• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

避雨栽培对梨树根际土壤细菌群落的影响

陈小明, 曾少敏, 黄新忠

陈小明,曾少敏,黄新忠. 避雨栽培对梨树根际土壤细菌群落的影响 [J]. 福建农业学报,2020,35(12):1376−1384. DOI: 10.19303/j.issn.1008-0384.2020.12.011
引用本文: 陈小明,曾少敏,黄新忠. 避雨栽培对梨树根际土壤细菌群落的影响 [J]. 福建农业学报,2020,35(12):1376−1384. DOI: 10.19303/j.issn.1008-0384.2020.12.011
CHEN X M, ZENG S M, HUANG X Z. Effects of Rain-shelter cultivation on the rhizosphere bacterial communities of pear trees [J]. Fujian Journal of Agricultural Sciences,2020,35(12):1376−1384. DOI: 10.19303/j.issn.1008-0384.2020.12.011
Citation: CHEN X M, ZENG S M, HUANG X Z. Effects of Rain-shelter cultivation on the rhizosphere bacterial communities of pear trees [J]. Fujian Journal of Agricultural Sciences,2020,35(12):1376−1384. DOI: 10.19303/j.issn.1008-0384.2020.12.011

避雨栽培对梨树根际土壤细菌群落的影响

基金项目: 福建省公益类科研院所专项(2019R1028-2);福建省农业科学院科研计划项目(A2017-18);福建省农业科学院果树创新团队基金项目(STIT2017-1-4);国家梨产业技术体系基金项目(CARS-28-34);福建省科技计划公益类专项(2020R10280015)
详细信息
    作者简介:

    陈小明(1978−),男,助理研究员,主要从事落叶果树育种、生理生化及栽培技术研究(E-mail:86806331@qq.com

    通讯作者:

    黄新忠(1962−),男,研究员,主要从事落叶果树育种及栽培研究(E-mail:hxz0117@163.com

  • 中图分类号: S 661.2

Effects of Rain-shelter cultivation on the rhizosphere bacterial communities of pear trees

  • 摘要:
      目的  研究避雨栽培对梨树根际土壤细菌群落的影响,为完善避雨栽培土壤管理措施提供理论依据。
      方法  以同一梨园进行避雨和露地处理的梨树根际土壤为研究对象,测定和分析不同栽培方式对梨树根际微生物群落的影响以及其与土壤化学性质和梨果实品质之间的关系。
      结果  梨树果实品质测定结果表明,相对于露地栽培,避雨栽培可以显著提高梨果实的蔗糖、还原糖含量,分别提高了1.83倍和1.08倍,但维生素C和总酸含量显著降低,分别减少了1.23倍和1.20倍。糖酸比显著增加,果实品质更好。梨园土壤化学性质结果表明,避雨处理的土壤速效磷、速效钾、有机质含量及含水量显著低于露地处理,全氮显著高于露地处理。根际土壤微生物测序分析结果表明,避雨处理的梨树根际土壤在门水平的细菌群落主要以变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和放线菌门(Actinobacteria)为主,露地处理的梨树根际土壤在门水平的细菌群落主要以不可培养细菌(uncultured bacterium)、不可培养的森林土壤细菌(uncultured forest soil bacterium)和不可培养的变形菌(uncultured proteobacterium)为主;避雨处理显著增加根际微生物多样性和丰富度。相关性分析结果表明,避雨栽培根际微生物属多样性与全氮、速效氮含量和pH值正相关,但与全钾、全磷、速效钾、速效磷、有机质和水分含量呈负相关,而与果实蔗糖和还原糖含量正相关。
      结论  避雨栽培对微生物多样性和丰富度有促进作用,增强梨树根际微生态环境的稳定性,有利于梨树生长和果实产量和品质,但不利于土壤的物质循环。适当的露地栽培有利于梨园的土壤物质循环,提高梨园生产的可持续性。
    Abstract:
      Objective  To provide a theoretical basis for improving soil management measures of rain shelter treatment, the effects of rain shelter treatment on the bacterial community of pear tree rhizosphere soil were studied.
      Method  The fruit qualities, and soil chemical properties and taxonomic composition of bacteria communities were determined under rain-shelter treatment and open field treatment in the same pear orchard. The correlation between bacterial communities in the rhizosphere of pear trees and the physio-chemical and fruit quality indicators under different treatments were analyzed.
      Result   The results of pear fruit quality showed that the content of sucrose and reducing sugar under rain-shelter treatment were increased by 1.83 times and 1.08 times, respectively, as much that under open field treatment. The content of vitamin C and total acid under rain-shelter treatment were significantly decreased by 1.23 times and 1.20 times, respectively, as much that under open field treatment. Compared with open field treatment, the ratio of sugar to acid in rain-sheltered treatment increased significantly and fruit quality was better. The results of soil chemical properties of pear orchard showed that the contents of available phosphorus, available potassium, organic matter and water content in the rain shelter treatment were significantly lower than those in the open field treatment, while the total nitrogen was significantly higher than that in the open field treatment. Sequencing analysis of rhizosphere soil microorganisms showed that the main bacterial communities in the rhizosphere soil of pear trees under rain shelter treatment were Proteobacteria, Acidobacteria, Chloroflexi and Actinobacteria at the phylum level. Uncultured bacterium, uncultured forest soil bacterium and uncultured proteobacterium were the main bacterial communities in the rhizosphere of pear trees in the open field. Rain-shelter treatment significantly increased rhizosphere microbial diversity and richness. Correlation analysis showed that the rhizosphere microbial diversity was positively correlated with total nitrogen, available nitrogen and pH value, but was negatively correlated with total potassium, total phosphorus, available potassium, available phosphorus, organic matter and water content, and was positively correlated with sucrose and reducing sugar content.
      Conclusion  Rain-shelter cultivation can promote the diversity and richness of microorganisms, enhance the stability of the rhizosphere micro-ecological environment. Rain-shelter treatment is conducive to the growth of pear trees and the formation of fruit yield and quality, but it was disadvantageous to soil material circulation. Proper open shelter cultivation could make use of soil material circulation in pear orchard and improve the sustainability of pear orchard production.
  • 【研究意义】避雨栽培是目前常用的一种梨树种植方式,具有减少花期雨季落花、提高坐果率、缩短果实成熟时间、提高果实品质和减少病虫害等优势[1-3],而避雨栽培改变果园微域环境,特别是土壤环境,因而研究其对根际土壤细菌群落的影响,对完善避雨栽培下土壤管理措施具有重要意义。【前人研究进展】近些年来随着梨树种植的增加,梨树病虫害和恶劣的自然环境对梨品质和产量的相关报道越来越多[4-6]。为减少病虫害以及自然灾害对梨品质和产量的影响,避雨栽培模式在梨树种植的应用越来越多。避雨栽培下梨锈病和梨黑斑病的发病指数要明显小于露天栽培[7],且改善梨的外观,果实可溶性固形物和可溶性总糖含量都分别提高,可滴定酸含量和果实硬度都显著下降[8]。避雨栽培对梨品质和产量的研究相对较多,但避雨处理对梨树土壤的影响等研究相对较少,陈小明等[9]研究发现避雨栽培会减小梨树根际土壤酶活性。植物根际有一个复杂的微生物群落,它直接影响着植物的生长、健康和发育,根际微生物的群落结构受植物根际分泌物和土壤环境的影响[10-11]。【本研究切入点】避雨措施会影响梨树的生长,这势必会改变梨树的根际土壤环境,但对于避雨栽培下梨树根际土壤微生物的影响还未见报道。【拟解决的关键问题】本研究以同一梨园中避雨栽培和露地栽培的梨树为研究对象,测定梨果实品质、土壤理化性质和土壤微生物多样性,比较不同模式下梨树根际土壤根际微生物的变化与果实品质和土壤化学性质变化的相关性。为制定不同栽培模式下定向调控土壤微环境、提高水果品质和保护土壤环境等措施提供研究基础。

    试验果园为福建省建宁县溪口镇枧头村67 hm2(约40000棵)30年生翠冠梨山地果园(东经116°48′34″,北纬26°50′38″),其中11.3 hm2(约6800棵)从2013年开始采用盖棚避雨栽培(TYGH),其余为无盖棚露地栽培(TY)。

    2018年7月14日进行梨的果实取样,取样方法为,按照5点取样法,在避雨栽培区和露地栽培区各随机选取5棵梨树。在每棵梨树的上层和下层的不同方位按东、西、南、北4个方位上,代表性的采4个果实,每棵树共采8个果实,每个处理共采40个。样品放入冰盒保存,当天带回实验室进行果实品质分析。

    将带回实验室的果实,每个处理随机选择10个果,去皮后取中部果肉切碎混匀,重复4次。果实品质分析的测定参照中华人民共和国食品安全国家标准测试。测试方法如下:蔗糖含量测定采用《食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》(GB/T 5009.8—2016)[12],还原糖含量测定采用《食品中还原糖的测定》(GB/T 5009.7—2016)[13],抗坏血酸含量测定采用《食品中抗坏血酸的测定》(GB/T 5009.86—2016)[14],总酸含量测定采用《食品中总酸的测定》(GBT12456—2008)[15]

    随机选取避雨栽培的5株健壮梨树,同时在露地栽培区也随机选取5株健壮梨树,在距离树干1 m处,用铁铲挖10~20 cm深达梨树根,将树根取出,将根表面土壤刷下,然后把所有根系上刷下来的土壤剔除树根,充分混匀,每棵取500 g左右,共计2500 g。带回实验室保存于冰箱(−4 ℃)备用。

    土壤样本取部分进行自然风干,碾碎,过2 mm筛,按四分法取样,参照《土壤农业化学分析方法》方法[16],测定土壤的pH值和全氮、全磷、全钾、速效氮、速效磷、速效钾以及有机质含量和含水量,所有指标测定均重复3次。具体如下:

    速效氮含量包括测定的铵态氮和硝态氮含量的总和,铵态氮含量采用奈氏试剂法进行测定;硝态氮含量采用紫外分光光度法进行测定。全氮测定时先采用重铬酸钾硫酸消解法进行消解,再采用凯氏定氮法进行测定。

    用NaHCO3浸提土壤样品后采用钼锑抗比色法进行速效磷含量测定。利用NH4OAc浸提土壤,然后采用火焰光度法进行速效钾含量测定。全磷和全钾测定时先采用H2SO4-HClO4法进行消煮分解,再采用测定速效磷和速效钾的方法进行测定。

    采用重铬酸钾-硫酸亚铁滴定法进行土壤有机质含量测定。

    pH值测定简述为:取10 g土于250 mL烧杯中,加入25 mL无二氧化碳水,充分搅拌后平衡30 min。取上层清水,将校正好的pH计电极放入测定pH。

    含水量测定简述为:先称取铝盒重量a,记录后加入新鲜土壤,记录铝盒和土壤的总重量m,放入烘箱100 ℃,24 h,后取出放在干燥器中冷却,称量铝盒和土壤的总重量b。土壤含水率=[(b−a)/(m−a)]×100%。

    土壤总DNA的提取采用MoBio PowerSoil DNA isolation kit(Carlsbad, CA, USA)。利用1%琼脂糖凝胶电泳检测和分光光度法对提取到的DNA样品进行质量检测。将检测合格的样品于−20 ℃保存备用。采用338F(5′-ACTCCTACGGGAGGCAGCAG-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)引物对细菌16S rRNA基因的V3-V4高变区进行扩增[17]。PCR反应体系为25μL,包括12.5 μL 2× Taq PCR MasterMix,3 μL BSA(2 ng·μL-1), 2 Primer(5 μM), 2 μL模板DNA,和5.5 μL ddH2O。反应参数:95 ℃预变性5 min;95 ℃变性45 s,55 ℃退火50 s,72 ℃延伸45 s,32个循环;72 ℃延伸10 min[18]。每个样品重复3次,将同一样本的PCR产物混合后用2%琼脂糖凝胶电泳检测,使用QIAquick Gel Extraction Kit(QIAGEN, Germany)凝胶回收试剂盒切胶回收PCR产物,Tris_HCl洗脱;利用RT-PCR进行定量,PCR产物送北京奥维森基因公司进行测序。

    通过Illumina MiSeq平台进行Paired-end测序,下机数据经过QIIME(v1.8.0)软件过滤、拼接、去除嵌合体,去除打分低(≤20),碱基模糊,引物错配或测序长度小于150 bp的序列[19, 20]。根据barcodes规类各处理组序列信息聚类为用于物种分类的OUT(Operational Taxonomic Units),OTU相似性设置为97%(Edgar,2013)[21]。对比silva数据库,得到每个OTU对应的物种分类信息[22]。再利用Mothur软件(version 1.31.2)进行α多样分析(包括Shannon和Chao1等2个指数)[23]。基于Weighted Unifrace距离,使用R(v3.1.1)软件包的pheatmap进行聚类分析[24]。经过UniFrac算法利用系统进化的信息来比较样品间物种群落差异,并进行Beta多样性(Beta diversity)分析[25]。利用LEfSe分析进行不同处理根际细菌在丰度上有显著差异的细菌[26]

    使用DPS软件分析数据,采用LSD法(最小显著差法)进行显著性差异分析,IBM SPSS Statistics 19.0进行数据的相关性分析,Umetrics SIMCA 13.0软件进行数据的主成分分析,并采用OriginLab OriginPro 2018进行绘图。

    梨果实品质测定结果表明,梨树避雨处理的果实蔗糖、还原糖含量要显著高于露地处理的,分别提高1.83倍和1.08倍,同时维生素C和总酸含量要显著低于露地处理的,分别减少了1.23倍和1.20倍(表1)。避雨处理果实的糖酸比要比露地处理的高19.45。可见避雨处理有利于提高果实糖含量和降低酸含量,提高果实的糖酸比,从而有可能改善风味品质。

    表  1  不同栽培模式下梨果实品质
    Table  1.  The pear fruit qualities under different cultivation modes
    样品
    Samples
    蔗糖
    Sucrose/g·hg−1
    还原糖
    Reducing sugar/g·hg−1
    维生素C
    Vitamin C/g·hg−1
    总酸
    Total acid/g·kg−1
    糖酸比
    Ratio of sugar to acid
    TYGH1.28±0.01 a7.17±0.01 a6.18±0.05 b1.20±0.01 b70.42
    TY0.70±0.03 b6.64±0.12 b6.97±0.07 a1.44±0.01 a50.97
    注:TYGH--避雨栽培, TY--露地栽培(图1~3同);小写字母表示P<0.05水平上的显著性(表2~3同)。
    Note: “TYGH” represent rain-shelter cultivation, “TY” represent open field cultivation(The same as Fig.1-3). The lowercase represent significant difference at P<0.05 levels(The same as table 2-3.
    下载: 导出CSV 
    | 显示表格

    土壤化学性质测定结果表明,在避雨处理的土壤速效磷、速效钾、有机质含量和含水量都要显著低于露地处理,全钾、速效氮含量和pH值都与露地处理没有显著差异,全氮含量显著高于露地处理(表2)。可见露地处理利于土壤速效磷、钾含量、有机质和含水量的提高,可能对果实的产量有重要作用。

    表  2  不同栽培模式下梨树根际土壤化学性质
    Table  2.  Chemical properties of soils from different treatment plots
    指标 IndexTYGHTY
    全钾 Total potassium/(g·kg−1 5.75±0.14 a 5.88±0.20 a
    全氮 Total nitrogen/(g·kg−1 7.73±0.37 a 4.20±0.15 b
    全磷 Total phosphorus/(g·kg−1 0.066±0.004 a 0.090±0.015 a
    速效氮 Available nitrogen/(mg·kg−1 21.47±2.13 a 18.96±1.47 a
    速效磷 Available phosphorus/(mg·kg−1 87.74±7.11 b 165.38±17.66 a
    速效钾 Available potassium/(mg·kg−1 165.65±2.60 b 229.74±5.54 a
    有机质 Organic matter/% 7.64±1.68 b 16.16±0.38 a
    pH 5.05±0.03 a 4.92±0.11 a
    含水量 Water content/% 14.33±0.88 b 20.33±1.76 a
    下载: 导出CSV 
    | 显示表格

    对梨树根际土壤微生物测序结果表明,避雨处理的RT(Raw_tags)数量和CT(Clean_tags)要显著低于露地处理,但最终的OUT数目要显著高于露地处理(表3)。说明避雨处理的梨树根际土壤微生物数量更多。

    表  3  梨树根际土壤微生物序列拼接结果和OUT数目统计
    Table  3.  Sequence alignment and OUT number statistics of pear rhizosphere soil microorganism
    样品 SamplesRTCTOTUs
    TYGH40774±3196 b40441±3164 b2009±28 a
    TY44728±2854 a44328±2845 a1830±20 b
    注:RT(Raw_tags):经过过滤低质量的fastq数据拼接得到的结果,CT(Clean_tags):进一步对拼接结果去除嵌合体、短序列后得到的结果, OTUs为样本最终得到的平均OTU数目。
    Note: RT is the result of merging the filtered low-quality fastq data, CT is the result of further removing chimera and short sequences from the merging result, and OTUs is the average number of OTUs of the samples.
    下载: 导出CSV 
    | 显示表格

    避雨处理的梨树根际土壤在门水平的细菌群落主要以变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和放线菌门(Actinobacteria)为主(图1-A);在属水平的细菌群落主要以不可培养细菌(uncultured bacterium)、不可培养的森林土壤细菌(uncultured forest soil bacterium)和不可培养的变形菌(uncultured proteobacterium)为主(图1-B)。避雨处理的梨树根际土壤细菌群落的平均Shannon指数(香农指数)和Chao1都要大于露地处理的,避雨处理显著提高土壤细菌的多样性(P<0.05)。可见,避雨处理可以提高梨树根际土壤细菌群落的丰富度和多样性(图2)。

    图  1  不同栽培模式下梨树根际土壤细菌群落的门级(A)和属级(B)分类组成
    Figure  1.  Taxonomic composition of bacterial communities in the rhizosphere soil of pear trees at the phylum level and genus level under different cultivation modes
    图  2  不同栽培模式下梨树根际土壤细菌群落的α多样性(香农指数A)和丰富度(B)
    Figure  2.  The alpha diversity(Shannon index, A)and abundance(Chao1, B)of rhizosphere soil bacteria of pear trees under different cultivation modes.

    PCA分析结果表明,主成分1可以很好地区分避雨处理和露地处理的梨树根际土壤细菌群落,主成分1解释变量方差的74.31%(图3)。

    图  3  不同栽培模式下梨树根际土壤细菌群落主成分分析
    Figure  3.  rincipal component analysis of bacterial community in pear rhizosphere soil under different cultivation patterns

    图4可以看出,避雨处理会使梨根际微生物产生差异。避雨处理的梨树根际微生物GemmatimonadalesChloroflexiNitrosomonadalesThermoleophiliaSphingomonadaceaeStreptomycesCandidatus KoribacterHyphomicrobiaceaeMicrococcalesMicromonosporalesAcidimicrobialesCorynebacteriumAnaerolinea的数量要显著大于露地处理。露地处理梨树根际微生物SolibacteralesActinospicaceaeCorynebacteriaceaeAcidothemceaeFrankialesChitinophagaceaeSphingobacterialesThermogemmatisporalesRoseiarcaceaeAcetobacteraceaeRhodospirillalesAlcaligenaceaeBurkholderiaceaePolyangiaceaeMyxococcalesDeltaproteobacteriaXanthomonadaceae的数量要显著大于避雨处理。

    图  4  不同栽培模式下梨树根际土壤细菌群落丰度变化
    Figure  4.  Bacterial taxa with different abundance changes in rhizosphere soil of pear trees under different cultivation modes

    梨树不同管理处理的根际土壤微生物在属水平与土壤理化性质相关性结果表明(图5-A),主成分1解释了变量方差的87.41%,主成分2解释了变量方差的10.26%,梨树根际属水平微生物差异相关系数绝对值最高的是土壤速效钾含量。与露地处理根际属水平微生物差异相关系数最高的是土壤速效钾含量,而避雨处理梨树根际属水平微生物差异相关系数绝对值最高的则是土壤总氮含量。说明避雨处理对微生物属水平影响最大的是土壤氮素水平。果实的蔗糖含量与避雨处理梨树根际属水平微生物差异相关系数最高,果实的总酸含量与露地处理梨树根际属水平微生物差异相关系数最高(图5-B)。说明避雨处理可能通过影响土壤微生物来影响果实品质。

    图  5  不同栽培模式下梨树根际土壤细菌群落的属级分类下与土壤理化性质(A)和梨品质(B)的相关性分析
    注:TolN—土壤总氮,TolP—土壤总磷,TolK—土壤总钾,AvaN—速效氮,AvaP—速效磷,AvaK—速效钾,OC—有机质含量,WC—含水量,pH—pH值,Sug—蔗糖含量,还原糖含量,TolA—总酸,Vc—维生素C。
    Figure  5.  Correlation analysis between bacterial communities in the rhizosphere soil of pear trees at the genus level and the soil physio-chemical indexes(A)and fruit qualities under different cultivation modes
    Note: TolN—Soil total nitrogen, TolP—Soil total phosphorus, TolK—Soil total potassium, AvaN—Rapid available nitrogen, AvaP—Rapid available phosphorus, AvaK—Rapid available potassium, OC—Organic content, WC—Water content, pH—Acidity or alkalinity gradients, Sug—Sucrose content, RS—Reducing sugar content, TolA—Total acid, Vc— Vitamin C.

    避雨设施栽培的应用是减少作物病虫害、提高作物产量和品质的一个重要措施[3, 27-29]。本研究发现山地避雨处理会提高梨的甜度,同时减少梨的总酸含量,该结果与前人的研究结果一致[3, 8, 30-32];陈小明等[9]对田地避雨栽培研究表明,田地避雨栽培并没有提高梨果实总的含糖量,但酸性物质含量有所增加,这与本研究结果不同,可能是由于田地与山地立地条件不同,土壤水肥养分积累及消耗能力不同。相对于田地,由于山地早晚温差大,紫外线强,梨树生长过程中应激响应大,梨树吸收矿质营养元素的效率更低,导致果实的酸度大。同时,相关性分析发现,避雨处理土壤微生物属水平上的变化趋势与梨的蔗糖含量和还原糖含量相关性最大,通过定向调控土壤微生物种群的变化,提高梨的品质。

    李艳丽等[33]利用土壤覆盖管理方式研究不同土壤管理方式差异对梨园土壤微生物的影响,发现盖膜处理使土壤中的速效养分减少,而本研究中避雨栽培降低了土壤中速效磷、速效钾、有机质含量和含水率,两者研究结果一致。这可能是由于避雨处理梨树生长的要比露地处理的好,需要的土壤速效营养物质更多,最终导致果实品质更好。梨树生长需要土壤提供有效的养分和水分,在同等情况下,避雨处理防止了雨水进入土壤,减少了土壤含水率,就可能减少了土壤中可溶性养分的溶解与释放。本研究中相关性分析发现避雨处理土壤梨根际微生物的变化和土壤总氮、速效氮和pH显著正相关,而氮素是植物生长主要的营养元素。因此,可以通过调控梨园的氮素水平来调控土壤根际微生物。植物可以改变根际土壤微生物,根际土壤微生物也可以显著影响植物的生长、发育和对土源性病原体的抗性[34]。本研究发现避雨处理可以增加梨树根际土壤微生物的α多样性和丰富度,而微生物多样性和丰富度的增加可以提高根际微生态的稳定性和抗性。相关研究表明利用盖膜方式管理梨园可以增加梨树土壤微生物数量[33, 35],这与本研究结果一致。虽然,避雨处理虽然降低了土壤中K、P等有效养分和水分含量,但植物生长得更好,分泌更多的根系分泌物可以为根际微生物提供更多的营养物质,这可能是导致避雨处理梨树根际土壤微生物的多样性和丰富度要高于露地处理的原因。

    生产实践结果证明避雨栽培对于梨的产量和品质都有提高作用。本研究表明,在山地种植的梨树,避雨栽培可以提高增加土壤微生物多样性和丰富度,增强梨树根际微生态系统的稳定性,增加梨树的抗逆性,从而提升梨树果实的品质。但是长期的盖棚对于土壤物质循环不利,不利于维持作物的长期生长需求。由于梨树避雨栽培更有利于植株生长,根系分泌物也较多的,这导致了土壤微生物数量和多样性有所增加,但是避雨处理不利于整个土壤物质循环,需要适度的补充肥料和水分。田间实际生产过程中应考虑长期的避雨处理带来的负面影响,通过适当的露地敞开时间可以改善土壤物质循环,有利于梨园生产的可持续和稳定性。

  • 图  1   不同栽培模式下梨树根际土壤细菌群落的门级(A)和属级(B)分类组成

    Figure  1.   Taxonomic composition of bacterial communities in the rhizosphere soil of pear trees at the phylum level and genus level under different cultivation modes

    图  2   不同栽培模式下梨树根际土壤细菌群落的α多样性(香农指数A)和丰富度(B)

    Figure  2.   The alpha diversity(Shannon index, A)and abundance(Chao1, B)of rhizosphere soil bacteria of pear trees under different cultivation modes.

    图  3   不同栽培模式下梨树根际土壤细菌群落主成分分析

    Figure  3.   rincipal component analysis of bacterial community in pear rhizosphere soil under different cultivation patterns

    图  4   不同栽培模式下梨树根际土壤细菌群落丰度变化

    Figure  4.   Bacterial taxa with different abundance changes in rhizosphere soil of pear trees under different cultivation modes

    图  5   不同栽培模式下梨树根际土壤细菌群落的属级分类下与土壤理化性质(A)和梨品质(B)的相关性分析

    注:TolN—土壤总氮,TolP—土壤总磷,TolK—土壤总钾,AvaN—速效氮,AvaP—速效磷,AvaK—速效钾,OC—有机质含量,WC—含水量,pH—pH值,Sug—蔗糖含量,还原糖含量,TolA—总酸,Vc—维生素C。

    Figure  5.   Correlation analysis between bacterial communities in the rhizosphere soil of pear trees at the genus level and the soil physio-chemical indexes(A)and fruit qualities under different cultivation modes

    Note: TolN—Soil total nitrogen, TolP—Soil total phosphorus, TolK—Soil total potassium, AvaN—Rapid available nitrogen, AvaP—Rapid available phosphorus, AvaK—Rapid available potassium, OC—Organic content, WC—Water content, pH—Acidity or alkalinity gradients, Sug—Sucrose content, RS—Reducing sugar content, TolA—Total acid, Vc— Vitamin C.

    表  1   不同栽培模式下梨果实品质

    Table  1   The pear fruit qualities under different cultivation modes

    样品
    Samples
    蔗糖
    Sucrose/g·hg−1
    还原糖
    Reducing sugar/g·hg−1
    维生素C
    Vitamin C/g·hg−1
    总酸
    Total acid/g·kg−1
    糖酸比
    Ratio of sugar to acid
    TYGH1.28±0.01 a7.17±0.01 a6.18±0.05 b1.20±0.01 b70.42
    TY0.70±0.03 b6.64±0.12 b6.97±0.07 a1.44±0.01 a50.97
    注:TYGH--避雨栽培, TY--露地栽培(图1~3同);小写字母表示P<0.05水平上的显著性(表2~3同)。
    Note: “TYGH” represent rain-shelter cultivation, “TY” represent open field cultivation(The same as Fig.1-3). The lowercase represent significant difference at P<0.05 levels(The same as table 2-3.
    下载: 导出CSV

    表  2   不同栽培模式下梨树根际土壤化学性质

    Table  2   Chemical properties of soils from different treatment plots

    指标 IndexTYGHTY
    全钾 Total potassium/(g·kg−1 5.75±0.14 a 5.88±0.20 a
    全氮 Total nitrogen/(g·kg−1 7.73±0.37 a 4.20±0.15 b
    全磷 Total phosphorus/(g·kg−1 0.066±0.004 a 0.090±0.015 a
    速效氮 Available nitrogen/(mg·kg−1 21.47±2.13 a 18.96±1.47 a
    速效磷 Available phosphorus/(mg·kg−1 87.74±7.11 b 165.38±17.66 a
    速效钾 Available potassium/(mg·kg−1 165.65±2.60 b 229.74±5.54 a
    有机质 Organic matter/% 7.64±1.68 b 16.16±0.38 a
    pH 5.05±0.03 a 4.92±0.11 a
    含水量 Water content/% 14.33±0.88 b 20.33±1.76 a
    下载: 导出CSV

    表  3   梨树根际土壤微生物序列拼接结果和OUT数目统计

    Table  3   Sequence alignment and OUT number statistics of pear rhizosphere soil microorganism

    样品 SamplesRTCTOTUs
    TYGH40774±3196 b40441±3164 b2009±28 a
    TY44728±2854 a44328±2845 a1830±20 b
    注:RT(Raw_tags):经过过滤低质量的fastq数据拼接得到的结果,CT(Clean_tags):进一步对拼接结果去除嵌合体、短序列后得到的结果, OTUs为样本最终得到的平均OTU数目。
    Note: RT is the result of merging the filtered low-quality fastq data, CT is the result of further removing chimera and short sequences from the merging result, and OTUs is the average number of OTUs of the samples.
    下载: 导出CSV
  • [1]

    AHN S Y, KIM S H, CHOI S J, et al. Characteristics of cold hardiness and growth of grapevines grown under rain shelter type cultivation system in the vineyard [J]. Korean Journal of Horticultural Science and Technology, 2012, 30(6): 626−634. DOI: 10.7235/hort.2012.12102

    [2]

    CAO M, GUO J N, GAO D T, et al. Research progress in effects of rain-shelter cultivation on quality of grape berry [J]. Agricultural Science & Technology, 2016, 17(5): 1120−1124.

    [3] 黄雪燕, 杨倩倩, 王涛, 等. 避雨栽培对大棚梨病虫害发生及果实品质的影响 [J]. 中国南方果树, 2012, 41(3):46−49.

    HUANG X Y, YANG Q Q, WANG T, et al. Effects of rain-shelter-cultivation on incidence of diseases and pests, and fruit qualities of pears [J]. South China Fruits, 2012, 41(3): 46−49.(in Chinese)

    [4] 常有宏, 刘永锋, 王宏, 等. 梨黑斑病病菌的致病条件 [J]. 江苏农业学报, 2008, 24(3):316−320. DOI: 10.3969/j.issn.1000-4440.2008.03.020

    CHANG Y H, LIU Y F, WANG H, et al. Infection conditions of Alternaria Geisen to pear [J]. Jiangsu Journal of Agricultural Sciences, 2008, 24(3): 316−320.(in Chinese) DOI: 10.3969/j.issn.1000-4440.2008.03.020

    [5] 孙明星, 王晓荣, 张抗战. 梨树主要病虫害综合防治 [J]. 西北园艺(综合), 2018(4):43. DOI: 10.3969/j.issn.1004-4183.2018.04.024

    SUN M X, WANG X R, ZHANG K Z. Integrated control techniques of main pear diseases and pests [J]. Northwest Horticulture, 2018(4): 43.(in Chinese) DOI: 10.3969/j.issn.1004-4183.2018.04.024

    [6] 陈剑. 梨树病虫害综合防治技术 [J]. 现代园艺, 2018(19):157−158. DOI: 10.3969/j.issn.1006-4958.2018.19.084

    CHEN J. Integrated control techniques of pear diseases and pests [J]. Xiandai Horticulture, 2018(19): 157−158.(in Chinese) DOI: 10.3969/j.issn.1006-4958.2018.19.084

    [7] 何丽霞, 刘邮洲, 李慧, 等. 避雨栽培和露天栽培梨锈病和梨黑斑病发生差异 [J]. 江苏农业科学, 2019, 47(14):120−123.

    HE L X. Difference on occurrence of pear rust and pear black spot between rain-shelter cultivation and open-field cultivation [J]. Jiangsu Agricultural Sciences, 2019, 47(14): 120−123.(in Chinese)

    [8] 林志雄, 陆育生, 常晓晓, 等. 避雨栽培对广东寄接梨生长发育及果实品质的影响 [J]. 广东农业科学, 2016, 43(6): 64−68, 封2.

    LIN  Z  X,  LU  Y  S,  CHANG  X  X,  et  al.  Effects  of  rain  shelter cultivation on fruit development and quality of trans-grafting pear in Guangdong  Province [J]. Guangdong Agricultural Sciences, 2016, 43(6): 64−68, cover 2.(in Chinese)

    [9] 陈小明, 曾少敏, 黄新忠. 避雨措施对梨品质、土壤化学性质与酶活性影响及相关性分析 [J]. 福建农业学报, 2018, 33(12):1270−1274.

    CHEN X M, ZENG S M, HUANG X Z. Effects of rain-sheltered pear cultivation on fruit quality and chemistry and enzymatic activity of rhizosphere soil [J]. Fujian Journal of Agricultural Sciences, 2018, 33(12): 1270−1274.(in Chinese)

    [10]

    HARDOIM P R, VAN OVERBEEK L S, ELSAS J D V. Properties of bacterial endophytes and their proposed role in plant growth [J]. Trends in Microbiology, 2008, 16(10): 463−471. DOI: 10.1016/j.tim.2008.07.008

    [11]

    WIELAND G, NEUMANN R, BACKHAUS H. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development [J]. Applied and Environmental Microbiology, 2001, 67(12): 5849−5854. DOI: 10.1128/AEM.67.12.5849-5854.2001

    [12] 国家食品药品监督管理总局, 国家卫生和计划生育委员会. 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定: GB/T 5009.8—2016[S]. 北京: 中国标准出版社, 2016.
    [13] 国家卫生和计划生育委员会. 食品中还原糖的测定: GB/T 5009.7—2016[S]. 北京: 中国标准出版社, 2016.
    [14] 国家卫生和计划生育委员会. 食品中抗坏血酸的测定: GB/T 5009.86—2016[S]. 北京: 中国标准出版社, 2016.
    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 食品中总酸的测定: GB/T 12456—2008[S]. 北京: 中国标准出版社, 2009.
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [17]

    MUNYAKA P M, EISSA N, BERNSTEIN C N, et al. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: A role of the gut microbiota [J]. PLoS One, 2015, 10(11): e0142536. DOI: 10.1371/journal.pone.0142536

    [18]

    YAO M J, RUI J P, LI J B, et al. Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe [J]. Soil Biology and Biochemistry, 2014, 79: 81−90. DOI: 10.1016/j.soilbio.2014.09.009

    [19]

    SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537−7541. DOI: 10.1128/AEM.01541-09

    [20]

    KOZICH J J, WESTCOTT S L, BAXTER N T, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform [J]. Applied and Environmental Microbiology, 2013, 79(17): 5112−5120. DOI: 10.1128/AEM.01043-13

    [21]

    EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996−998. DOI: 10.1038/nmeth.2604

    [22]

    YILMAZ P, PARFREY L W, YARZA P, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks [J]. Nucleic Acids Research, 2014, 42(D1): D643−D648. DOI: 10.1093/nar/gkt1209

    [23]

    JAMI E, ISRAEL A, KOTSER A, et al. Exploring the bovine rumen bacterial community from birth to adulthood [J]. The ISME Journal, 2013, 7(6): 1069−1079. DOI: 10.1038/ismej.2013.2

    [24]

    MCMURDIE P J, HOLMES S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data [J]. PLoS One, 2013, 8(4): e61217. DOI: 10.1371/journal.pone.0061217

    [25]

    WANG Y, SHENG H F, HE Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags [J]. Applied and Environmental Microbiology, 2012, 78(23): 8264−8271. DOI: 10.1128/AEM.01821-12

    [26]

    SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation [J]. Genome Biology, 2011, 12(6): R60. DOI: 10.1186/gb-2011-12-6-r60

    [27] 王涛, 陈伟立, 陈丹霞, 等. 翠冠梨大棚栽培光温变化及生长发育规律研究 [J]. 安徽农学通报, 2007, 13(10):78−80. DOI: 10.3969/j.issn.1007-7731.2007.10.034

    WANG T, CHEN W L, CHEN D X, et al. Study the changes of light intensities and temperatures and the rules of growth and development of ‘Cui Guan’ pear cultivated in plastic house [J]. Auhui Agricultural Science Bulletin, 2007, 13(10): 78−80.(in Chinese) DOI: 10.3969/j.issn.1007-7731.2007.10.034

    [28] 戴强, 章镇, 罗昌国, 等. 避雨栽培对苹果叶片生长的影响 [J]. 中国农学通报, 2012, 28(22):168−172. DOI: 10.11924/j.issn.1000-6850.2012-0683

    DAI Q, ZHANG Z, LUO C G, et al. Effect of sheltering from rain on apple leaf growth [J]. Chinese Agricultural Science Bulletin, 2012, 28(22): 168−172.(in Chinese) DOI: 10.11924/j.issn.1000-6850.2012-0683

    [29] 韩志强, 袁德义, 陈文涛, 等. 南方避雨栽培对“金丝4号”枣裂果与营养品质的影响 [J]. 江西农业大学学报, 2013, 35(5):935−939. DOI: 10.3969/j.issn.1000-2286.2013.05.007

    HAN Z Q, YUAN D Y, CHEN W T, et al. Effect of rain shelter cultivation of Ziziphus jujube Mill.cv.Jinsi4 on its fruit cracking and nutritional quality in the south [J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2013, 35(5): 935−939.(in Chinese) DOI: 10.3969/j.issn.1000-2286.2013.05.007

    [30]

    LIM K H, GU M M, SONG J H, et al. Growth, fruit production, and disease occurrence of rain-sheltered Asian pear trees [J]. Scientia Horticulturae, 2014, 177: 37−42. DOI: 10.1016/j.scienta.2014.07.030

    [31]

    LIM K H, GU M M, KIM B S, et al. Tree growth and fruit production of various organic Asian pear (Pyrus pyrifoliaNakai) cultivars grown under a rain-shelter system [J]. The Journal of Horticultural Science and Biotechnology, 2015, 90(6): 655−663. DOI: 10.1080/14620316.2015.11668728

    [32] 王晓庆, 骆军, 张学英, 等. 大棚栽培梨发育中果实主要营养成分的变化 [J]. 上海农业学报, 2008, 24(3):65−69. DOI: 10.3969/j.issn.1000-3924.2008.03.016

    WANG X Q, LUO J, ZHANG X Y, et al. Changes of main nutrient contents of developing fruit of pear cultured in greenhouse [J]. Acta Agriculturae Shanghai, 2008, 24(3): 65−69.(in Chinese) DOI: 10.3969/j.issn.1000-3924.2008.03.016

    [33] 李艳丽, 赵化兵, 谢凯, 等. 不同土壤管理方式对梨园土壤微生物及养分含量的影响 [J]. 土壤, 2012, 44(5):788−793. DOI: 10.3969/j.issn.0253-9829.2012.05.013

    LI Y L, ZHAO H B, XIE K, et al. Effects of different soil managements on pear orchard soil biological properties and nutrient contents [J]. Soils, 2012, 44(5): 788−793.(in Chinese) DOI: 10.3969/j.issn.0253-9829.2012.05.013

    [34]

    MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiology Reviews, 2013, 37(5): 634−663. DOI: 10.1111/1574-6976.12028

    [35] 陈新燕, 孙霞, 柴仲平, 等. 土壤管理方式对南疆梨园土壤微生物活性的影响 [J]. 陕西农业科学, 2013, 59(2):3−6, 17. DOI: 10.3969/j.issn.0488-5368.2013.02.001

    CHEN X Y, SUN X, CHAI Z P, et al. Effects of soil managements on pear orchard soil biological properties in south Xinjiang province [J]. Shaanxi Journal of Agricultural Sciences, 2013, 59(2): 3−6, 17.(in Chinese) DOI: 10.3969/j.issn.0488-5368.2013.02.001

  • 期刊类型引用(3)

    1. 李嘉昱,张小英,王叶,张子雄,龙秀琴,滕尧,陈彩霞. 不同栽培模式对黄金百香果果实品质的影响. 中国果树. 2024(08): 69-76 . 百度学术
    2. 田田,文晓鹏,王丽丽,路凤菊,赵霞,乔光. 避雨栽培对玛瑙红樱桃果实品质的影响及效益分析. 中国南方果树. 2023(02): 135-138+146 . 百度学术
    3. 许艺,陈鑫,巩雪峰,李红,宋占锋. 基施微生物菌肥和不同水肥一体化施肥模式对避雨栽培辣椒产量品质和养分吸收的影响. 江苏农业科学. 2023(18): 122-128 . 百度学术

    其他类型引用(3)

图(5)  /  表(3)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  116
  • PDF下载量:  33
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-10-25
  • 刊出日期:  2020-12-30

目录

/

返回文章
返回