Abstract:
Objective Effects of planting density and nitrogen (N) application on the yield and agronomic efficiency on N (AEN) of winter potato were studied to improve the crop cultivation practices.
Method Minshu 1 , a major winter potato cultivar, was used to determine the effects of planting density and N application rate on tuber yield, AEN, and leaf photosynthesis of the plants in a split plot experimentation. Three planting densities at 47 600 plant·hm−2 (D4.76), 66 700 plant·hm−2 (D6.67), and 109 600 plant·hm−2 (D10.96) were implemented on a main plot, and 4 varied N inputs applied at the rates of 0 kg·hm−2 (N0), 75 kg·hm−2 (N75), 150 kg·hm−2 (N150), and 300 kg·hm−2 (N300) on a subplot.
Result Both planting density and N input significantly affected the tuber yield and AEN of the potato plants. The two independent variables also significantly interacted to result in varied effects. Increasing the planting density improved the total yield and AEN of the potato plants, as D6.67 delivered the highest yield, while D10.96 the highest AEN, among all treatments. With N300, the total potato yields under D6.67 and D10.96 were 21.3% and 21.2%, respectively, whereas, AEN 20.5% and 49.2%, respectively, higher than those under D4.76. N applications significantly affected the tuber production with the highest yield found with N150. There was no significant difference on the yield between N75 and N150 under D4.76 or D6.67. But, as the planting became denser under D10.96, the N75 treatment produced significantly less potatoes than N150. AEN of the plants decreased with increasing N input. As compared to N75, N150 and N300 showed significantly reduced AEN by 41.2% and 75.2%, respectively. N application promoted the gas exchange parameters and SPAD on the leaves of the potato plants. High planting density was detrimental to photosynthetic efficiency, as shown by the leaf Pn of D10.96 being lower than that of D6.67. There was a significant correlation between the photosynthetic characteristics and potato yield of a plant.
Conclusion In the experimentation, the highest tuber yield of 32.2 t·hm−2 was achieved when the potato were planted at 66 700 plant·hm−2 and fertilized with 150 kg N·hm−2. The greatest AEN of 156.5 kg·kg−1 was achieved with a planting density of 109 600 plant·hm−2 and a N input of 75 kg·hm−2. Thus, planting potato plants either at a high density with increased N application or at a low or medium density with reduced N input could improve the tuber yield and AEN of the plants.