• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响

连玲, 许惠滨, 何炜, 朱永生, 潘丽燕, 魏毅东, 郑燕梅, 罗曦, 谢华安, 张建福

连玲, 许惠滨, 何炜, 朱永生, 潘丽燕, 魏毅东, 郑燕梅, 罗曦, 谢华安, 张建福. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响[J]. 福建农业学报, 2019, 34(3): 255-263. DOI: 10.19303/j.issn.1008-0384.2019.03.001
引用本文: 连玲, 许惠滨, 何炜, 朱永生, 潘丽燕, 魏毅东, 郑燕梅, 罗曦, 谢华安, 张建福. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响[J]. 福建农业学报, 2019, 34(3): 255-263. DOI: 10.19303/j.issn.1008-0384.2019.03.001
LIAN Ling, XU Hui-bing, HE Wei, ZHU Yong-sheng, PAN Li-yan, WEI Yi-dong, ZHENG Yan-mei, LUO Xi, XIE Hua-an, ZHANG Jian-fu. Expression of Antioxidant Enzyme Genes in Rice under PEG-simulated Drought-stress[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 255-263. DOI: 10.19303/j.issn.1008-0384.2019.03.001
Citation: LIAN Ling, XU Hui-bing, HE Wei, ZHU Yong-sheng, PAN Li-yan, WEI Yi-dong, ZHENG Yan-mei, LUO Xi, XIE Hua-an, ZHANG Jian-fu. Expression of Antioxidant Enzyme Genes in Rice under PEG-simulated Drought-stress[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 255-263. DOI: 10.19303/j.issn.1008-0384.2019.03.001

PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响

基金项目: 

福建省科技计划项目——省属公益类科研院所基本科研专项 2016R1020-8

国家重点研发计划项目 2016YFD0101801

详细信息
    作者简介:

    连玲(1983-), 女, 硕士, 助理研究员, 主要从事水稻分子生物学与分子育种研究(E-mail:lianling51@163.com)

    通讯作者:

    谢华安(1941-), 男, 研究员, 主要从事杂交水稻育种研究(E-mail:huaanxie@163.com)

    张建福(1971-), 男, 博士, 研究员, 主要从事水稻分子设计育种研究(E-mail:jianfzhang@163.com)

  • 中图分类号: S511

Expression of Antioxidant Enzyme Genes in Rice under PEG-simulated Drought-stress

  • 摘要:
      目的  干旱是影响水稻生产的重要环境因素之一,在干旱条件下水稻植株体内会发生一系列的抗逆反应,其中参与防御反应的关键酶基因表达会发生明显的变化。因此,本研究拟分析干旱胁迫处理后抗氧化酶类基因的表达变化,为进一步研究水稻抗旱机制提供理论参考。
      方法  采用质量体积比为0(CK)、18%、20%、22%、24%、26%的聚乙二醇(PEG6000)对三叶一心期的籼稻航2号植株进行干旱胁迫处理,筛选适合处理籼稻航2号的PEG6000质量体积比;进一步采用PEG6000对航2号植株进行干旱胁迫处理,分别于处理0、2、4、8、12、24、48、72 h取样;并用SYBR Green I荧光定量PCR(qRT-PCR)分析PEG6000处理不同时间段后植株中抗氧化酶类基因表达,包括过氧化氢酶(CATACATBCATC)、过氧化物酶(POX5.1、POX1)、超氧化物歧化酶(plastidic Cu/Zn-SOD,cytosolic Cu/Zn-SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)基因的表达变化。
      结果  根据表型观察和植株存活率,筛选出籼稻航2号对PEG6000的耐受临界质量体积比为22%;qRT-PCR结果表明PEG6000胁迫处理后9个基因的表达均出现上调,大部分基因表达都呈先上调后下调的趋势,且一般PEG处理4 h之后基因表达出现较明显上调,说明这些基因均不同程度地参与了PEG胁迫反应;其中,过氧化氢酶A基因(CATA)表达变化最显著,处理8 h表达量上调至处理0 h的28倍。
      结论  PEG6000胁迫处理后主要的抗氧化酶类基因表达发生了明显的变化。
    Abstract:
      Objective  Expression of antioxidant enzyme genes of rice in response to drought-stress was studied.
      Method  Simulated drought conditions using PEG6000 on Indica rice Hang 2 were used for the experimentation. The plants at 3-leaf stage were initially treated with 0% (CK), 18%, 20%, 22%, 24% or 26% PEG6000 to determine the appropriate concentration for the subsequent test. Under the selected PEG6000 treatment level, plant samples were collected at 0, 2, 4, 8, 12, 24, 48 and 72 h for analysis. The expressions of antioxidant enzyme genes (i.e., CATA, CATB and CATC), peroxidase genes (i.e., POX5.1 and POX1), superoxide dismutase genes (i.e., plastidic Cu/Zn-SOD and cytosolic Cu/Zn-SOD), ascorbate peroxidase gene (i.e., APX), and glutathione reductase gene (i.e., GR) of the rice plants were determined by qRT-PCR.
      Result  Based on the phenotype and survival rate of the rice plants in the preliminary test, 22% PEG6000 was chosen for the simulation experiment. The results of qRT-PCR showed that all 9 genes were upregulated initially under the treatment but downregulated afterward. Most of the genes significantly upregulated 4 h after treatment showing a response of the genes to the stress. In particular, CATA exhibited a most significant change at 8 h which was 28 times of that at 0 h.
      Conclusion  The expression of antioxidant enzyme genes significantly reacted to the PEG6000 treatment.
  • 图  1   不同浓度PEG6000处理航2号植株情况

    注:每幅图从左到右营养液中PEG6000的质量体积比分别为0%(CK)、18%、20%、22%、24%、26%;处理时间A: 0 h,B: 3 h,C: 24 h,D: 48 h,E: 72 h,F: 96 h,G: 7 d,H:恢复生长8 d。

    Figure  1.   Hang 2 plants treated by varying concentrations of PEG6000

    Note: PEG600 concentrations in photos from left to right are 0% (CK), 18%, 20%, 22%, 24% and 26%; treatment time A=0 h, B=3 h, C=24 h, D=48 h, E=72 h, F=96 h, G=7 d, H=recovery after 8 d.

    图  2   植物总RNA的提取

    Figure  2.   Extraction of total RNA from rice plants

    图  3   Actin150和eIf4a的RT-PCR扩增

    Figure  3.   RT-PCR amplifications of Actin150 and eIf4a

    图  4   抗氧化酶基因的RT-PCR扩增

    注:pla SODplastidic Cu/Zn-SOD; cyt SODcytosolic Cu/Zn-SOD

    Figure  4.   RT-PCR amplifications of antioxidant enzyme genes

    Note: pla SOD:plastidic Cu/Zn-SOD; cyt SOD:cytosolic Cu/Zn-SOD

    图  5   qRT-PCR分析抗氧化酶基因的表达情况

    注:A为过氧化氢酶A基因表达量,B为过氧化氢酶B基因表达量,C为过氧化氢酶C基因表达量,D为过氧化物酶5基因表达量,E为过氧化物酶1基因表达量,F为质体铜/锌超氧化物歧化酶基因表达量,G为细胞质铜/锌超氧化物歧化酶基因表达量,H为抗坏血酸过氧化物酶基因的表达量,I为谷胱甘肽还原酶基因的表达量。

    Figure  5.   Expression analysis on antioxidant enzyme genes by qRT-PCR

    Note:A:The relative expression of CATA, B:The relative expression of CATB, C:The relative expression of CATC, D:The relative expression of POX 5.1, E:The relative expression of POX 1, F:The relative expression of plastidic Cu/Zn-SOD, G:The relative expression of cytosolic Cu/Zn-SOD, H:The relative expression of APX, I:The relative expression of GR.

    表  1   抗氧化酶基因引物序列

    Table  1   Primers of antioxidant enzyme genes

    基因名称
    Gene names
    上游引物F/下游引物R(5′-3′)
    Upstream primer F/Downstream primer R
    产物大小
    Product/bp
    过氧化氢酶A基因CATAF:GAGGAGGCAGAAGGCGACGATA
    R:CCCCCAACGACTCATCACACTG
    194
    过氧化氢酶B基因CATBF:GACGGATGGTCCTGAACAAAAACA
    R:CAAGACGGTGCCTTTGGGTATCA
    159
    过氧化氢酶C基因CATCF:CTTCCCCGTCTTCTTCATCCGC
    R:TCGTCGAAGAGGAAGGTGAACAT
    159
    过氧化物酶5基因POX5.1F:ACTTGGTTGCTCTCTCAGGTGCG
    R:GGTGGGCGTCGTCGTGTC
    182
    过氧化物酶1基因POX1F:ACTCGTGCCCCAAGGCGAAGGA
    R:GCTGTTGTCCAGGAGCACAGACG
    149
    质体铜/锌超氧化物歧化酶基因plastidic Cu/Zn-SODF:CCACCTCCACGAGTTTGGCGAT
    R:CTCAGCTACACCTTCAGCATTGGC
    154
    细胞质铜/锌超氧化物歧化酶基因cytosolic Cu/Zn-SODF:GGAAATGTCACCGCTGGAGAAG
    R:AACGACGGCTCTGCCAATGATT
    102
    抗坏血酸过氧化物酶基因APXF:CTGCCGTCCCCTTCCACCCA
    R:CCGCCAGAGAGGGCAACAAT
    154
    谷胱甘肽还原酶基因GRF:TTCCTCCAAAGCCTGCTGTTCACT
    R:GCCAGCCAACTAAACCTGATTACA
    101
    内参基因,真核起始因子eIf4aF:TTGTGCTGGATGAAGCTGATG
    R:GGAAGGAGCTGGAAGATATCATAGA
    76
    内参基因,肌动蛋白基因Actin150F:AGTGTCTGGATTGGAGGAT
    R:TCTTGGCTTAGCATTCTTG
    150
    下载: 导出CSV

    表  2   不同质量体积比的PEG6000处理后植株存活率

    Table  2   Plant survival rates after PEG6000 treatments in different mass and volume ratios

    PEG质量体积比
    Mass and volume
    ratio of PEG/%
    植株数量
    Plant
    number
    存活的
    植株数量
    Survival plant
    存活率
    Survival
    rate/%
    02525100
    182525100
    202525100
    2225312
    242500
    262500
    下载: 导出CSV
  • [1] 匡勇, 夏石头.干旱对水稻生长发育的影响及提高水稻抗旱性的途径[J].北京农业, 2007(36):8-14. DOI: 10.3969/j.issn.1000-6966.2007.36.003

    KUANG Y, XIA S T. Effects of drought on growth and development and approachs to promoting droughtresistance of rice[J].Beijing Agriculture, 2007(36):8-14.(in Chinese) DOI: 10.3969/j.issn.1000-6966.2007.36.003

    [2]

    SALEHI S P, IZADPANAH M, FALAH H L, et al.Comparison of the effects of drought stress on pigments, peroxidase, osmotic adjustment and antioxidant enzymes in different accessions of anthemistinctoria and tripleurospermum servanes of natural resources gene bank of iran[J].En Journals, 2015:126-139.

    [3] 蒋明义, 郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯, 1996, 32(2):144-150. http://d.old.wanfangdata.com.cn/Periodical/wjsjxx201808024

    JIANG M Y, GUO S C. Oxidative stress and antioxidation induced by water deficiency in plants[J].Plant Physiology Communications, 1996, 32(2):144-150.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wjsjxx201808024

    [4]

    BOWLER C, MONTAGU M V, INZE D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43(1):83-116. DOI: 10.1146/annurev.pp.43.060192.000503

    [5]

    APEL K, HIRT H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1):373-399. DOI: 10.1146/annurev.arplant.55.031903.141701

    [6]

    NOCTOR G, FOYER C H. Ascorbate and glutathione:keeping active oxygen under control[J].Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1):249-279. DOI: 10.1146/annurev.arplant.49.1.249

    [7]

    AMUDHA J, BALASUBRAMANI G. Recent molecular advances to combat abiotic stresstolerance in crop plants[J]. Biotechnol Mol Biol Rev, 2011(6):31-58.

    [8]

    MORITA S, TASAKA M, FUJISAWA H, et al. A cDNA clone encoding a rice catalase isozyme[J]. Plant Physiol, 1994, 105(3):1015-1016. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_160753

    [9]

    HIGO K, HIGO H. Cloning and characterization of the rice CatA catalase gene, a homologue of the maize Cat3 gene[J]. Plant Molecular Biology, 1996, 30(3):505-521. DOI: 10.1007/BF00049328

    [10]

    AGRAWAL G K, RAKWAL R, JWA N S. Stress signaling molecules involved in defense and protein phosphatase 2A inhibitorsmodulate OsCATC expression in rice (Oryza sativa) seedlings[J].Journal of Plant Physiology, 2001, 158(10):1349-1355. DOI: 10.1078/0176-1617-00607

    [11]

    KIM S H, CHOI H S, CHO Y C, et al. Cold-Responsive Regulation of a Flower-Preferential Class Ⅲ Peroxidase Gene, OsPOX1, in Rice (Oryzasativa L.)[J]. Journal of Plant Biology, 2012, 55(2):123-131. DOI: 10.1007/s12374-011-9194-3

    [12]

    SASAKI K, IWAI T, HIRAGA S, et al. Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus[J]. Plant & Cell Physiology, 2004, 45(10):1442-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002825548

    [13]

    ALSCHER R G, ERTURK N, HEATH L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany, 2002, 53(372):1331-1341. DOI: 10.1093/jexbot/53.372.1331

    [14]

    PRAKASH S R, SAMANT A, PRASHAR V, et al.Biochemical and functional characterization of OsCSD3, a novel CuZn superoxidedismutase from rice[J].Biochemical Journal, 2018, 475(19):3105-3121. DOI: 10.1042/BCJ20180516

    [15]

    TEIXEIRA F K, MENEZES-BENAVENTE L, GALVÃO V C, et al.Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments[J].Planta, 2006, 224(2):300-314. DOI: 10.1007/s00425-005-0214-8

    [16]

    NOCTOR G, FOYER C H. Ascorbate and glutathione:keepingactive oxygen under control[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1998, 49(1):249-279. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210504163/

    [17]

    BASHIR K, NAGASAKA S, ITAI R N, et al. Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants[J]. Plant Molecular Biology, 2007, 65(3):277-284. DOI: 10.1007/s11103-007-9216-1

    [18]

    ROUHIER N I, COUTURIER J, JACQUOT J P. Genome-wide analysis of plant glutaredoxin systems[J]. Journal of Experimental Botany, 2006, 57(8):1685-1696. DOI: 10.1093/jxb/erl001

    [19] 杨春杰, 张学昆, 邹崇顺, 等.PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响[J].中国油料作物学报, 2007, 29(4):425-430. DOI: 10.3321/j.issn:1007-9084.2007.04.013

    YANG C J, ZHANG X K, ZOU C S, et al. Effects of drought simulated by PEG-6000 on germination and seedling growth of rapeseed(Brassica napus L.)[J].Chinese Journal of Oil Crop Sciences, 2007, 29(4):425-430.(in Chinese) DOI: 10.3321/j.issn:1007-9084.2007.04.013

    [20] 李雪妹, 刘畅, 刘倩雯, 等.PEG预处理对水分胁迫下水稻叶片抗氧化酶同工酶及其表达的影响[J].作物杂志, 2016(6):107-111. http://d.old.wanfangdata.com.cn/Periodical/zwzz201606018

    LI X M, LIU C, LIU Q W, et al. The effect of PEG pretreatment on expression of antioxidant isozymes of rice leaves under water stress[J]. Crops, 2016(6):107-111.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zwzz201606018

    [21] 陈美静, 刘倚雯, 张宝龙, 等.不同预处理对P EG胁迫下水稻幼苗抗氧化系统的影响[J], 江苏农业科学, 2015, 43(8):76-78. http://d.wanfangdata.com.cn/Periodical/jsnykx201508025

    CHEN M J, LIU Y W, ZHANG B L, et al. The effect of different pretreatment on rice antioxidant system under PEG stress[J]. Jiangsu Agricultural Sciences, 2015, 43(8):76-78.(in Chinese) http://d.wanfangdata.com.cn/Periodical/jsnykx201508025

    [22] 戴高兴, 彭克勤, 萧浪涛, 等.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响[J].中国水稻科学, 2006, 20(5):557-559. DOI: 10.3321/j.issn:1001-7216.2006.05.018

    DAI G X, PENG K Q, XIAO L T, et al. Effect of drought stress simulated by peg on m alonaldehyde, proline contents andsuperoxide dismutase activity in low potassium tolerant rice seedlings[J]. Chinese J Rice Sci, 2006, 20(5):557-559.(in Chinese) DOI: 10.3321/j.issn:1001-7216.2006.05.018

    [23] 张小娟, 宋涛, 甄晓辉, 等.模拟干旱胁迫对转C4双基因水稻幼苗光合功能及部分抗氧化酶活性的影响[J].江苏农业学报, 2014, 30(4):709-715. http://d.old.wanfangdata.com.cn/Periodical/jsnyxb201404003

    ZHANG X J, SONG T, ZHEN X H, et al. Impact of simulated drought stress on photosynthesis and activities of someantioxidant enzymes of transgenic rice seedlings harboring maize PEPCand PPDK genes[J]. Jiangsu Journal of Agricultural Sciences, 2014, 30(40):709-715.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsnyxb201404003

图(5)  /  表(2)
计量
  • 文章访问数:  2017
  • HTML全文浏览量:  308
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-03
  • 修回日期:  2019-02-25
  • 刊出日期:  2019-03-27

目录

    /

    返回文章
    返回