种痕量磺胺类药物的残留检测提供便捷快速的分析方法。

    透射电子显微镜(FEI Tecnai G20,美国FEI公司);扫描电子显微镜(FEI Inspect F50,美国FEI公司);冰箱(KG20V31T1,博西家电销售公司);氮吹仪(MG-2200,上海虔钧科学仪器有限公司) ;电子天平(ME204E/02,梅特勒-托利多仪器上海有限公司);超声波清洗器(KQ5200E,昆明市超声仪器有限公司);循环水式真空泵(SHB-III,郑州紫拓仪器设备有限公司);Eclipse XDB-C18(150 mm×4.6 mm,5 μm,Agilent Technologies,USA);高效液相色谱仪[LC-20A,岛津-GL(上海)商贸有限公司];涡旋混合器(Vortex QL-902,上海之信仪器有限公司) ;高速冷冻离心机(GL-21M,长沙湘智离心机仪器有限公司)。

    六水三氯化铁(FeCl3·6H2O)、醋酸钠、柠檬酸钠二水(Na3Cit·2H2O)、磺胺二甲基嘧啶(Sulfamethazine, SMZ)、磺胺甲基嘧啶(Sulfamerazine, SMR)、磺胺甲噁唑(Sulfamethoxazole, SMX)标准品:上海源叶生物科技有限公司;磺胺嘧啶(Sulfadiazine, SDZ)、磺胺间甲基嘧啶(sulfamonomethoxine, SMM)标准品:上海阿拉丁生化科技股份有限公司;甲醇、乙腈、醋酸铅:国药集团化学试剂有限公司;氨水、乙酸:西陇科技股份有限公司;伊利牛奶:内蒙古伊利实业集团股份有限公司。

    将FeCl3·6H2O(6.8 g)、醋酸钠(12.0 g)和Na3Cit·2H2O(2.0 g)溶解在200 mL乙二醇中,将所得黄色的均相溶液放进高压反应釜中加热(200 ℃,10 h)。反应结束后,用磁铁将Fe3O4从产品中分离出来后用清水和乙醇反复清洗干净,真空环境下80 ℃干燥12 h。

    将2.0 g三聚氰胺溶解于62 mL二甲基亚砜(DMSO)中,其次将0.3 g Fe3O4分散于上述溶液并超声分散10 min,最后加入1.26 g对苯二甲醛,在180 ℃条件下机械搅拌6 h。反应结束后,依次使用丙酮、二氯甲烷和三氟乙酸将磁性材料清洗干净,并在80 ℃的真空条件下过夜干燥,得到磁性复合物Fe3O4@SNW-1,其结构示意图如图1

    图  1  磁性固相萃取剂结构
    Figure  1.  Schematic diagram of MSPE

    (1)MSPE温度和时间的优化

    保持其他磁性固相萃取条件不变,测定不同吸附剂用量(1.0~6.0 mg)和在不同水浴吸附时间(15、60、120和150 s)下SAs的回收率。

    (2)溶液pH和离子强度的优化

    保持其他磁性固相萃取条件不变,测定不同样品溶液pH值(2、4、6、7、8、10)以及NaCl剂量(0、0.01、0.02、0.04、0.06、0.08、0.10 mol·L−1)下SAs的回收率。

    (3)洗脱剂种类的选择

    保持其他磁性固相萃取条件不变,测定不同洗脱溶剂[v(氨水)v(甲醇)= 595, v(乙酸)v(甲醇)=595, v(氨水) v(乙腈)= 595, v(乙酸)v(乙腈)=595,乙腈,甲醇]下SAs的回收率。

    (4)洗脱剂用量和洗脱时间的优化

    保持其他磁性固相萃取条件不变,考察洗脱剂用量变化(0.5、1、1.5、2、2.5、3 mol·L−1)以及洗脱时间变化(15、30、45、60、75、90 s)下SAs的回收率。

    配备有2个LC-20AT溶剂输送单元和SPD-M20A PDA检测器(Shimadzu, Kyoto, Japan)的LC-20A HPLC系统,检测器的检测波长:269 nm;C18柱(Eclipse XDB-C18,150 mm×4.6 mm,5 μm,Agilent Technologies,USA);流动相:乙腈-乙酸水(含1%乙酸)(2080,v/v),等梯度洗脱;进样量:20 μL;流速:1.00 mL·min−1;柱温:25 ℃。

    SAs吸附与富集整个MSPE技术操作流程详见图2。首先,将4.0 mg Fe3O4@SNW-1加入10 mL样品溶液,涡旋2 min,用磁铁将Fe3O4@SNW-1与溶液分离并倒掉溶液。其次,加入2 mL洗脱剂,涡旋1 min,磁铁将Fe3O4@SNW-1与洗脱液分离,将收集的洗脱液在40 ℃下氮吹至干。最后,用0.5 mL乙腈-乙酸水(含1%乙酸)(2080,v/v)的流动相定容待测样品,用针管移至进样瓶中,待上机检测。

    图  2  磁性固相萃取流程
    Figure  2.  Flow diagram of MSPE

    准确称取250 mL的牛奶(配置100 ng·mL−1的磺胺类药物的牛奶250 mL),加入16%醋酸铅250 mL,搅拌,超声数分钟直至混匀,装入等量离心瓶中,放入高速冷冻离心机,转速为4 000 r·min−1,离心15 min,取出,收集离心瓶中的上清液备用。

    由透射电镜表征结果见图3-A,可以看出Fe3O4磁粒子是规则的圆球,粒径为200~400 nm。从图3-B中可清晰发现,在Fe3O4磁粒子的表面包裹了一层致密的纳米级颗粒构成的核壳结构的复合材料即Fe3O4@SNW-1。透射电镜结果可证实SNW-1已成功负载在Fe3O4磁粒子上,制备成具有核壳结构的Fe3O4@SNW-1复合材料。

    图  3  Fe3O4及Fe3O4@SNW-1透射电镜表征结果
    注:a: Fe3O4; b: Fe3O4@SNW-1。
    Figure  3.  TEM images of Fe3O4 and Fe3O4@SNW-1
    Note:a: Fe3O4; b: Fe3O4@SNW-1.

    图4为Fe3O4和Fe3O4@SNW-1晶体结构的XRD衍射表征。从结果可以看出,Fe3O4@SNW-1的XRD衍射峰包含了Fe3O4所有的特征衍射峰。此外在25 °左右出现1个较宽的衍射峰,是SNW-1的特征衍射峰,说明SNW-1是一种无定型结构。XRD的结果充分说明了本试验成功制备了Fe3O4@SNW-1复合材料。

    图  4  Fe3O4和Fe3O4@SNW-1的XRD衍射表征
    Figure  4.  XRD characterization on Fe3O4 and Fe3O4@SNW-1

    Fe3O4和Fe3O4@SNW-1的多孔特性通过氮气吸附表征,氮气吸附-脱附结果,如图5所示。Fe3O4的BET(Brunner-Emmet-Teller)比表面积为69.0 m2·g−1,孔体积为0.096 7 cm3·g−1,孔径为5.6 nm。Fe3O4@SNW-1的BET比表面积为132.7 m2·g−1,孔体积为0.44 cm3·g−1,孔径为18.6 nm。Fe3O4@SNW-1复合材料的BET比表面积、孔体积相比Fe3O4有大幅增加,这主要是因为SNW-1的多孔特性,使其与Fe3O4结合成的复合材料具有更大的比表面积和孔体积。

    图  5  Fe3O4和Fe3O4@SNW-1的氮气吸附表征
    Figure  5.  Nitrogen adsorption characterization on Fe3O4 and Fe3O4@SNW-1

    首先考察Fe3O4@SNW-1吸附剂用量在1.0~6.0 mg对样品回收率的影响。如图6所示,随着吸附剂用量从1.0 mg增加到4.0 mg,SAs的回收率增加,当吸附剂用量为4.0 mg时,SAs的回收率最高。在此之后,回收率虽有所波动,但基本趋于平稳。故选择吸附剂Fe3O4@SNW-1的用量4.0 mg用于进一步研究。

    图  6  吸附剂用量的影响
    Figure  6.  Effect of adsorbent usage on testing

    考察范围为15~150 s的吸附时间对5种SAs回收率的影响。如图7所示,在所考察的范围内,SAs的回收率较为稳定,在120 s吸附达到平衡,之后回收率基本保持不变。固吸附时间控制在120 s。

    图  7  吸附时间的影响
    Figure  7.  Effect of adsorption time on testing

    SAs为两性化合物[17],样品溶液的pH值在吸附过程中起着重要作用,因为它会影响吸附剂的表面电荷以及SAs的存在形式,从而影响SAs在MSPE上的吸附率进而影响其回收率。试验中研究了样品溶液的pH值在2.0~10.0对于回收率的影响。从图8可以看出,在pH为6.0时SAs回收率最高。pH为6.0时,大多数SAs将以中性形式存在,小部分以离子形式存在。因而,Fe3O4@SNW-1通过π-π作用力和疏水作用力吸附SAs。故选择样品溶液的pH为6.0。

    图  8  不同pH的影响
    Figure  8.  Effect of pH on testing

    此外,离子强度对SAs回收率的影响见图9。从结果可以看出,离子强度对样品回收率的影响不大。结果说明静电作用力不是Fe3O4@SNW-1吸附SAs的主要吸附机制。相反,π-π相互作用和疏水作用才是Fe3O4@SNW-1吸附SAs的主要吸附机制。因此,在随后的实际样中没有向样品中加入NaCl。

    图  9  不同离子强度的影响
    Figure  9.  Effect of ionic strength on testing

    为了从磁性固相萃取中获得SAs较高的回收率,试验使用了磺胺类药物较易溶解的氨水-甲醇(595,v/v)、乙酸-甲醇(595, v/v)、氨水-乙腈(595,v/v)、乙酸-乙腈(595,v/v)、乙腈、甲醇等极性溶剂作为洗脱溶剂,考察其对SAs回收率的影响。如图10所示,氨水-甲醇(595,v/v)溶液在这6种洗脱溶剂中具有最佳洗脱能力。因此,选择氨水-甲醇(595,v/v)作为洗脱溶剂。

    图  10  不同洗脱溶剂的影响
    注:1.v(氨水): v(甲醇)= 5:95, 2.v(乙酸): v(甲醇)=5:95, 3.v(氨水): v(乙腈)= 5:95, 4.v(乙酸): v(乙腈)=5:95,5.乙腈,6.甲醇。
    Figure  10.  Effect of eluent on testing
    Note: 1. ammonia -methanol(5:95, v/v); 2. acetic acid - methanol(5:95, v/v); 3. ammonia - acetonitrile(5:95, v/v); 4. acetic acid - acetonitrile(5:95, v/v); 5. acetonitrile; 6. methanol.

    研究氨水-甲醇(595,v/v)从0.5~3.0 mL的剂量范围对SAs回收率的影响。结果如图11所示,随着洗脱剂的体积从0.5 mL增加到2.0 mL,SAs的回收率呈上升趋势,当洗脱量为2.0 mL时,SAs的回收率达到最高。随后SAs的回收率趋于平稳,说明洗脱基本达到平衡,因此将氨水-甲醇(595,v/v)的体积定为2.0 mL。

    图  11  洗脱剂体积的影响
    Figure  11.  Effect of eluent volume on testing

    考察了洗脱时间在15~90 s对5种SAs回收率的影响。如图12所示,随着洗脱时间的增加,回收率逐渐加强,当洗脱时间为60 s,回收率达到最高,之后的回收率不再发生明显变化,因此选择洗脱时间为60 s。

    图  12  不同解吸时间的影响
    Figure  12.  Effect of elution duration on testing

    MSPE/HPLC方法对5种SAs混合标准溶液进行测定,并绘制标准曲线。其分析数据见表1。该方法为SAs的10~100 ng·mL−1具有良好的线性,相关系数较高(R2>0.9948)。对于质量浓度为50 ng·mL−1的工作样品的5次重复,所提出的方法的日间精密度(RSD %)为2.4%~3.4%,显示出测定SAs的高精度。

    表  1  以磁性COF为吸附剂的MSPE/HPLC测定SAs的检出限及精密度
    Table  1.  Detecting limit and precision of MSPE/HPLC method using magnetic COF as adsorbent on SA determination
    分析物
    Analyte
    线性范围
    Linear range/(ng·mL−1
    线性方程
    Regression equation
    相关系数
    Correlation coefficient
    检出限
    Limit of detection/(ng·mL−1
    相对标准偏差
    RSD/%
    SDZ 10~100 y=643798x−416.89 0.999 0 1.7 3.4
    SMR 10~100 y=783 373x−543.79 0.998 1 1.7 2.8
    SMZ 10~100 y=697 128x−256.47 0.999 6 2.0 2.4
    SMM 10~100 y=754 506x−551 0.999 3 2.4 2.5
    SMX 10~100 y=654 838x− 2 976.6 0.994 8 2.7 2.8
    下载: 导出CSV 
    | 显示表格

    对牛奶样品进行实际分析,以证明该方法的实用性。在牛奶样品中分别加入20、50、100 ng·mL−1的SAs,采用3次重复试验的平均值,进行了加标回收试验。如表2所示,5种SAs的回收率在72%~95%。图13显示了经前处理后空白牛奶样品、添加100 ng·mL−1SAs的加标牛奶样品的色谱图以及用MSPE进行前处理的加标牛奶样品的色谱图,从图中可以看出,5种磺胺类组分峰与杂质能很好分离,且峰形好,在13 min内能完成样品的检测。以上结果表明,所建立的MSPE/HPLC方法对复杂的牛奶样品中痕量SAs的同时分离和测定是切实可行的。

    表  2  牛奶样品中SAs的分析结果
    Table  2.  Analysis of SAs in milk samples
    分析物
    Analyte
    添加量
    Added/(ng·g−1
    牛奶 Milk
    测定值
    Found/(ng·g−1
    回收率
    Recovery/%
    相对标准偏差
    RSD/%
    SDZ 0 ND
    20 16.8 84 3.2
    50 38.5 77 2.8
    100 72 72 4.4
    SMR 0 ND
    20 18.6 93 6.1
    50 41 82 4.6
    100 79 79 5.3
    SMZ 0 nd
    20 19 95 2.3
    50 41.5 83 3.5
    100 81 81 5.8
    SMM 0 ND
    20 16.6 83 4.9
    50 40 80 3.1
    100 81 81 5.9
    SMX 0 ND
    20 17.6 88 5.7
    50 44 88 4.7
    100 86 86 3.4
    注:ND: 未检出。
    Note:ND means not detected.
    下载: 导出CSV 
    | 显示表格
    图  13  不同处理样品色谱图
    注:A:空白牛奶样品的色谱图;B:加标牛奶样品的色谱图;C:采用MSPE处理的加标牛奶样品的色谱图。
    Figure  13.  Chromatograms of samples
    Note: A: Chromatogram of milk samples; B: Chromatogram of spiked milk samples after extraction; C: Chromatogram of spiked milk samples with MSPE.

    为了评估Fe3O4@SNW-1作为磁性固相萃取的吸附剂的性能,从吸附剂的量、样品量、洗脱量和LODs的角度,将其与前人采用MSPE对SAs前处理的效果的测定方法进行了比较[18, 25-27]。结果表明(表3) :当前所提出的方法仅需要4 mg吸附剂,这比大多数已报道的方法要小,表明Fe3O4@SNW-1对SAs的吸附能力优异。另外,目前的方法消耗的样品和洗脱量很少,可以减少操作时间并满足实际应用,且与其他磁性固相萃取技相比,只需较短的萃取时间就能实现高效萃取。最后,与报道的方法相比,当前方法的灵敏度优于或与已报道的方法相当。因此,所提出的MSPE/HPLC方法可用于复杂基质中痕量SAs的灵敏测定。

    表  3  所提方法与文献中其他方法的比较
    Table  3.  Comparison between MSPE/HPLC and other existing methods
    吸附剂
    Sorbent
    方法
    Method
    样品
    Sample
    吸附剂量
    Amount of
    Sorbent/mg
    样品容量
    Sample volume/
    mL
    萃取时间
    Extraction time/
    min
    洗脱剂体积
    Elution volume/
    mL
    检测限
    LODs/(ng·mL−1
    参考文献
    Reference
    Fe3O4-SiO2-phenylMSPE/HPLC牛奶 Milk10010537~14[25]
    Fe3O4-graphene oxideMSPE/HPLC水 Water5120150~100[26]
    HCP-Fe3O4MSPE/HPLC牛奶 Milk2025522.0~2.5[18]
    CoFe2O4-grapheneMSPE/HPLC牛奶 Milk15100200.51.16~1.59[27]
    Fe3O4@SNW-1MSPE/HPLC牛奶 Milk41022.01.7~2.7本研究 This work
    下载: 导出CSV 
    | 显示表格

    MSPE技术富集的样品可以广泛运用于农药残留、食品添加剂、抗生素、激素类及重金属离子,且通过该技术所得的回收率绝大部分在80%~120%,检出限基本都能达到ng·mL−1(或ng·g−1)数量级,加之涵盖了食品分析领域的大部分区域,因此有着极为理想的应用前景[28]

    本研究通过水热法合成Fe3O4@SNW-1作为磁性吸附剂,通过透射电镜表征和X射线衍射,验证制备成具有核壳结构的Fe3O4@SNW-1复合材料,后通过氮气吸附表征,也证明复合材料的多孔性以及比表面积大的特点。该合成方法利用共价有机骨架来修饰磁性纳米颗粒,既保持共价有机骨架具有的由共轭和富含氮的、结构单元构成的微孔网络结构所表现出的吸附富集性能,又缩短萃取材料和溶液的分离时间[25],所用到的磁性吸附剂在目前MSPE当中鲜有报道。

    在MSPE吸附过程中Fe3O4@SNW-1可通过π-π作用力和疏水作用力吸附SAs。通过MSPE与HPLC联用,在对吸附剂用量、吸附时间、溶液pH、洗脱剂种类、洗脱剂用量和洗脱时间等参数优化后,可高效检测出牛奶中5种痕量磺胺类药物。本研究所建立方法的检测限在1.7~2.7 ng·mL−1,5种SAs(每种50 ng·mL−1)的5次重复提取的日间RSDs为2.8%~4.7%,样品回收率在72%~95%,标准偏差小于6.1%。整个处理过程中,吸附剂用量为4 mg,吸附时间为120 s,洗脱时间为60 s,相比其他方法在吸附剂用量和前处理时间上明显下降,大幅提高了样品前处理效率。

    本试验方法简便、经济,回收率较高、检出限低、精密度高,说明磁性纳米粒子Fe3O4@SNW-1复合物对磺胺类化合物具有较好的吸附能力,有望推广到除牛奶以外的其他SAs的分析检测方法当中。

  • 表  1   低温胁迫对咖啡叶片叶绿素含量及光合参数的影响

    Table  1   Effects of low-temp stress on Chl content and photosynthesis indices in Coffea leaves

    品种 Cultivar处理 TreamentsChlPnTrCiWUELsGs
    大粒种 C. liberica CK 29.00±7.24 a 4.41±1.63 a 0.85±0.51 a 204.79±100.10 a 6.22±3.17 a 0.48±0.25 a 0.05±0.03 a
    24 h 34.33±8.90 a 0.53±0.17 b 0.34±0.41 a 312.77±62.83 ab 4.41±4.34 a 0.22±0.16 ab 0.02±0.02 ab
    48 h 31.77±8.90 a 0.28±0.13 b 0.35±0.24 a 330.61±59.10 b 1.50±1.73 a 0.17±0.15 ab 0.01±0.01 ab
    72 h 30.33±5.54 a 0.29±0.06 b 0.25±0.04 a 348.87±4.73 b 1.14±0.11 a 0.12±0.01 b 0.01±0.002 b
    中粒种 C. canephora CK 32.23±1.29 a 6.75±1.50 a 1.08±0.28 a 212.60±50.84 a 6.43±1.78 a 0.46±0.13 a 0.07±0.02 a
    24 h 24.93±8.52 a 0.67±0.25 b 0.68±0.40 ab 350.14±34.51 b 1.29±1.04 b 0.12±0.08 b 0.04±0.02 a
    48 h 26.70±6.46 a 0.13±0.09 b 0.44±0.47 ab 388.65±2.45 b 0.38±0.13 b 0.03±0.01 b 0.05±0.06 a
    72 h 27.07±5.01 a 0.43±0.37 b 0.41±0.16 b 366.09±21.96 b 1.18±1.01 b 0.08±0.06 b 0.03±0.01 a
    小粒种 C. arabica CK 45.54±3.72 c 7.73±1.22 a 2.16±0.39 a 255.61±35.96 a 3.72±1.27 a 0.35±0.09 a 0.12±0.031 a
    24 h 55.15±4.34 b 1.71±0.38 b 0.69±0.36 b 311.13±70.85 ab 3.38±1.06 ab 0.40±0.50 a 0.05±0.03 b
    48 h 63.89±1.42 a 1.20±0.33 bc 0.38±0.10 b 328.11±25.30 ab 3.28±1.06 ab 0.18±0.06 a 0.03±0.01 b
    72 h 38.93±3.06 d 0.19±0.88 c 0.38±0.04 b 369.24±1.85 b 0.50±0.20 b 0.07±0.01 a 0.01±0.002 b
    注:表中同一列中的不同品种不同小写字母表示差异显著(P<0.05)。表2同。
    Note:different lowercase letters in the same column in the table represent significant differences(P<0.05).The same as table 2.
    下载: 导出CSV

    表  2   低温胁迫对咖啡叶片叶绿素荧光参数的影响

    Table  2   Effect of low-temp stress on fluorescence measurements of Coffea leaves

    品种 Cultivar处理 TreamentsFoFv/FmqPqNETRΦPSII
    大粒种 C. liberica CK 746.59±95.79 a 0.74±0.04 a 0.53±0.08 a 1.49±0.09 a 46.11±12.17 a 0.18±0.05 a
    24 h 784.93±19.72 a 0.71±0.02 ab 0.18±0.09 b 1.92±0.26 a 21.16±8.37 b 0.08±0.03 b
    48 h 892.87±91.97 a 0.60±0.09 b 0.15±0.04 b 1.61±0.18 a 14.76±3.17 b 0.06±0.01 b
    72 h 796.56±119.39 a 0.51±0.08 b 0.07±0.07 b 1.50±0.32 a 6.56±8.03 b 0.02±0.03 b
    中粒种 C. canephora CK 651.71±104.64 a 0.72±0.02 a 0.52±0.06 a 1.53±0.09 a 47.32±5.95 a 0.18±0.02 a
    24 h 722.48±66.001 a 0.65±0.05 ab 0.13±0.08 b 1.71±0.16 a 14.33±7.72 b 0.05±0.03 b
    48 h 720.99±6.75 a 0.53±0.14 b 0.11±0.09 b 1.53±0.16 a 10.36±8.52 b 0.04±0.03 b
    72 h 762.73±31.63 a 0.62±0.06 ab 0.11±0.02 b 1.74±0.21 a 12.19±0.48 b 0.05±0.002 b
    小粒种 C. arabica CK 648.73±36.40 a 0.72±0.02 a 0.64±0.04 b 1.64±0.11 b 66.17±11.01 a 0.25±0.04 b
    24 h 680.58±38.55 a 0.65±0.05 a 0.81±0.04 a 2.74±0.15 a 23.59±1.95 b 0.51±0.04 a
    48 h 702.36±38.16 a 0.62±0.06 a 0.77±0.08 a 2.42±0.22 a 20.68±2.62 b 0.45±0.06 a
    72 h 659.30±48.87 a 0.53±0.14 b 0.10±0.05 c 1.69±0.28 b 11.90±7.42 b 0.05±0.03 c
    下载: 导出CSV

    表  3   不同咖啡各单项指标的抗寒系数

    Table  3   Cold tolerance coefficients on individual indices of Coffea varieties

    品种 CultivarChlPnTrCiWUELsGsqPqNETRFoFv/FmΦPSII
    大粒种 C. liberica104.596.5829.41170.3517.7625.0020.0011.32100.6714.23106.6968.9211.76
    中粒种 C. canephora83.996.3737.96172.2018.3517.3950.0021.15112.9925.76110.6374.6527.78
    小粒种 C. arabica85.492.4617.67144.4613.4020.0016.6715.63103.0517.98101.6372.7316.00
    下载: 导出CSV

    表  4   各抗寒性指标间的相关性分析

    Table  4   Correlation among cold tolerance indicators

    相关性 CorrelationChlPnTrCiWUELsGsqPqNETRFoFv/FmΦPSII
    Chl 1
    Pn 0.119 1
    Tr 0.101 0.827** 1
    Ci −0.059 −0.666** −0.262 1
    WUE 0.163 0.564** 0.153 −0.948** 1
    Ls 0.125 0.531** 0.157 −0.905** 0.876** 1
    Gs 0.111 0.717** 0.945** −0.164 0.088 0.073 1
    qP 0.704** 0.559** 0.469** −0.438** 0.454** 0.487** 0.478** 1
    qN 0.692** −0.141 −0.123 0.044 0.121 0.163 −0.035 0.572** 1
    ETR 0.153 0.916** 0.822** −0.596** 0.511** 0.482** 0.710** 0.646** −0.058 1
    Fo −0.265 −0.471** −0.422* 0.204 −0.206 −0.238 −0.378* −0.432** −0.227 −0.408* 1
    Fv/Fm 0.331* 0.557** 0.516** −0.499** 0.539** 0.474** 0.521** 0.690** 0.390* 0.640** −0.297 1
    ΦPSII 0.800** 0.314 0.263 −0.255 0.317 0.387* 0.314 0.943** 0.782** 0.391* −0.388* 0.600** 1
    注:*在0.05级别(双尾),相关性显著;**在0.01级别(双尾),相关性极显著。
    Note:*at level 0.05(double-tailed),the correlation is significant;**at level 0.01(double-tailed),the correlation is extremely significant
    下载: 导出CSV

    表  5   各综合指标的系数及贡献率

    Table  5   Coefficients and contribution rates of various indicators

    特征向量
    Eigen vector
    ChlPnTrCiWUELsGsqPqNETRFoFv/FmΦPSII特征值
    Eigen value
    贡献率
    Proportion
    contribution
    rate/%
    累积贡献率
    Cumulative
    contribution
    rate%
    A10.460.850.69−0.700.690.680.640.870.320.86−0.530.800.726.2748.2348.23
    A20.74−0.46−0.420.29−0.12−0.08−0.320.400.87−0.37−0.050.090.662.64820.3768.60
    A30.130.100.550.63−0.67−0.660.620.100.010.16−0.250.010.092.1116.2384.83
    下载: 导出CSV

    表  6   3种咖啡幼苗抗寒指标的隶属函数值

    Table  6   Subordinate function values of cold tolerance indicators of Coffea seedings

    品种
    Cultivar
    ChlPnTrCiWUELsGsqPqNETRFoFv/FmΦPSII平均隶属度
    Average
    Membership
    排序
    Sort
    大粒种 C. liberica0.140.020.000.220.130.200.000.000.010.000.610.000.000.103
    中粒种 C. canephora0.050.040.080.120.130.000.180.070.200.090.300.080.060.112
    小粒种 C. arabica0.360.010.070.110.020.790.090.050.160.090.040.190.040.161
    下载: 导出CSV
  • [1]

    VOSSEN H, BERTRAND B, CHARRIER A. Next generation variety development for sustainable production of Arabica coffee (Coffea arabica L.): A review [J]. Euphytica, 2015, 204(2): 243−256. DOI: 10.1007/s10681-015-1398-z

    [2]

    RODRIGUES N P, DE JESUS GARCIA SALVA T, BRAGAGNOLO N. Influence of coffee genotype on bioactive compounds and the in vitro capacity to scavenge reactive oxygen and nitrogen species [J]. Journal of Agricultural and Food Chemistry, 2015, 63(19): 4815−4826. DOI: 10.1021/acs.jafc.5b00530

    [3] 闫林, 黄丽芳, 王晓阳, 等. 基于ISSR标记的咖啡资源遗传多样性分析 [J]. 热带作物学报, 2019, 40(2):300−307.

    YAN L, HUANG L F, WANG X Y, et al. Genetic diversity of coffee germplasms by ISSR markers [J]. Chinese Journal of Tropical Crops, 2019, 40(2): 300−307.(in Chinese)

    [4]

    JAGLO K R, KLEFF S, AMUNDSEN K L, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species [J]. Plant Physiology, 2001, 127(3): 910−917. DOI: 10.1104/pp.010548

    [5] 许耀照, 张芬琴, 陈修斌, 等. 低温胁迫对彩椒幼苗生长指标及光合特性的影响 [J]. 山西农业大学学报(自然科学版), 2019, 39(1):3859−3863.

    XU Y Z, ZHANG F Q, CHEN X B, et al. Effects of low temperature stress on growth index and photosynthetic characteristics of pepper seed‐lings [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(1): 3859−3863.(in Chinese)

    [6] 崔波, 程邵丽, 袁秀云, 等. 低温胁迫对白及光合作用及叶绿素荧光参数的影响 [J]. 热带作物学报, 2019, 40(5):891−897. DOI: 10.3969/j.issn.1000-2561.2019.05.009

    CUI B, CHENG S L, YUAN X Y, et al. Effects of low temperature stress on the photosynthetic characteris-tics and chlorophyll fluorescence parameters of Bletilla striata [J]. Chinese Journal of Tropical Crops, 2019, 40(5): 891−897.(in Chinese) DOI: 10.3969/j.issn.1000-2561.2019.05.009

    [7] 杨碧云, 叶丽萍, 钟凤林, 等. 低温处理对紫色小白菜品质及光合特性的影响 [J]. 安徽农业大学学报, 2019, 46(1):173−180.

    YANG B Y, YE L P, ZHONG F L, et al. Effects of low-temperature stress on the quality and photosynthetic characteristics of purple cabbage [J]. Journal of Anhui Agricultural University, 2019, 46(1): 173−180.(in Chinese)

    [8] 卫新中, 胡志远, 潘丽娉, 等. 脱落酸对咖啡幼苗抗冷性的影响 [J]. 厦门大学学报(自然科学版), 1991, 30(5):523−528.

    WEI X Z, HU Z Y, PAN L P, et al. Effect of ABA on the Chilling Iegury-Resistance of Coffea Sssdings [J]. Journal of Xiaomen University (Natural Science), 1991, 30(5): 523−528.(in Chinese)

    [9] 高敏, 张迎春, 陈莹. 低温霜冻天气对咖啡杯品的影响 [J]. 热带农业科技, 2015, 38(2):29−32. DOI: 10.3969/j.issn.1672-450X.2015.02.009

    GAO M, ZHANG Y C, CHEN Y. The effect of low temperature and frost on cup-tasting of coffee [J]. Tropical Agricultural Science & Technology, 2015, 38(2): 29−32.(in Chinese) DOI: 10.3969/j.issn.1672-450X.2015.02.009

    [10] 郭玉华, 蔡志全, 曹坤芳. 夜间低温对两种咖啡光合作用的影响 [J]. 生态学杂志, 2005, 24(5):478−482. DOI: 10.3321/j.issn:1000-4890.2005.05.003

    GUO Y H, CAI Z Q, CAO K F. Effects of nocturnal low temperature on photosynthesis of seedlings of two coffee species [J]. Chinese Journal of Ecology, 2005, 24(5): 478−482.(in Chinese) DOI: 10.3321/j.issn:1000-4890.2005.05.003

    [11]

    RAMALHO J C, FORTUNATO A S, GOULAO L F, et al. Cold-induced changes in mineral content in leaves of Coffea spp. Identification of descriptors for tolerance assessment [J]. Biologia Plantarum, 2013, 57(3): 495−506. DOI: 10.1007/s10535-013-0329-x

    [12]

    RAMALHO J C, DAMATTA F M, RODRIGUES A P, et al. Cold impact and acclimation response of Coffea spp. plants [J]. Theoretical and Experimental Plant Physiology, 2014, 26(1): 5−18. DOI: 10.1007/s40626-014-0001-7

    [13]

    FORTUNATO A S, LIDON F C, BATISTA-SANTOS P, et al. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance [J]. Journal of Plant Physiology, 2010, 167(5): 333−342. DOI: 10.1016/j.jplph.2009.10.013

    [14] 戴昀, 袁凌云, 张淑江, 等. 低温胁迫下不同乌菜光合及荧光特性的变化及耐寒性评价[J/OL]. 分子植物育种. 2019: 1-14[2019-12-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20191226.1325.014.html

    DAI Y, YUAN L Y, ZHANG S J, et al. Changes of Photosynthetic Fluorescence and Evaluation of Cold Tolerance in Wucai (Brassica campestris L.) [J/OL]. Molecular Plant Breeding. 2019: 1-14[2019-12-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20191226.1325.014.html. (in Chinese)

    [15] 玉苏甫·阿不力提甫, 阿依古丽·铁木儿, 帕提曼·阿布都热合曼, 等. 利用隶属函数法综合评价梨砧木抗寒性 [J]. 中国农业大学学报, 2014, 19(3):121−129.

    YUSUFU A, AYIGULI T, PATIMAN A, et al. Comprehensive evaluation on cold hardiness of pear rootstocks by the subordinate function [J]. Journal of China Agricultural University, 2014, 19(3): 121−129.(in Chinese)

    [16] 司剑华, 卢素锦. 低温胁迫对5种柽柳抗寒性生理指标的影响 [J]. 中南林业科技大学学报, 2010, 30(8):78−81. DOI: 10.3969/j.issn.1673-923X.2010.08.015

    SI J H, LU S J. Effects of low temperature stress on cold-resistance physiological indexes of five Tamarix L. Qinghai [J]. Journal of Central South University of Forestry & Technology, 2010, 30(8): 78−81.(in Chinese) DOI: 10.3969/j.issn.1673-923X.2010.08.015

    [17] 孟艳琼, 张令峰, 王雷宏, 等. 低温胁迫对6种彩叶藤本植物抗寒性生理指标的影响 [J]. 安徽农业大学学报, 2009, 36(2):172−177.

    MENG Y Q, ZHANG L F, WANG L H, et al. Effects of low temperature stress on the cold-resistance physiological indexes of six leaf-colored climbing shrub species [J]. Journal of Anhui Agricultural University, 2009, 36(2): 172−177.(in Chinese)

    [18] 刘杜玲, 张博勇, 孙红梅, 等. 早实核桃不同品种抗寒性综合评价 [J]. 园艺学报, 2015, 34(3):545−553.

    LIU D L, ZHANG B Y, SUN H M, et al. Comprehensive evaluation on cold resistance of early fruiting walnut cultivars [J]. Acta Horticulturae Sinica, 2015, 34(3): 545−553.(in Chinese)

    [19] 陈明辉, 程世平, 张志录, 等. 低温胁迫下不同果蔗品种光合及荧光特性的变化及耐寒性评价 [J]. 热带作物学报, 2018, 39(3):465−471. DOI: 10.3969/j.issn.1000-2561.2018.03.010

    CHEN M H, CHENG S P, ZHANG Z L, et al. Changes of photosynthetic fluorescence and evaluation of cold resistance under cold stress for different chewing cane varieties [J]. Chinese Journal of Tropical Crops, 2018, 39(3): 465−471.(in Chinese) DOI: 10.3969/j.issn.1000-2561.2018.03.010

    [20] 李彩霞, 林碧英, 申宝营, 等. 低温对茄子幼苗生理特性的影响及耐冷性指标的筛选 [J]. 福建农业学报, 2018, 33(9):930−936.

    LI C X, LIN B Y, SHEN B Y, et al. Effects of low temperature on physiological properties of eggplant seedlings and selection of cold-tolerance indicators [J]. Fujian Journal of Agricultural Sciences, 2018, 33(9): 930−936.(in Chinese)

    [21] 李光庆, 谢祝捷, 姚雪琴, 等. 花椰菜叶绿素荧光参数与耐寒性的关系研究 [J]. 园艺学报, 2010, 37(12):2001−2006.

    LI G Q, XIE Z J, YAO X Q, et al. Studies on the relationship between chlorophyll fluorescence parameters and cold tolerance of cauliflower [J]. Acta Horticulturae Sinica, 2010, 37(12): 2001−2006.(in Chinese)

    [22] 梁李宏, 梅新, 林锋, 等. 低温胁迫对腰果幼苗叶片组织结构和生理指标的影响 [J]. 生态环境学报, 2009, 18(1):317−320. DOI: 10.3969/j.issn.1674-5906.2009.01.058

    LIANG L H, MEI X, LIN F, et al. Effect of low temperature stress on tissue structure and physiological index of cashew young leaves [J]. Ecology and Environment, 2009, 18(1): 317−320.(in Chinese) DOI: 10.3969/j.issn.1674-5906.2009.01.058

    [23] 胡春梅, 侯喜林, 王旻. 低温胁迫对不结球白菜光合及叶绿素荧光特性的影响 [J]. 西北植物学报, 2008, 28(12):2478−2484. DOI: 10.3321/j.issn:1000-4025.2008.12.019

    HU C M, HOU X L, WANG M. Effects of Low Temperature on Photosynthetic and Fluorescent Parameters of Non-heading Chinese Cabbage [J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(12): 2478−2484.(in Chinese) DOI: 10.3321/j.issn:1000-4025.2008.12.019

    [24] 王宁, 吴军, 夏鹏云, 等. 大叶冬青对低温胁迫的生理响应及抗寒性分析 [J]. 华南农业大学学报, 2011, 32(3):82−86. DOI: 10.3969/j.issn.1001-411X.2011.03.019

    WANG N, WU J, XIAPENGYUN, et al. Physiological responses of llex latifolia to low temperatrure and its cold tolerance [J]. Journal of South China Agricultural University, 2011, 32(3): 82−86.(in Chinese) DOI: 10.3969/j.issn.1001-411X.2011.03.019

    [25] 梁慧敏, 夏阳, 杜峰, 等. 低温胁迫对草地早熟禾抗性生理生化指标的影响 [J]. 草地学报, 2001, 9(4):283−286. DOI: 10.11733/j.issn.1007-0435.2001.04.008

    LIANG H M, XIA Y, DU F, et al. Effect of low temperature stress on physiological process of Kentucky bluegrass [J]. Acta Agrestia Sinica, 2001, 9(4): 283−286.(in Chinese) DOI: 10.11733/j.issn.1007-0435.2001.04.008

    [26] 姜蓓蓓. 人工低温胁迫下两种水培色叶植物的抗寒性研究[D]. 长沙: 中南林业科技大学, 2018.

    JIANG B B. The research on cold resistance study of two species of hydroponics color leaf plants under artificial low temperature stress[D]. Changsha: Central South University of Forestry & Technology, 2018. (in Chinese).

    [27]

    ALLEN D J, ORT D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants [J]. Trends in Plant Science, 2001, 6(1): 36−42. DOI: 10.1016/S1360-1385(00)01808-2

    [28] 梁芳, 郑成淑, 孙宪芝, 等. 低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响 [J]. 应用生态学报, 2010, 21(1):29−35.

    LIANG F, ZHENG C S, SUN X Z, et al. Effects of low temperature-and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower Chrysanthemum [J]. Chinese Journal of Applied Ecology, 2010, 21(1): 29−35.(in Chinese)

    [29]

    VAN KOOTEN O, SNEL J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology [J]. Photosynthesis Research, 1990, 25(3): 147−150. DOI: 10.1007/BF00033156

    [30] 郝平安, 梁芳, 张燕, 等. 低温胁迫对蝴蝶兰光合及生理特性的影响 [J]. 热带作物学报, 2018, 39(10):1955−1962. DOI: 10.3969/j.issn.1000-2561.2018.10.011

    HAO P A, LIANG F, ZHANG Y, et al. Effects of cold stress on the photosynthetic and physiological char-acteristics of Phalaenopsis [J]. Chinese Journal of Tropical Crops, 2018, 39(10): 1955−1962.(in Chinese) DOI: 10.3969/j.issn.1000-2561.2018.10.011

    [31] 陈梅, 唐运来. 低温胁迫对玉米幼苗叶片叶绿素荧光参数的影响 [J]. 内蒙古农业大学学报(自然科学版), 2012, 33(3):20−24.

    CHEN M, TANG Y L. Effects of low temperature stress on chlorophyll fluorescence characteristics of com seedlings [J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2012, 33(3): 20−24.(in Chinese)

    [32] 周福平, 柳青山, 张一中, 等. 低温胁迫对高粱幼苗叶绿素荧光参数的影响 [J]. 种子, 2018, 37(9):36−40.

    ZHOU F P, LIU Q S, ZHANG Y Z, et al. Effects of low temperature stress on chlorophyll fluorescence parameters of Sorghum seedling [J]. Seed, 2018, 37(9): 36−40.(in Chinese)

    [33] 刘建, 项东云, 陈健波, 等. 低温胁迫对桉树光合和叶绿素荧光参数的影响 [J]. 桉树科技, 2009, 26(1):1−6. DOI: 10.3969/j.issn.1674-3172.2009.01.001

    LIU J, XIANG D Y, CHEN J B, et al. Effects of low temperature on photosynthetic and chlorophyll fluorescence parameters of Eucalyptus urophylla and e. dunnii [J]. Eucalypt Science & Technology, 2009, 26(1): 1−6.(in Chinese) DOI: 10.3969/j.issn.1674-3172.2009.01.001

    [34] 陈世茹, 于林清, 易津, 等. 低温胁迫对紫花苜蓿叶片叶绿素荧光特性的影响 [J]. 草地学报, 2011, 19(4):596−600. DOI: 10.11733/j.issn.1007-0435.2011.04.010

    CHEN S R, YU L Q, YI J, et al. Influence of chlorophyll fluorescence characteristics on alfalfa seedlings under cryogenic stress [J]. Acta Agrectir Sinica, 2011, 19(4): 596−600.(in Chinese) DOI: 10.11733/j.issn.1007-0435.2011.04.010

    [35] 周桂英, 王四清, 陈卿然, 等. 8种大花蕙兰抗寒性指标的筛选及评价 [J]. 福建农林大学学报(自然科学版), 2017, 46(1):37−42.

    ZHOU G Y, WANG S Q, CHEN Q R, et al. Cold resistance indexes identification and comprehensive evaluation of 8 Cymbidium hybridium [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(1): 37−42.(in Chinese)

  • 期刊类型引用(2)

    1. 颜少宾,郭瑞,周平,周丹蓉,金光. 不同套袋处理对桃果实品质的影响. 食品安全质量检测学报. 2024(21): 115-123 . 百度学术
    2. 颜少宾,周平,张妤艳,马瑞娟,俞明亮,金光,郭瑞. 光质对红肉桃果肉色泽、类胡萝卜素组分含量的影响. 江苏农业科学. 2021(20): 143-147 . 百度学术

    其他类型引用(0)

表(6)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  201
  • PDF下载量:  22
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-07-04
  • 刊出日期:  2020-10-27

目录

/

返回文章
返回