Agaricus bisporus Germplasms in Southern Fujian Identified by Somatic Incompatibility Test and SSR
-
摘要:目的 分析评价引进双孢蘑菇种质资源间的亲缘关系与遗传多样性,为闽南地区双孢蘑菇种质资源的鉴定、保藏与分子育种提供理论基础。方法 结合体细胞不亲和性试验和SSR分子标记技术,对供试的9个双孢蘑菇菌株进行鉴定和遗传多样性分析。结果 体细胞不亲和性试验结果表明,供试菌株之间拮抗作用较明显,根据拮抗反应的有无,供试菌株分为5组。SSR结果表明,当相似性系数达到0.76水平时,供试菌株聚成4个类群,第1类群包括HK;第2类群包括901和A15;第3类群包括福蘑52;第4类群包括As2796、W192、W2000、福蘑58、福蘑38。结论 拮抗反应与SSR分子标记2种方法的结果基本一致。综合这2种方法,推测菌株HK与其他供试菌株亲缘关系较远,尤其与供试的其他国内菌株存在较大差异,可以作为一个育种亲本材料。Abstract:Objective Genetic relationship and diversity of Agaricus bisporus germplasms recently introduced to southern Fujian were studied to facilitate the identification, preservation, and breeding of the mushroom resource.Method Both somatic incompatibility test and SSR molecular marker technology were used to determine the genetic diversity of 9 varieties of A. bisporus.Result Somatic incompatibilities of the germplasms allowed the separation of 5 distinct groups by the presence or absence of antagonistic effect among them. Utilizing a similarity coefficient of 0.77, SSR analysis clustered the germplasms into Group 1 that consisted of HK, Group 2 that included 901 and A15, Group 3 that had Fumo 52, and Group 4 that comprised of As2796, W192, W2000, Fumo 58, and Fumo 38.Conclusion From the results obtained by the somatic incompatibility test and SSR molecular marker technology, HK appeared to be remotely related to the other 8 germplasms, especially the domestic varieties. Hence, it could be a potential candidate for breeding purpose.
-
Keywords:
- Agaricus bisporus /
- genetic relationship /
- antagonistic effect /
- SSR /
- clustering analysis
-
0. 引言
【研究意义】双孢蘑菇Agaricus bisporus又名蘑菇、白蘑菇、洋蘑菇等,属于担子菌门、担子菌纲、伞菌科、伞菌目、蘑菇属,是一种世界性栽培和消费的食药用菌[1-4]。闽南地区是国内双孢蘑菇生产的主产区[5],截至目前当地双孢蘑菇栽培仍以农户个体式的季节性生产为主,栽培菌株包括As2796、W192、福蘑38等,均是福建省农业科学院食用菌研究所选育品种;2010年前后陆续有人尝试利用空调等温控措施反季节栽培双孢蘑菇,目前工厂化生产双孢蘑菇运行较好的企业包括福建金明食品有限公司、漳州市新发生物科技有限公司、漳州市九冬蘑菇产业园等,栽培菌株几乎都是W192。尤其对工厂化生产企业,生产品种单一存在一定经营风险。未来双孢蘑菇生产的发展趋势必然是工厂化周年生产。随着市场的发展,对多样化、高品质的双孢蘑菇需求日益旺盛,亟需更多优良的双孢蘑菇品种。杂交育种是现代食用菌育种的常规手段, 也是目前较有效的育种方法[6-9]。杂交育种成功一个非常重要的关键因素是选择合适的亲本[10-13]。因此,收集拟用于育种的双孢蘑菇品种,评价其生物学性状,分析其遗传背景,可为后期的杂交育种亲本筛选提供依据。【前人研究进展】拮抗反应是体细胞不亲和性的具体表现[14],可用于食用菌遗传特异性的鉴定,日本的食用菌品种登记制度也将其列为一个重要指标[15]。通过拮抗反应判断菌株间的亲缘关系,操作方便,结果也较直观、易辨认,但也存在一些缺陷,如不容易区分遗传背景近似的菌株[16-17],而且观察拮抗线时存在主观因素,因此鉴定菌株时采用拮抗反应需结合分子标记等方法。近年来,已陆续有学者利用分子标记技术对双孢蘑菇种质资源进行分类鉴定、辅助育种。王翠等[18]通过SRAP等3种分子标记,结合农艺性状的表型,表明特定标记与双孢蘑菇产、质量性状具有明显的关联性。林媛等[19]利用RAPD标记对40个双孢蘑菇品种进行亲缘关系鉴定,王金斌等[20]采用SSR分子标记鉴定了双孢蘑菇栽培菌株,王新新等[21]采用SSR标记对国内外不同来源的双孢蘑菇种质建立了分子身份证,顾敏等[22]对31份As2796的单孢分离株和8份代表性双孢蘑菇栽培菌株进行遗传多样性研究。【本研究切入点】闽南地区双孢蘑菇栽培菌株较单一,本研究以不同途径引进的9个双孢蘑菇菌株为试验材料,利用体细胞不亲和性试验和SSR分子标记对其进行亲缘关系的探讨,旨在为进一步收集保护双孢蘑菇种质资源、杂交亲本选择等提供理论依据和技术支撑。【拟解决的关键问题】本研究采用体细胞不亲和性试验和SSR分子标记相结合对收集的9个双孢蘑菇菌株进行鉴定与分析,以期更准确更科学鉴定收集的双孢蘑菇菌株,明确其亲缘关系,为后续的杂交育种亲本选择等研究工作奠定基础。
1. 材料与方法
1.1 试验材料
供试双孢蘑菇菌株具体见表1。
表 1 供试的双孢蘑菇菌株编号Table 1. Sample codes for A. bisporus germplasms编号
No.菌株名称
Strain来源
Origin1 As2796 漳州市农科所 2 W2000 福建省农科院 3 W192 福建省农科院 4 福蘑38 福建省农科院 5 福蘑52 福建省农科院 6 福蘑58 福建省农科院 7 901 制种户 8 A15 制种户 9 HK 香港 1.2 试验试剂
DNA提取试剂盒、琼脂糖H、SSR引物等由生工生物工程(上海)股份有限公司提供;6×DNA Loading Dye、DNA Ladder Mix(100-3000 bp)、POP-7TM Polymer、HiDiFormamide等购自ThermoFisher。
1.3 供试培养基
100 g马铃薯+60 g双孢蘑菇二次发酵晒干草粪料+20 g葡萄糖+18 g琼脂。
1.4 试验方法
1.4.1 培养基制作
将草粪料和去皮、切块的马铃薯分别放入锅中,分别加水0.5 L,在加热器上加热至沸腾,维持约20~30 min,用2层纱布趁热在量杯上过滤,滤液待用;将2种滤液混合,小火加热,逐步加入糖和琼脂,混匀,水补足至1 L,分装,121 ℃高压蒸汽灭菌20 min。
1.4.2 体细胞不亲和性试验
体细胞不亲和性试验参考文献[14]的方法进行。
1.4.3 供试菌株DNA提取
采用Ezup 柱式真菌基因组DNA抽屉试剂盒提取DNA。
1.4.4 PCR反应体系与条件
参考文献[21-23],选用12个SSR引物对供试菌株进行扩增。引物信息具体见表2,PCR反应体系组成:10 mmol·L−1 dNTPs 0.4 μL,5 U Taq酶0.3 μL,100 ng DNA 1.0 μL,10 μmol·L−1的上、下游引物各 1 μL,Taq Buffer(含MgCl2)2.5 μL,加ddH2O 至 25 μL。PCR扩增程序为:95 ℃预变性3 min:94 ℃变性30 s,60 ℃退火30 s,72 ℃延伸30 s,共10个循环;94 ℃变性30 s,55 ℃退火30 s,72 ℃延伸30 s,共35个循环;72 ℃延伸8 min,4 ℃ 保存。
表 2 供试菌株鉴定所用SSR引物Table 2. SSR primers for variety identification引物名
Primer序列(5′ to 3′)
Sequence(5′ to 3′)5′端修饰
5′end modification重复基序
Repeat motifs片段大小/bp
Fragment size退火温度/℃
Annealing temperatureAbSSR005-F CTCTGGGATATGGACGAGGA 5′6-FAM (GATGAG)6 118 56 AbSSR013-F GACTGCCTGATTGACGGATT 5′HEX (TA)6 162 57 AbSSR015-F CTCGAGTCGACGAAGGAAAC 5′HEX (GA)7 238 58 AbSSR016-F TGTCTGGTTTTGCTCACGTC 5′HEX (TC)12 242 55 AbSSR018-F TGGCTCTTTACAGCCTTGGT 5′6-FAM (CAT)6 122 55 AbSSR084-F CGACCCATCATCAACTTCCT 5′HEX (GAA)6 234 59 AbSSR6-F ACCACATTCTGGAAAACGAA 5′HEX (GCT)8 181 55 AbSSR36-F CGTTGATGGAGTTCACTGAG 5′HEX (GAAG)4(GAAAAG)(GAAG) 148 58 L11-F ATAAAAAAGCATAATCACAAATG 5′6-FAM (TC)13 228 50 L15-F GCAGGTCCAGTGTGAACGG 5′6-FAM (TCC)8 192 57 L17-F ATCCAATTCACCAACCAGC 5′6-FAM (A)11gagaataagaaattgaaaattg(A)16 186 52 L23-F CTTTTCAGGGGAAGACAACG 5′6-FAM (GTG)7 174 55 1.4.5 电泳检测和 STR检测
将扩增好的PCR产物进行琼脂糖凝胶电泳(2 μL样品+6 μL溴酚蓝),300 V电压下12 min,获取鉴定胶图,通过胶图确定模板浓度,加水稀释到毛细管电泳所需浓度,按照相关流程进行STR检测。
1.5 数据分析
体细胞不亲和性试验结果的判断参照NY/T1845-2010。使用Gene mapper4.1软件分析SSR数据,用MVSP软件进行聚类分析,并形成供试菌株的遗传聚类图。
2. 结果与分析
2.1 供试菌株的体细胞不亲和性分析
供试菌株间的拮抗反应存在一定差异,如图1所示。福蘑52、901、As2796等3个菌株间的拮抗反应明显,表现为菌丝隆起。W192和W2000无拮抗反应,这2个菌株与福蘑52拮抗反应明显,表现为拮抗线。福蘑58和W2000无拮抗反应,这2个菌株与901拮抗反应明显,表现为沟状。
根据体细胞不亲和性试验结果,拮抗反应具体结果见表3。可以看出,901与A15之间没有拮抗线,但与其他菌株均存在较明显的拮抗线,分为一组;HK、福蘑52两两之间及与其他菌株之间均有较明显拮抗反应,这2个菌株的亲缘关系可能较远,HK分为一组,福蘑52分为另外一组;W192、W2000、As2796、福蘑58两两之间没有明显拮抗线,初步认为这些菌株之间亲缘关系较近,分为一组;As2796与W192等没有明显拮抗线,但菌丝明显不同,单独分为一组。因此,通过体细胞不亲和性试验可以初步将供试菌株分成 5 组。
表 3 供试菌株间的拮抗反应情况Table 3. Antagonistic reactions among tested germplasms菌株
StrainAs2796
As2796W2000
W2000W19
2W192福蘑38
Fomo 38福蘑52
Fomo 52福蘑58
Fomo 58901 A15 HK As2796 As2796 − W2000 W2000 − − W192 W192 − − − 福蘑38 Fomo 38 − − − − 福蘑52 Fomo 52 + + + + − 福蘑58 Fomo 58 − − + − + − 901 + + + + + + − A15 + + + + + + − − HK + + + + + + + + − 注:‘+’表示有拮抗性;‘−’表示无拮抗
Note: + presence of antagonism; − absence of antagonism.2.2 供试菌株遗传相似系数分析
遗传相似系数是表示群体或个体间相似程度的度量值,相似系数越大,样本的遗传关系越近,反之则越远。本研究结果表明,9个供试菌株的遗传相似系数变幅较大(0.432~0.905),平均值为0.6721;其中W192与福蘑38、W2000遗传相似系数最大,表明这3个菌株在这9个引进菌株群体中的亲缘关系最近;而W192与901遗传相似系数最小,表明这两个菌株的亲缘关系最远。W192、W2000、福蘑58、福蘑38、As2796之间的遗传相似系数均≥0.8,远大于平均值,表明这几个菌株间的亲缘关系较近;从遗传相似系数数值分布可以看出(表4),遗传相似系数≥0.9占比8.3%,遗传相似系数≤0.5占比11.1%,遗传相似系数0.8~0.89、0.7-0.79、0.6-0.69、0.5-0.59占比各约20%,表明这9个菌株间具有一定的遗传多样性,遗传丰富度较高。
表 4 相似性系数Table 4. List of similarity coefficients菌株
Strain福蘑38
Fomo 38福蘑52
Fomo 52福蘑58
Fomo 58901 A15 As2796 HK W192 W2000 福蘑38 Fomo 38 1 福蘑52 Fomo 52 0.615 1 福蘑58 Fomo 58 0.9 0.595 1 901 0.541 0.588 0.629 1 A15 0.462 0.722 0.486 0.765 1 As2796 0.821 0.667 0.865 0.529 0.556 1 HK 0.526 0.686 0.5 0.667 0.743 0.571 1 W192 0.905 0.718 0.8 0.432 0.564 0.821 0.632 1 W2000 0.81 0.769 0.8 0.486 0.615 0.821 0.684 0.905 1 2.3 亲缘关系分析
如图2所示,结合相似性系数矩阵表,以相似性系数0.76为阈值,可将供试菌株分成4个类群,第一类群只有一个样本HK;第二类群有2个样本A15与901;第三类群只有一个样本福蘑52;第四类群最多,有5个样本,其中W2000,W192和福蘑38在相似性为86%的地方聚为一类,其中W192和福蘑38的相似性有91%;样本AS2796和福蘑58相似性只有87%。
3. 讨论与结论
形态标记是人们最早利用的遗传标记类型[24]。但对食用菌等大型真菌而言,其子实体表型受外部环境因素影响大,因此单纯借助形态学指标区分菌株间亲缘关系难度较大。通过体细胞不亲和性试验可以初步判断菌株间的亲缘关系。本试验的拮抗反应较明显,如HK、福蘑52两两之间及与其他菌株之间的拮抗反应均较明显,说明这2个菌株的亲缘关系较远;As2796、W192、W2000、As2796、福蘑58两两之间没有拮抗反应,说明这些菌株之间的亲缘关系较近;901与A15两个菌株均由国外育种公司选育而成,相互没有拮抗反应,二者亲缘关系可能较近,但与其他菌株之间的拮抗反应均较明显,表明这2个菌株与其他供试菌株的亲缘关系较远,这与菌种来源是相符的。
DNA分子标记目前已广泛用于食用菌品种鉴定[15-16,18-22]。SSR具有等位变异高、共显性、简便、快速、稳定的特点[25]。SSR技术在农作物品种鉴定、遗传多样性分析、辅助分子育种等方面得到大量应用[20-28]。本研究结合相似性系数矩阵表,以相似性系数0.76为阈值,可将供试菌株分成4个类群,表明这9个双孢蘑菇菌株具有一定的遗传多样性与遗传丰富度。
有研究报道体细胞不亲和性试验的分类结果与分子标记聚类分析的结果基本相同。唐传红等的[16]利用拮抗试验和RAPD分子标记技术分析了供试菌株的亲缘关系,结果表明2种方法的鉴定结论是一致。杏鲍菇[29],黑木耳[30-31]等的研究结果也佐证了这一结论。但杨和川等[15]对29个金针菇进行遗传多样性分析结果表明,大部分拮抗对峙试验结果与聚类分析结果一致,也存在不一致的。因此采用多种鉴定方法对供试菌株进行综合分析,可以得出更准确结论。本研究综合体细胞不亲和性试验和SSR分子标记技术两种方法对供试的9个双孢蘑菇菌株进行鉴定分析,结果表明两种方法所得到的结果基本一致。如HK与其他供试菌株均存在明显拮抗线,SSR分子标记聚类结果也显示HK与其他菌株平均相似系数仅为0.626,单独聚为一类;A15和901二者之间不存在拮抗反应,而与其他供试菌株均存在不同程度的拮抗反应,聚类分析结果显示A15和901相似系数为0.765,与其他菌株平均相似系数分别为0.614和0.579,这两个菌株遗传背景相近,而与其他供试菌株亲缘关系较远。
不同DNA分子标记方法的开发原理是有一定区别的,有时不同分子标记方法的聚类分析结果会存在一定的差异。杨军[32]综合ISSR和RAPD两种分子标记鉴定分析供试灰树花菌株,结果表明利用2种分子标记比单独使用分子标记鉴定的结果更准确。本研究是综合拮抗反应试验的分类结果与分子标记聚类分析的结果,可以考虑进一步采用其他分子标记验证本试验结果。
-
表 1 供试的双孢蘑菇菌株编号
Table 1 Sample codes for A. bisporus germplasms
编号
No.菌株名称
Strain来源
Origin1 As2796 漳州市农科所 2 W2000 福建省农科院 3 W192 福建省农科院 4 福蘑38 福建省农科院 5 福蘑52 福建省农科院 6 福蘑58 福建省农科院 7 901 制种户 8 A15 制种户 9 HK 香港 表 2 供试菌株鉴定所用SSR引物
Table 2 SSR primers for variety identification
引物名
Primer序列(5′ to 3′)
Sequence(5′ to 3′)5′端修饰
5′end modification重复基序
Repeat motifs片段大小/bp
Fragment size退火温度/℃
Annealing temperatureAbSSR005-F CTCTGGGATATGGACGAGGA 5′6-FAM (GATGAG)6 118 56 AbSSR013-F GACTGCCTGATTGACGGATT 5′HEX (TA)6 162 57 AbSSR015-F CTCGAGTCGACGAAGGAAAC 5′HEX (GA)7 238 58 AbSSR016-F TGTCTGGTTTTGCTCACGTC 5′HEX (TC)12 242 55 AbSSR018-F TGGCTCTTTACAGCCTTGGT 5′6-FAM (CAT)6 122 55 AbSSR084-F CGACCCATCATCAACTTCCT 5′HEX (GAA)6 234 59 AbSSR6-F ACCACATTCTGGAAAACGAA 5′HEX (GCT)8 181 55 AbSSR36-F CGTTGATGGAGTTCACTGAG 5′HEX (GAAG)4(GAAAAG)(GAAG) 148 58 L11-F ATAAAAAAGCATAATCACAAATG 5′6-FAM (TC)13 228 50 L15-F GCAGGTCCAGTGTGAACGG 5′6-FAM (TCC)8 192 57 L17-F ATCCAATTCACCAACCAGC 5′6-FAM (A)11gagaataagaaattgaaaattg(A)16 186 52 L23-F CTTTTCAGGGGAAGACAACG 5′6-FAM (GTG)7 174 55 表 3 供试菌株间的拮抗反应情况
Table 3 Antagonistic reactions among tested germplasms
菌株
StrainAs2796
As2796W2000
W2000W19
2W192福蘑38
Fomo 38福蘑52
Fomo 52福蘑58
Fomo 58901 A15 HK As2796 As2796 − W2000 W2000 − − W192 W192 − − − 福蘑38 Fomo 38 − − − − 福蘑52 Fomo 52 + + + + − 福蘑58 Fomo 58 − − + − + − 901 + + + + + + − A15 + + + + + + − − HK + + + + + + + + − 注:‘+’表示有拮抗性;‘−’表示无拮抗
Note: + presence of antagonism; − absence of antagonism.表 4 相似性系数
Table 4 List of similarity coefficients
菌株
Strain福蘑38
Fomo 38福蘑52
Fomo 52福蘑58
Fomo 58901 A15 As2796 HK W192 W2000 福蘑38 Fomo 38 1 福蘑52 Fomo 52 0.615 1 福蘑58 Fomo 58 0.9 0.595 1 901 0.541 0.588 0.629 1 A15 0.462 0.722 0.486 0.765 1 As2796 0.821 0.667 0.865 0.529 0.556 1 HK 0.526 0.686 0.5 0.667 0.743 0.571 1 W192 0.905 0.718 0.8 0.432 0.564 0.821 0.632 1 W2000 0.81 0.769 0.8 0.486 0.615 0.821 0.684 0.905 1 -
[1] 黄毅. 食用菌工厂化栽培实践[M]. 福州: 福建科学技术出版社, 2014. [2] WANG Z S, LIAO J H, CHEN M Y, et al. Breeding and Industrial Development of Agaricus bisporus [J]. Acta Edulis Fungi, 2012, 19(3): 1−14.
[3] 黄年来, 林志彬, 陈国良, 等.中国食药用菌学[M].上海: 上海科学技术文献出版社, 2010. [4] 郑丹丹, 胡扬扬, 王琦. 双孢蘑菇活性成分研究进展 [J]. 食用菌学报, 2016, 23(2):94−103. ZHENG D D, HU Y Y, WANG Q. Recent research on bioactive components from Agaricus bisporus [J]. Acta Edulis Fungi, 2016, 23(2): 94−103.(in Chinese
[5] 袁滨, 柯丽娜, 洪丽明, 等. 双孢蘑菇新品种筛选试验与示范研究 [J]. 热带农业科学, 2018, 38(5):62−65, 70. YUAN B, KE L N, HONG L M, et al. Screening trial and demonstration of new strains of Agaricus bisporus [J]. Chinese Journal of Tropical Agriculture, 2018, 38(5): 62−65, 70.(in Chinese
[6] 陈世通, 李荣春. 食用菌育种方法的研究现状·存在的问题及展望 [J]. 安徽农业科学, 2012, 40(10):5850−5852. DOI: 10.3969/j.issn.0517-6611.2012.10.049 CHEN S T, LI R C. Present research on breeding methods of edible fungi and the problems in it as well as the prospects [J]. Journal of Anhui Agricultural Sciences, 2012, 40(10): 5850−5852.(in Chinese DOI: 10.3969/j.issn.0517-6611.2012.10.049
[7] 张天镇. 作物育种学总论[M]. 北京: 中国农业出版社, 2005: 60—63. [8] 杨明霞, 杨萍, 任瑞, 等. 山楂的生殖生物学和杂交育种研究进展 [J]. 中国农学通报, 2018, 34(36):70−74. DOI: 10.11924/j.issn.1000-6850.casb17110009 YANG M X, YANG P, REN R, et al. Reproductive Biology and Crossbreeding of Hawthorn Research Progress [J]. Chinese Agricultural Science Bulletin, 2018, 34(36): 70−74.(in Chinese DOI: 10.11924/j.issn.1000-6850.casb17110009
[9] 翟阳阳, 宋金俤, 吴成龙, 等. 阿魏蘑杂交育种研究 [J]. 食药用菌, 2018, 26(6):367−374. ZHAI Y Y, SONG J D, WU C L, et al. Study on cross breeding of Pleurotus nebrodensis [J]. Edible and Medicinal Mushrooms, 2018, 26(6): 367−374.(in Chinese
[10] 江玉姬, 赵书光, 谢宝贵, 等. 金针菇杂交育种中亲本菌株的选择模式 [J]. 福建农林大学学报(自然科学版), 2010, 39(4):403−408. JIANG Y J, ZHAO S G, XIE B G, et al. Model of selecting parent strains for Flammulina velutipes hybridization breeding [J]. Journal of Fujian Agricultural and Forestry University, 2010, 39(4): 403−408.(in Chinese
[11] RAJARAM S. Prospects and promise of wheat breeding in the 21st century [J]. Euphytica, 2001, 119(1): 3−15.
[12] 李娜娜, 张德平, 戴思兰. 遗传距离及聚类分析在切花菊亲本选配中的应用 [J]. 东北林业大学学报, 2011, 39(11):46−49. DOI: 10.3969/j.issn.1000-5382.2011.11.013 LI N N, ZHANG D P, DAI S L. Application of Genetic Distance and Cluster Analysis to Parent Selection for Hybridization in Cut Chrysanthemum [J]. Journal of northeast forestry university, 2011, 39(11): 46−49.(in Chinese DOI: 10.3969/j.issn.1000-5382.2011.11.013
[13] 纪永民, 王书平, 赵晋铭, 等. 优质高产濉科系列大豆品种选育的经验和体会 [J]. 大豆科技, 2018, 12(4):22−29. DOI: 10.3969/j.issn.1674-3547.2018.04.006 JI Y M, WANG S P, ZHAO J M, et al. Experience and Lessons of Breeding High Quality and High Yield Suike Soybean Series Varieties [J]. Soybean Bulletin, 2018, 12(4): 22−29.(in Chinese DOI: 10.3969/j.issn.1674-3547.2018.04.006
[14] 刘盛荣, 张维瑞, 柯斌榕, 等. 基于拮抗试验的杏鲍菇菌株分类研究 [J]. 食药用菌, 2015, 23(1):33−36. LIU S R, ZHANG W R, KE B R. Study on classification of Pleurotus eryngii strains based on antagonism test [J]. Edible and Medicinal Mushrooms, 2015, 23(1): 33−36.(in Chinese
[15] 杨和川, 谭一罗, 苏文英, 等. 金针菇菌株农艺性状评价及遗传多样性分析 [J]. 南方农业学报, 2018, 49(12):2371−2378. DOI: 10.3969/j.issn.2095-1191.2018.12.04 YANG H C, TAN Y L, SU W Y, et al. Agronomic traits evaluation and genetic diversity analysis of Flammulina filiformis [J]. Journal of Southern Agriculture, 2018, 49(12): 2371−2378.(in Chinese DOI: 10.3969/j.issn.2095-1191.2018.12.04
[16] 唐传红, 张劲松, 陈明杰, 等. 利用拮抗试验和RAPD对灵芝属菌株进行分类研究 [J]. 微生物学通报, 2005, 32(5):72−76. DOI: 10.3969/j.issn.0253-2654.2005.05.015 TANG C H, ZHANG J S, CHEN M J, et al. Study on classification of strains of Ganoderma by anatagonistic effect and rapd [J]. Microbiology, 2005, 32(5): 72−76.(in Chinese DOI: 10.3969/j.issn.0253-2654.2005.05.015
[17] 刘昆, 宋小亚, 蒋俊路, 等. 食用菌拮抗反应的定量分析 [J]. 食药用菌, 2015, 23(6):364−366. LIU K, SONG X Y, JIANG J L, et al. Quantitative analysis of antagonistic reaction of edible fungi [J]. Edible and medicina1 mushroom, 2015, 23(6): 364−366.(in Chinese
[18] 王翠, 郭仲杰, 尤洁, 等. 双孢蘑菇产、质量性状相关分子标记的初步研究 [J]. 福建农业科技, 2018(7):1−5. WANG C, GUO Z J, YOU J, et al. A preliminary study on molecular markers related to yield and quality traits of Agaricus bisporus [J]. Fujian Agricultural Science and Technology, 2018(7): 1−5.(in Chinese
[19] 林媛, 陈文炳, 邵碧英, 等. 双孢蘑菇RAPD标记的遗传多样性分析 [J]. 食品科学, 2009, 30(20):272−276. LIN Y, CHEN W B, SHAO B Y, et al. Detection of genetic diversity of Agaricus bisporus using RAPD markers [J]. Food Science, 2009, 30(20): 272−276.(in Chinese
[20] 王金斌, 刘华, 郭陈莉, 等. 中国工厂化主栽双孢蘑菇品种的SSR标记遗传多样性分析 [J]. 分子植物育种, 2019, 17(5):1589−1596. WANG J B, LIU H, GUO C L, et al. Genetic Diversity Analysis of Industrial Leading Cultivated Agaricus bisporus Varieties in China by SSR Markers [J]. Molecular Plant Breeding, 2019, 17(5): 1589−1596.(in Chinese
[21] 王新新, 李丹, 宋冰, 等. 双孢蘑菇种质SSR分子身份证的构建 [J]. 食用菌学报, 2016, 23(2):6−11. WANG X X, LI D, SONG B, et al. Development of a Single Sequence Repeat-based Molecular ID System for Differentiating Agaricus bisporus Strains [J]. Acta Edulis Fungi, 2016, 23(2): 6−11.(in Chinese
[22] 顾敏, 沈颖越, 金群力, 等. 双孢蘑菇SSR分子标记开发及其在遗传多样性分析中的应用 [J]. 浙江农业学报, 2013, 25(5):987−993. DOI: 10.3969/j.issn.1004-1524.2013.05.14 GU M, SHEN Y Y, JIN Q L, et al. Development and application of SSR markers in Agaricus bisporus [J]. Acta Agricuhurae Zhejiangensis, 2013, 25(5): 987−993.(in Chinese DOI: 10.3969/j.issn.1004-1524.2013.05.14
[23] FOULONGNE-ORIOL M, SPATARO C, SAVOIE J M. Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus [J]. Applied Microbiology and Biotechnology, 2009, 84(6): 1125−1135. DOI: 10.1007/s00253-009-2030-8
[24] 吴明基, 向海涛, 刘华清, 等. 利用形态学性状及SSR分子标记鉴定水稻优良恢复系闽恢3301的亲代来源 [J]. 福建农业学报, 2012, 27(7):673−678. DOI: 10.3969/j.issn.1008-0384.2012.07.003 WU M J, XIANG H T, LIU H Q, et a1. Genetic Original Identification of Minhui 3301 by Morphological Traits and SSR Markers [J]. Fujian Journal ofAgricultural Sciences, 2012, 27(7): 673−678.(in Chinese DOI: 10.3969/j.issn.1008-0384.2012.07.003
[25] 王让剑, 杨军, 孔祥瑞, 等. 福建15个茶树品种SSR遗传差异分析与指纹图谱建立 [J]. 福建农业学报, 2014, 29(10):970−975. DOI: 10.3969/j.issn.1008-0384.2014.10.008 WANG R J, YANG J, KONG X R, et a1. Genetic Variances and DNA Fingerprints of 15 Teas in Fuiian [J]. Fian Journal of Agricultural Sciences, 2014, 29(10): 970−975.(in Chinese DOI: 10.3969/j.issn.1008-0384.2014.10.008
[26] 付涛, 严春风, 林乐静, 等. 我国南方野生樱属植物的SSR亲缘关系分析 [J]. 核农学报, 2018, 32(10):1949−1959. DOI: 10.11869/j.issn.100-8551.2018.10.1949 FU T, YAN C F, LIN L J, et a1. Analysis of Genetic Relationship of Wild Cerasus in South China With SSR Markers [J]. Journal of Nuclear Agricultural Science, 2018, 32(10): 1949−1959.(in Chinese DOI: 10.11869/j.issn.100-8551.2018.10.1949
[27] 陈坚, 郑益平, 郭文杰, 等. 福建省草莓主栽与引进品种的SSR分子标记鉴定 [J]. 福建农业学报, 2018, 33(2):150−153. CHEN J, ZHANG Y P, GUO W J, et a1. Identification of Major Introduced Strawberry Cultivars in Fujian Using SSR Molecular Marker [J]. Fujian Journal of Agricultural Sciences, 2018, 33(2): 150−153.(in Chinese
[28] 周平, 郭瑞, 张小丹, 等. SSR分析50份桃种质资源遗传多样性 [J]. 福建农业学报, 2017, 32(1):47−50. ZHOU P, GUO R, ZHANG X D, et al. Genetic Diversity of 50 Prunus persica Germplasms Aanlyzed by SSR Markers [J]. Fujian Journal of Agricultural Sciences, 2017, 32(1): 47−50.(in Chinese
[29] 王小艳, 王春晖, 姜性坚, 等. 杏鲍菇多孢分离菌株ISSR、RAPD分子标记及体细胞不亲和性分析 [J]. 中国食用菌, 2015, 34(3):57−60. WANG X Y, WANG C H, JIANG X J, et al. Analysis on Multi-spore Isolated Pleurotus eryngii Using ISSR and RAPD Molecular [J]. Edible Fungi of China, 2015, 34(3): 57−60.(in Chinese
[30] 史灵燕, 刘保卫, 顾新颖, 等. 生化和ISSR分子标记在黑木耳品种鉴定中的应用 [J]. 北方园艺, 2019, 24(9):136−141. SHI L Y, LIU B W, GU X Y, et al. Application of Biochemical and ISSR Molecular Markers in Identification of Auricularia auricular [J]. Northern Horticulture, 2019, 24(9): 136−141.(in Chinese
[31] 路新彦, 刘昆, 蒋俊, 等. 7个黑木耳菌株遗传差异性分析 [J]. 中国食用菌, 2017, 31(1):52−55. LU X Y, LIU K, JIANG J, et al. Study on Genetic Polymorphism of 7 Auricularia auricula Strains [J]. Edible Fungi of China, 2017, 31(1): 52−55.(in Chinese
[32] 杨军, 徐吉, 宋一鸣, 等. 耐高温型灰树花菌株筛选及供试灰树花亲缘关系分析 [J]. 基因组学与应用生物学, 2016, 35(2):396−405. YANG J, XU J, SONG Y M, et al. Screen of Grifola frondosa thermotolerant strains and analysis of the genetic relationship of candidate strains [J]. Genomics and Applied Biology, 2016, 35(2): 396−405.(in Chinese
-
期刊类型引用(3)
1. 连燕萍,赵光辉,吴振强,袁滨,柯丽娜,张志鸿. 卵孢小奥德蘑菌株的拮抗及ISSR遗传分析. 热带农业科学. 2023(01): 15-20 . 百度学术
2. 袁滨,柯丽娜,连燕萍,赵光辉,林德锋,陈光祥. 适宜温控菇房的双孢蘑菇菌株筛选. 热带农业科学. 2022(03): 16-19 . 百度学术
3. 卓蕾,向成丽,肖杰,叶媛丽. SSR标记在植物种质资源鉴定的应用进展. 现代园艺. 2021(15): 9-11 . 百度学术
其他类型引用(0)