• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

孕穗期不同渍害时长对小麦生理特性及产量的影响

丁富功, 卢奕霏, 贾宝森, 朱旭东, 熊泽浩, 王超, 侯泽豪, 刘易科, 朱展望, 张迎新, 王书平, 方正武

丁富功,卢奕霏,贾宝森,等. 孕穗期不同渍害时长对小麦生理特性及产量的影响 [J]. 福建农业学报,2021,X(X):1−9.
引用本文: 丁富功,卢奕霏,贾宝森,等. 孕穗期不同渍害时长对小麦生理特性及产量的影响 [J]. 福建农业学报,2021,X(X):1−9.
DING F G, LU Y F, JIA B S, et al. Effects of different duration of waterlogging on physiological characteristics and yield of wheat at booting stage [J]. Fujian Journal of Agricultural Sciences,2021,X(X):1−9.
Citation: DING F G, LU Y F, JIA B S, et al. Effects of different duration of waterlogging on physiological characteristics and yield of wheat at booting stage [J]. Fujian Journal of Agricultural Sciences,2021,X(X):1−9.

孕穗期不同渍害时长对小麦生理特性及产量的影响

基金项目: 湖北省科学技术重大创新专项(2018ABA085);国家重点研发计划项目(2017YFD0100800)
详细信息
    作者简介:

    丁富功(1995−),男,硕士生,主要从事作物遗传育种研究。(E-mail:fugongding@126.com)

    通讯作者:

    方正武(1977−),男,博士,副教授,主要从事麦类种质资源创新与利用。(E-mail:fangzhengwu88@163.com)

  • 中图分类号: S

Effects of different duration of waterlogging on physiological characteristics and yield of wheat at booting stage

  • 摘要:
      目的  小麦渍害是长江中下游小麦生产中的主要非生物胁迫因素,研究孕穗期不同渍害时长对小麦生理特性及产量的影响,为小麦孕穗期的耐渍性机理研究和生产提供理论依据。
      方法  以小麦品种扬麦16和中麦895为供试材料,采用盆栽控水方法,研究孕穗期渍害时长对小麦生长及产量的影响。
      结果  (1)孕穗期发生渍害,小麦叶片的叶绿素含量显著降低,渍害时长越久,叶片SPAD值下降程度越大;受害越重的叶片SPAD值下降幅度越大,倒二叶较同期的旗叶受害严重。(2)小麦的CAT、SOD和POD等抗氧化物酶的酶活性在渍害期间呈现“ ”型变化趋势,活性氧(ROS)含量在渍害前期有降低或缓慢增加现象,而在渍害后期呈急剧升高趋势。(3)孕穗期短期内渍害有效穗数、穗粒数和千粒重等产量要素有小幅度增加现象,这可能是小麦的应激反应所致。(4)孕穗期渍害对小麦株高无显著影响,长期渍害导致小麦产量显著下降,有效穗数、穗粒数和千粒重的降低是引起小麦减产的主要因子;在渍害15 d后,中麦895和扬麦16的单株产量分别较CK降低了51.47%和43.99%。
      结论  孕穗期渍害显著降低了小麦叶片叶绿素含量,破坏了植株体内活性氧代谢和抗氧化酶系统之间的平衡,过量积累的活性氧致使细胞脂膜过氧化,导致细胞结构和功能受损,进而影响植株光合作用和营养物质的传输和积累,使小麦生物量大幅降低,从而导致籽粒灌浆不足,造成空粒、瘪粒和无效穗数显著增多,最终造成小麦减产。此外,在整个渍害胁迫过程中,供试的2个小麦品种的耐渍性强弱表现为:扬麦16>中麦895。
    Abstract:
      Objective  The stress of wheat waterlogging is the main abiotic stress factor in wheat production in the middle and lower reaches of the Yangtze River. To study the effects of different duration of waterlogging on physiological characteristics and yield of wheat at booting stage provides a theoretical basis for the research on the mechanism of wheat waterlogging resistance at booting stage and production.
      Method  The effects of waterlogging duration on wheat growth and yield at booting stage were studied by pot pot water control method with wheat varieties Yangmai 16 and Zhongmai 895 as experimental materials.
      Result  (1) Under the stress of waterlogging, the chlorophyll content of wheat leaves decreased significantly. The longer the waterlogging lasted, the greater the decline of SPAD value was. The SPAD value of the more heavily injured leaves decreased more, and the more severely injured the inverted two leaves than the flag leaves. (2) The activity of antioxidant enzymes such as CAT, SOD and POD in wheat showed a trend of type "∧" during the waterlogging period, while the content of reactive oxygen species (ROS) decreased or increased slowly in the early stage of waterlogging, while increased sharply in the late stage. (3) In the booting period, the effective number of ears, grain number of ears, 1000-grain weight and other yield factors increased slightly, which may be caused by the stress response of wheat. (4) The stress of waterlogging at the stage of heading had no significant effect on the height of wheat plant. Long-term waterlogging resulted in a significant decrease in wheat yield. The decrease of effective panicle number, grain number per panicle and 1000-grain weight was the main factor causing wheat yield reduction. After 15 d of waterlogging stress, the yield per plant of zhongmai 895 and yangmai 16 decreased by 51.47% and 43.99%, respectively, compared with CK.
      Conclusion  Booting stage waterlogging stress significantly reduced the wheat leaf chlorophyll content, destroyed the plant active oxygen metabolism in the body and the balance between antioxidant enzyme system, excessive accumulation of reactive oxygen species causes cells to peroxide lipid membrane, causing cell structure and function is impaired, affect plant photosynthesis and nutrient transfer and accumulation, increase the biomass of wheat is reduced, resulting in lack of grain-filling, caused empty grain, grain and invalid number of flat significantly increased, resulting in wheat production. In addition, during the whole process of waterlogging stress, the resistance of the two wheat varieties tested was as follows: yangmai 16>zhongmai 895.
  • 【研究意义】兔出血症2型(rabbit hemorrhagic disease Type 2, RHD-2)是由兔出血症病毒2型(rabbit hemorrhagic disease virus serum type 2, RHdV-2)引起的一种新型高度接触传染性、急性致死性传染病。新型毒株的RHdV-2的感染性更强,感染范围更广,不同日龄和品种的家兔、野兔均可被感染[13]。RHD-2具有较高发病率和致死率[4],且国内尚未研制出可靠的商品化疫苗供生产使用,一旦发病将严重影响养兔业的健康发展。当前,我国养兔规模化程度仍然十分低,散养户是养兔业的主力。散养户普遍存在技术力量弱、不会操作检测仪器等问题。RHdV-2感染已对我国养兔也造成了巨大经济损失,如何在养殖场特别是散养户进行快速准确的诊断对于科学防控该病具有十分重要的意义。通过建立快速且准确的检测方法,可以有效识别并控制传染源,从而防止疫情的进一步扩散。【前人研究进展】目前,重组酶介导的核酸等温扩增(recombinase aided amplification, RAA)与CRISPR/Cas13a技术联用在病原检测领域已逐渐展现出其巨大的应用潜力。该法先对目标序列进行RAA扩增以获得大量的检测模板,再利用CRISPR系统对其进行特异性识别以激活Cas13a蛋白来剪切反应体系中的荧光探针,从而实现对低载量样品的快速准确检测[56]。作为病原检测研究领域的一个热门方向,RAA-CRISPR/Cas13a检测方法通过结合RAA法和CRISPR/Cas13a技术,在灵敏度和特异性方面实现了显著提升。一些学者已经利用这种方法开发出了快速检测动物疫病病原微生物的新方法,如禽腺病毒 4 型[7]、猪流行性腹泻病毒[8]、口蹄疫病毒[9]和禽流感病毒[10]。虽然国内已经建立多种针对RHdV-2的诊断技术,但是均需要一定的专业知识和仪器设备,难以在养殖场一线应用。有研究根据RHdV-2的保守序列VP60,建立了实时荧光定量聚合酶链反应(real-time quantitative polymerase chain reaction, qPCR)检测方法[11],酶联免疫吸附技术(enzyme Linked Immunosorbent assay, ELISA)也可用于检测RHdV-2抗原或抗体[12],这些方法虽然其灵敏度和特异性也较好,但它们均需较为昂贵的配备仪器和过长的反应时间。【本研究切入点】本实验室前期建立了基于RAA的侧流层析试纸(lateral flow device, LFD)方法[13],用于RHdV-2的特异性检测,然而RAA的扩增效率易受引物设计、模板序列及其他因素的制约,限制了其检测灵敏度和稳定性。近年来,CRISPR-Cas核酸酶的精准切割特性为核酸检测提供了新的技术突破,多项研究[1415]通过联合RAA与CRISPR-Cas系统,显著提升了检测的灵敏度和特异性,并结合LFD实现了检测结果的可视化。基于此,本研究创新性地整合了RAA与CRISPR/Cas13a技术,首次建立了一种兔出血症病毒2型可视化诊断方法RAA-CRISPR/Cas13a(cpf1)-LFD。【拟解决的关键问题】本研究在本实验室前期研究的重组酶等温扩增结合侧流层析试纸条方法[13]的基础上,结合CRISPR/Cas13a技术,建立了新的RHdV-2检测方法,这种方法具备高度的灵敏度和特异性,操作简单,可实现在实验室和基层养殖场现场的快速检测,同时利用LFD实现结果可视化,为RHdV-2的诊断提供高效准确的检测方法。

    RHdV-2(KU991797.1)VP60重组质粒、RHdV-1(DQ205345.1)VP60重组质粒均由擎科股份有限公司进行合成。31份临床样本由本实验室保存,来自闽侯、武平、大田、连江等多个兔场,病兔主要表现急性死亡,实质器官有出血,采集脾脏淋巴结等实质器官。

    总RNA提取试剂盒(ER501-01)(北京全式金生物有限公司);RAA核酸扩增试剂盒,RAA核酸扩增试剂盒(试纸条法)(T00R01)(江苏奇天基因生物科技有限公司);一次性核酸检测试纸条(JY0301,北京宝盈同汇生物技术有限公司);1xPBS(兰杰柯科技有限公司);LwaCas13a蛋白(C2C2)(广州美格生物有限公司);HiScribeT7快速高效 RNA 合成试剂盒(New England Biolabs);重组RNase抑制剂(荷瑞生物);RNA纯化试剂盒(DP412,天根生物有限公司);LwaCas13a 10×reaction buffer:200 mmol·L−1 HEPES-NaOH(pH6.8),600 mmol·L−1 NaCl,60 mmol·L−1 MgCl2,10 mmol·L−1 DTT。

    RAA特异性引物和RAA-LFD探针按照文献[13]报道的序列合成。在已扩增的特异且保守序列范围内,首先识别符合条件的PAM序列,继而设计长度为20~23 nt的间隔区序列构成LwaCas13a-crRNA,间隔区序列位于PAM序列之后,同时确保LwaCas13a-crRNA目标序列内3'端的PFS序列由A、C、U组成,且目标序列不与RAA引物重叠,最终,将间隔区序列进行Blast分析比对确定其保守特异性。crRNA的单链DNA(即ssDNA)由擎科股份有限公司进行合成。

    Lwacas13a-crRNA合成步骤:将crRNA的单链DNA作为模板与相应引物通过PCR扩增获得大量crRNA的双链DNA(即dsDNA),使用琼脂凝胶回收试剂盒回收目的条带进行纯化,纯化产物通过T7 HiScribe T7高效RNA合成试剂盒37 ℃过夜转录,转录产物使用RNA纯化试剂盒纯化后通过nanodrop 2000测定RNA浓度置于−80 ℃保存。CRISPR-Cas13a相关序列见表1

    表  1  CRISPR-Cas13a crRNA及相关引物
    Table  1.  CRISPR-Cas13a crRNA and related primers
    基因
    Genes
    序列5'-3'
    Sequences (5’-3’)
    Cas13a crRNA1 TAATACGACTCACTATAGGGGATTTAGACTACCCCAAAAACGAAGGGGACTAAAACACTCATAAGCCTGCATGGTCGTGACGTA
    Cas13a crRNA2 TAATACGACTCACTATAGGGGATTTAGACTACCCCAAAAACGAAGGGGACTAAAACGGTGGTGGTGGGTTGGGGGTTGCTCGGT
    斜体为T7启动子序列,下划线碱基为重复序列区。
    The italicized sequence represents the T7 promoter, and the underlined bases indicate the repetitive sequence region.
    下载: 导出CSV 
    | 显示表格

    PCR 25 μL反应体系:2×San Taq PCR Master Mix (含蓝色染料)12.5 μL,crRNA-dsDNA 1 μL,上下游引物各1 μL(10 μmol·L−1),ddH2O 9.5 μL。PCR反应过程:95 ℃预变性5 min;95 ℃变性30 s,56 ℃退火30 s,72 ℃延伸15 s,30个循环;72 ℃延伸10 min。

    转录体系:T7 mix 2 μL,NTP mix 10 μL,模板1 μg,ddH2O补齐至20 μL。

    根据RAA核酸扩增试剂盒说明书,选择50 μL体系进行扩增。反应体系为:缓冲液25 μL,纯水15.7 μL,正向与反向引物各取2.1 μL,探针取0.6 μL,乙酸镁(280 mmol·L−1)2.5 μL,模板3 μL。

    (1) RAA-CRISPR/Cas13a (Cpf1)-LFD体系优化。1.5 μL crRNA(300 ng·μL−1)与50 nmol·L−1 Cas13a蛋白进行反应,选择反应效果最佳体系为CRISPR-Cas13a反应体系。该体系的总体积为50 µL,包括以下成分:10×反应缓冲液5 µL,crRNA(浓度为300 ng·µL−1)1.5 µL,探针(浓度为10 μmol·L−1)2 µL,模板2.5 µL,LwaCAS13a蛋白(浓度为1 μmol·L−1)3.5 µL,NTP混合物2.5 µL,RNA酶(浓度为300U·µL−1)5 µL,T7混合物0.5 µL,以及双蒸水27.5 µL。

    (2)RAA-CRISPR/Cas13a-LFD反应时间优化。基于上述Cas13a体系对RAA-CRISPR/Cas13a-LFD反应时间进行优化,每5 min一个间隔,设置反应时间为10~25 min,Cas13a试纸条法通过试纸条观察结果。

    RHdV-2 VP60重组质粒经检测其质粒浓度为6.7×103 copies·μL−1,用1×PBS梯度稀释得到6.7×103、6.7×102、6.7×101、6.7×10−1、6.7×10−2 copies·μL−1 5个浓度梯度,以不同浓度的重组质粒为模板进行扩增,扩增产物与Cas13a蛋白以及crRNA等试剂再进行一定时间恒温反应,反应产物经LFD显示,分析敏感性试验结果。

    RHdV-2 VP60重组质粒(6.7×105 ng·μL−1)、RHdV-1 VP60重组质粒(6.7×105 ng·μL−1)为模板进行RAA扩增,产物与Cas13a蛋白以及crRNA再进行一定时间恒温反应,反应产物经LFD显示。

    根据总RNA提取试剂盒说明进行操作提取,具体步骤:将单份临床兔病料75 mg与1 mL Trans Zol混合并研磨裂解样品,后加入200 μL RNA Extraction Agent,振荡混匀5 min后放于4 ℃高速离心机10 000 r·min−1离心15 min;吸取无色水相部分与同体积无水乙醇混合后加入离心柱后离心;重复加入CB9(500 μL)并离心;重复加入WB9(500 μL)并离心;离心去除剩余乙醇,使用75 μL纯水洗脱后,将提取的RNA保存于-80 ℃保存。

    提取31份临床样本病料的总RNA,应用建立的RAA-CRISPR/Cas13a(Cpf1)-LFD 法分别对31份临床样品进行RAA扩增反应,扩增产物经LFD显示结果。

    分别以crRNA1和crRNA2为探针对同一阳性样本进行检测,结果如图1A图1B所示,crRNA1显示出更明显的检测线(T线),并且Image J定量分析(图1C)可见crRNA1与crRNA2之间的信号强度差异显著(P<0.05),说明crRNA1具有更高的信号强度。综上后续选择crRNA1进行试验。

    图  1  Cas13a-crRNA筛选结果
    A:试纸条;B:Image J定量图;C:样品条带定量柱状图。1:crRNA 1;2: crRNA 2;N:阴性对照。C:质控线;T:检测线;* 表示与对照相比差异显著 P < 0.05。
    Figure  1.  Cas13-crRNA screening results
    A: test strip image; B: image J quantification graph; C: sample band quantification bar chart. 1: crRNA1; 2: crRNA2; N: negative control. C: quality control Line; T:test line; * indicates a statistically significant difference with control (P < 0.05).

    图2中可以看出,在RAA基础反应30 min后,仅再需10 min,RAA-CRISPR/Cas13a(Cpf1)-LFD即可检测出RHdV-2,且显色明显,从量化柱状图可知,反应时间为10 min时,数值最高(P<0.05),综合分析可知10 min时即可达到较佳检测效果,故后续反应时间均釆用10 min。

    图  2  不同反应时间RAA-CRISPR/Cas13a(Cpf1)-LFD扩增产物
    A:试纸条图;B:Image J定量图;C:样品条带定量柱状图。10、15、20、25分别为 10、15、20、25 min 扩增产物; N阴性对。C:质控线;T:检测线;*表示与对照相比差异显著(P < 0.05)。
    Figure  2.  Analysis of RAA-CRISPR/Cas13a(Cpf1)-LFD amplification products at different reaction time
    A: test strip image; B: image J quantification graph; C: sample band quantification bar chart. 10, 15, 20, 25: amplification products for 10, 15, 20, 25 min with the standard plasmid as template; N: negative control. C: quality control line; T: test line; * indicates significant difference with control (P < 0.05).

    Cas13a试纸条法对RHdV-2 RNA最低可检值可达6.7×101 copies·μL−1,结合量化结果(图3)综合分析在质粒浓度为6.7×101 ng·μL−1时阳性结果最亮且数值最高(P<0.05),阴性对照结果为阴性。

    图  3  Cas13a敏感性试验结果
    A:试纸条图;B:Image J定量图;B:样品条带定量柱状图。1:6.7×103 copies·μL−1;2:6.7×102 copies·μL−1;3:6.7×101 copies·μL−1;4:6.7×10−1 copies·μL−1;5:6.7×10−2 copies·μL−1;N:阴性;* 表示与对照相比差异显著(P < 0.05)。
    Figure  3.  Sensitivity test results about Cas13a
    A: test strip image; B: image J quantification graph; C: sample band quantification bar chart. 1: 6.7×103 copies·μL−1; 2: 6.7×102 copies·μL−1; 3: 6.7×101 copies·μL−1; 4: 6.7×10−1 copies·μL−1; 5: 6.7×10−2 copies·μL−1; N: negative control; * indicates significant difference with control (P < 0.05).

    图4可知,RHdV-1结果为阴性,RHdV-2在试纸条检测中呈现强阳性,因此所建立的方法特异性优异。

    图  4  Cas13特异性检测结果
    A:试纸条图;B:Image J定量图; B:样品条带定量柱状图。1:RHdV-2;2:RHdV-1;N:阴性对照;*表示与对照相比差异显著(P < 0.05)。
    Figure  4.  Cas13a specific test results
    A: test strip image; B: image J quantification graph; C: sample band quantification bar chart. 1: RHdV-2; 2: RHdV-1; N: negative control; * indicates significant difference with control (P < 0.05).

    对31份不同兔场收集的病死兔脾脏组织进行RAA-CRISPR/Cas13a (Cpf1)-LFD试纸条检测,如图5可知,所有样品在C位置均有条带,表明所有样品均合格,样品4、10、13、15、18、19、22、24、27、29在T位置出现了较为明显的条带,并且Image J定量分析(图5C)可见样品4、10、13、15、18、19、22、24、27、29的条带强度与其他样品相比差异显著(P<0.05),表明样品4、10、13、15、18、19、22、24、27、29均为阳性样品,RAA-CRISPR/Cas13a (Cpf1)-LFD法的阳性检出率为30.3%。

    图  5  RAA-CRISPR/Cas13a (Cpf1)-LFD临床样品检测结果
    A:试纸条图;B:Image J定量图;C:样品条带定量柱状图。1~31分别为样品编号; N为阴性对照;*表示与对照相比差异显著(P < 0.05)。
    Figure  5.  Clinical samples detected by RAA-CRISPR/Cas13a (Cpf1)-LFD
    A: test strip image; B: image J quantification graph; C: sample band quantification bar chart. 1—31 are sample numbers; N: negative control; * indicates significant difference with control (P < 0.05).

    自2010年在法国首次发现RHdV-2以来[4],该病毒已在全球范围内流行。2020年,中国四川省首次报告了RHD2病例[16]。RHdV-2对养兔业构成严重威胁,但目前缺乏有效的商业疫苗。因此,开发可靠的病原学检测技术对于控制RHdV-2传播、减轻其对养兔业和生态系统的影响至关重要。

    王波[17]在其研究中建立的检测RHdV-2的SYBR Green Ⅰ实时荧光定量RT-PCR方法检测限度达到68个拷贝数,而本研究中我们构建的RHdV-2核酸试纸条检测方法对兔出血症病毒RNA的最低检测限为6.7×101 copies·μL−1,说明本研究建立的方法灵敏度与实时荧光定量RT-PCR方法相当。同时,应用该方法进行检测,结果显示RHdV-1结果为阴性,RHdV-2则呈现强阳性,说明该方法特异性良好,与RHdV-1血清型核酸无交叉反应。本研究使用新建立的RAA-CRISPR/Cas13a (Cpf1)-LFD方法对本实验室前期研究中保存的31份疑似阳性临床样品[13]进行检测后,阳性率从19.2%提高到了30.3%,说明新方法在检测RHdV-2方面具有更高的有效性和准确性。近年来,关于RHdV-2检测方法的研究主要集中在RT-PCR技术上。尽管部分研究[1819]开发的检测方法能够达到1×101 copies·μL−1的高灵敏度,但这些方法通常需要较长的反应时间,并且依赖于专业设备来判读结果,这限制了它们在临床快速检测RHDV-2中的应用。相比之下,本研究建立的检测方法在40 min内即可完成,并且通过试纸条直接显示结果,使得结果判读变得快速且直观。但本研究建立的方法也存在不足之处,反应过程中需要开盖转移RAA反应产物作为体系中的模板,易产生气溶胶污染。目前已有RAA-CAS一管反应法,将RAA反应试剂与Cas相关试剂一次性加入一个管内,反应时间相应缩短,减少气溶胶污染。然而,一管法灵敏性较低,这可能与RAA中反应蛋白酶接触Cas相关试剂影响了蛋白酶的活性,后期是否可以通过改变体系内试剂浓度进行一管反应还需进一步研究。

    本研究前期通过RHdV两种血清型基因组对比,发现RHdV-2的VP60基因最为保守,将其设定为检测靶序列,合成特异性引物,建立了RAA-CRISPR/Cas13a(cpf1)-LFD检测方法。该方法具有敏感性强、特异性高、操作简易等优点,可实现对RHdV-2快速检测,可为RHdV-2的预防与早期诊断、控制提供便捷技术,规避兔养殖业面临巨大疫病风险,助力养兔业蓬勃发展。

  • 图  1   孕穗期渍害胁迫小麦叶片SPAD值的变化

    注:图1-A为旗叶,图1-B为倒二叶。

    Figure  1.   Changes of SPAD value in waterlogged wheat leaves at booting stage

    Note: Figure 1-A. Flag Leaf, Figure 1-B. The top second leaf.

    图  2   孕穗期渍害胁迫小麦超氧阴离子自由基(O2−·)产生速率和过氧化氢(H2O2)含量的变化

    注:图2-A为超氧阴离子自由基,图2-B为过氧化氢含量。

    Figure  2.   The changes of superoxide anion radical(O2·)production rate and hydrogen peroxide(H2O2)content in wheat damaged by booting

    Note: Figure 2-A. The superoxide anion radical, Figure 2-B. The hydrogen peroxide content.

    图  3   孕穗期渍害胁迫对小麦旗叶抗氧化酶活性的变化

    注:图3-A为过氧化氢酶,图3-B为超氧化物歧化酶,图3-C为过氧化物酶。

    Figure  3.   Changes of antioxidant enzyme activity in flag leaf of wheat by waterlogging at booting stage

    Note: Figure 3-A. Catalase, Figure 3-B. Superoxide dismutase, Figure 3-C. Peroxidase.

    图  4   孕穗期渍害胁迫对小麦旗叶MDA含量的变化

    注:图4为丙二醛。

    Figure  4.   Changes of MDA content in flag leaf of wheat by waterlogging at booting stage

    Note: Figure 4. Malondialdehyde.

    表  1   孕穗期渍害胁迫对小麦产量构成因子的影响

    Table  1   Effects of booting on wheat yield components

    品种
    Variety
    处理
    Treatment
    株高
    Plant heigh/cm
    穗长
    Ear length/cm
    有效穗
    Effective panicle/
    (个.株−1
    穗粒数
    Grain number per panicle/
    (粒.穗−1
    千粒重
    1000-grain
    weight/g
    产量
    Yield/
    (g.株−1
    产量降幅
    Yield loss/%
    中麦895CK73.2±0.1 a7.09±1.0 a5.5±0.6 a30.2±1.1 a46.9±0.4 a7.790±0.8 a——
    WL173.2±0.4 a7.09±1.3 a5.5±0.3 a30.2±0.4 a47.1±1.1 b7.823±0.2 b0.4
    WL373.2±0.2 a7.09±1.2 a5.6±0.4 b30.3±0.7 b47.2±0.6 c8.009±0.5 c2.81
    WL573.2±0.4 a7.06±1.3 b5.5±0.2 a29.8±1.2 c46.7±0.1 d7.654±0.4 d(1.75)
    WL773.1±1.1 a6.98±0.3 c5.3±0.7 c29.4±0.4 d44.3±1.3 e6.903±0.8 e(11.39)
    WL973±0.8 a6.84±0.5 d5.0±0.5 d29.0±0.6 e41.4±0.8 f6.003±1.1 f(22.94)
    WL1172.8±0.7 a6.81±0.4 e4.7±0.3 e28.3±1.0 f39.2±1.1 g5.214±0.7 g(33.07)
    WL1372.7±0.9 a6.74±0.7 f4.4±0.6 f27.6±0.7 g37.6±1.2 h4.566±0.5 h(41.39)
    WL1572.5±0.6 a6.66±1.2 g4.0±0.7 g26.4±1.0 h35.8±0.8 i3.780±0.8 i(51.47)
    扬麦16CK85.4±0.7 a8.94±1.1 a4.7±0.5 a39.2±0.9 a39.1±0.8 a7.204±0.7 a——
    WL185.4±1.2 a8.95±0.8 a4.7±0.8 a39.1±0.2 b39.2±0.2 b7.204±1.2 a2.13
    WL385.4±0.9 a8.97±1.0 b4.8±0.3 b39.2±0.1 a39.2±0.1 b7.530±0.5 b3.46
    WL585.2±1.1 a8.94±0.6 a4.6±0.5 c38.9±0.3 c38.7±0.4 c6.925±0.1 c(3.87)
    WL785.2±0.3 a8.89±0.5 c4.6±0.9 c38.2±0.2 d36.9±0.3 d6.484±0.1 d(9.99)
    WL985.1±0.4 ab8.83±0.9 d4.5±0.2 d37.6±0.7 e35.6±0.1 e6.024±1.0 e(16.38)
    WL1184.8±0.6 ab8.75±0.4 e4.2±0. e36.8±0.2 f34.4±0.5 f5.317±0.8 f(26.19)
    WL1384.5±0.2 bc8.59±0.3 f3.9±0.9 f35.9±0.5 g33.2±0.8 g4.648±0.7 g(35.47)
    WL1584.2±0.5 c8.52±1.1 g3.6±0.7 g35.1±0.8 h32.5±1.1 h4.107±1.3 h(43.99)
    注:CK为CK,WL1~15为渍害胁迫1~15 d,表中的值为平均值±标准误差,同列处理组内的数值后的不同小写字母表示差异显著(P<0.05,Duncan's检测)。
    Note: CK the control group, WL1~15. the stress of waterlogging for 1~15 d, the values in the table are mean ± standard error, and different lowercase letters after processing the values in the group in the same column indicate significant differences(P<0.05, Duncan's test).
    下载: 导出CSV
  • [1] 吴启侠, 朱建强, 程伦国, 等. 基于地下水埋深的江汉平原冬小麦防涝渍排水指标确定 [J]. 农业工程学报, 2017, 33(3):121−127. DOI: 10.11975/j.issn.1002-6819.2017.03.016

    WU Q X, ZHU J Q, CHEN L G, et al. Determination of groundwater depth-based drainage index against waterlogging and submergence for winter wheat in Jianghan Plain [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 121−127.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2017.03.016

    [2] 田文涛. 小麦耐涝渍鉴定方法及耐性生理特征研究[D]. 荆州: 长江大学, 2017.

    TIAN W T. Study on waterlogging resistance identification method and its physiological characteristic of wheat[D]. Jingzhou, China: Yangtze University, 2017. (in Chinese)

    [3] 马兴华. 小麦优质高产需水特性与植株—土壤氮素循环的研究[D]. 泰安: 山东农业大学, 2007.

    MA X H. Studies on water requirement characteristic for high quality and yield and on nitrogen cycle of plant—soil system in wheat[D]. Taian, China: Shandong Agricultural University, 2007. (in Chinese)

    [4] 黄钦友, 田文涛, 王晓玲. 渍害下小麦相对叶绿素含量的降低效应及其与产量的相关性 [J]. 长江大学学报(自科版), 2017, 14(14):1−4.

    HUANG Q Y, TIAN W T, WANG X L. Reduction effects on SPAD values of wheat leaves and its correlation with yield under waterlogging stress [J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(14): 1−4.(in Chinese)

    [5]

    BOHNERT H J, NELSON D E, JENSEN R G. Adaptations to environmental stresses [J]. The Plant Cell, 1995, 7(7): 1099. DOI: 10.2307/3870060

    [6] 王传光, 田咏梅, 周浩亮, 等. 灌浆期淹水时间对冬小麦旗叶光合特性的影响 [J]. 河北农业科学, 2012, 16(7):11−14. DOI: 10.3969/j.issn.1088-1631.2012.07.003

    WANG C G, TIAN Y M, ZHOU H L, et al. Effects of waterlogging time in filling stage on photosynthetic characteristics of winter wheat flag leaves [J]. Journal of Hebei Agricultural Sciences, 2012, 16(7): 11−14.(in Chinese) DOI: 10.3969/j.issn.1088-1631.2012.07.003

    [7]

    ZIAEI A N, SEPASKHAH A R. Model for simulation of winter wheat yield under dryland and irrigated conditions [J]. Agricultural Water Management, 2003, 58(1): 1−17. DOI: 10.1016/S0378-3774(02)00080-X

    [8]

    WANG Y, ZHANG H, HOU P, et al. Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat (Tricum aestivum) during the grain filling stage by modulating the psbA, gene transcription and antioxidant defense [J]. Plant Growth Regulation, 2014, 73(3): 290.

    [9]

    CHEN Y E, ZHANG C M, SU Y Q, et al. Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat [J]. Environment and Experimental Botany, 2017, 135: 51.

    [10] 林琪, 侯立白, 韩伟, 等. 干旱胁迫对小麦旗叶活性氧代谢及灌浆速率的影响 [J]. 西北植物学报, 2003, 23(12):2152−2156. DOI: 10.3321/j.issn:1000-4025.2003.12.018

    LIN Q, HOU L B, HAN W, et al. Effect of drought stress on active oxygen metabolism of wheat flag leaf and filling rate [J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(12): 2152−2156.(in Chinese) DOI: 10.3321/j.issn:1000-4025.2003.12.018

    [11] 刘莉, 蒋苑, 马静, 等. 水稻细胞质雄性不育花药和叶片中的活性氧代谢研究 [J]. 中国农学通报, 2016, 32(12):6−12. DOI: 10.11924/j.issn.1000-6850.casb15100093

    LIU L, JIANG Y, MA J, et al. Metabolism of reactive oxygen species in anthers and leaves of cytoplasmic male-sterile rice [J]. Chinese Agricultural Science Bulletin, 2016, 32(12): 6−12.(in Chinese) DOI: 10.11924/j.issn.1000-6850.casb15100093

    [12]

    HOSSAIN M A, ARAKI H, TAKAHASHI T. Poor grain filling induced by waterlogging is similar to that in abnormal early ripening in wheat in Western Japan [J]. Field Crops Research, 2011, 123(2): 100−108. DOI: 10.1016/j.fcr.2011.05.005

    [13] 刘聪, 董腊嫒, 林建中, 等. 逆境胁迫下植物体内活性氧代谢及调控机理研究进展 [J]. 生命科学研究, 2019, 23(3):253−258.

    LIU C, DONG L A, LIN J Z, et al. Research advances on regulation mechanism of reactive oxygen species metabolism under stresses [J]. Life Science Research, 2019, 23(3): 253−258.(in Chinese)

    [14] 程琳, 曹鹏, 刘章勇, 等. 氧肥对渍害胁迫下西瓜生理特性、产量及品质的影响 [J]. 湖北农业科学, 2015, 54(12):2939−2942, 3017.

    CHENG L, CAO P, LIU Z Y, et al. Effects of oxygen fertilizer on the physiological characteristics, yield and quality of Citrullus lanatus under waterlogging stress [J]. Hubei Agricultural Sciences, 2015, 54(12): 2939−2942, 3017.(in Chinese)

    [15] 马尚宇, 王艳艳, 黄正来, 等. 渍害对小麦生长的影响及耐渍栽培技术研究进展 [J]. 麦类作物学报, 2019, 39(7):835−843.

    MA S Y, WANG Y Y, HUANG Z L, et al. Research progress of effects of waterlogging on wheat growth and cultivation technique for waterlogging resistance [J]. Journal of Triticeae Crops, 2019, 39(7): 835−843.(in Chinese)

    [16] 刘杨, 石春林, 刘晓宇, 等. 渍害胁迫时期和持续时间对冬小麦产量及其构成因素的影响 [J]. 麦类作物学报, 2018, 38(2):239−245. DOI: 10.7606/j.issn.1009-1041.2018.02.16

    LIU Y, SHI C L, LIU X Y, et al. Effect of waterlogging stress duration at different growth stages on yield and its components of winter wheat [J]. Journal of Triticeae Crops, 2018, 38(2): 239−245.(in Chinese) DOI: 10.7606/j.issn.1009-1041.2018.02.16

    [17] 李金才, 董琦, 余松烈. 不同生育期根际土壤淹水对小麦品种光合作用和产量的影响 [J]. 作物学报, 2001, 27(4):434−441. DOI: 10.3321/j.issn:0496-3490.2001.04.005

    LI J C, DONG Q, YU S L. Effect of waterlogging at different growth stages on photosynthesis and yield of different wheat cultivars [J]. Acta Agronomica Sinica, 2001, 27(4): 434−441.(in Chinese) DOI: 10.3321/j.issn:0496-3490.2001.04.005

    [18] 佟汉文, 高春保, 邹娟, 等. 湖北稻茬小麦新品种(系)孕穗期耐渍性的鉴定与评价 [J]. 麦类作物学报, 2016, 36(12):1635−1642. DOI: 10.7606/j.issn.1009-1041.2016.12.13

    TONG H W, GAO C B, ZOU J, et al. Evaluation of waterlogging tolerance of wheat varieties at booting stage in Hubei rice-wheat rotation system [J]. Journal of Triticeae Crops, 2016, 36(12): 1635−1642.(in Chinese) DOI: 10.7606/j.issn.1009-1041.2016.12.13

    [19] 卢奕霏, 顾迎港, 陈威, 等. 高温胁迫对小麦花药活性氧代谢的影响 [J]. 麦类作物学报, 2020, 40(4):488−493.

    LU Y F, GU Y G, CHEN W, et al. Effect of high-temperature stress on reactive oxygen metabolism of wheat anther [J]. Journal of Triticeae Crops, 2020, 40(4): 488−493.(in Chinese)

    [20]

    BA Q S, ZHANG G S, WANG J S, et al. Relationship between metabolism of reactive oxygen species and chemically induced male sterility in wheat (Triticum aestivum L.) [J]. Canadian Journal of Plant Science, 2013, 93: 675. DOI: 10.4141/cjps2012-280

    [21] 王爱国, 罗广华, 邵从本, 等. 大豆种子超氧物歧化酶的研究 [J]. 植物生理学报, 1983(1):77−84.

    WANG A G, LUO G H, SHAO C B, et al. A study on the superoxide dismutase of soybean seeds [J]. Acta Phytophysiologia Sinica, 1983(1): 77−84.(in Chinese)

    [22]

    WANG S P, ZHANG G S, SONG Q L, et al. Programmed cell death, antioxidant response and oxidative stress in wheat flag leaves induced by chemical hybridization agent SQ-1 [J]. Journal of Intergrative Agriculture, 2016, 15(1): 76. DOI: 10.1016/S2095-3119(14)60977-1

    [23]

    WANG S P, ZHANG G S, ZHANG Y X, et al. Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat(Triticum aestivum L.) [J]. Journal of Experimental Botany, 2015, 66(20): 6191. DOI: 10.1093/jxb/erv322

    [24] 李彩霞, 周新国, 王和州, 等. 小麦花后淹水胁迫对根区土温及籽粒灌浆的影响 [J]. 麦类作物学报, 2013, 33(6):1232−1236. DOI: 10.7606/j.issn.1009-1041.2013.06.027

    LI C X, ZHOU X G, WANG H Z, et al. Root zone soil temperature and grain filling progress of winter wheat under water flooding at grain filling stage [J]. Journal of Triticeae Crops, 2013, 33(6): 1232−1236.(in Chinese) DOI: 10.7606/j.issn.1009-1041.2013.06.027

    [25] 毕明, 李福海, 王秀兰, 等. 开花后淹水对两个冬小麦品种旗叶光合性能的影响研究 [J]. 气象与环境科学, 2012, 35(1):38−42. DOI: 10.3969/j.issn.1673-7148.2012.01.007

    BI M, LI F H, WANG X L, et al. Effects of post-anthesis waterlogging on flag leaf photosynthetic characteristics in two winter wheat varieties [J]. Meteorological and Environmental Sciences, 2012, 35(1): 38−42.(in Chinese) DOI: 10.3969/j.issn.1673-7148.2012.01.007

    [26] 向永玲, 方正武, 赵记伍, 等. 灌浆期涝害对弱筋小麦相对叶绿素含量及产量的影响 [J]. 福建农业学报, 2019, 34(3):264−270.

    XIANG Y L, FANG Z W, ZHAO J W, et al. Leaf chlorophyll and grain yield of low-gluten wheat as affected by waterlogging at grain-filling stage [J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 264−270.(in Chinese)

    [27] 闫素辉, 李文阳, 杨安中, 等. 灌溉地和雨养地小麦旗叶生育后期抗氧化酶活性变化的比较 [J]. 华北农学报, 2011, 26(1):162−166. DOI: 10.7668/hbnxb.2011.01.033

    YAN S H, LI W Y, YANG A Z, et al. Antioxidant enzymes activities of flag leaves in winter wheat during late grain filling under irrigation and rainfed treatments [J]. Acta Agriculturae Boreali-Sinica, 2011, 26(1): 162−166.(in Chinese) DOI: 10.7668/hbnxb.2011.01.033

    [28] 李玲, 张春雷, 张树杰, 等. 渍水对冬油菜苗期生长及生理的影响 [J]. 中国油料作物学报, 2011, 33(3):247−252.

    LI L, ZHANG C L, ZHANG S J, et al. Effects of waterlogging on growth and physiological changes of winter rapeseed seedling (Brassica napus L.) [J]. Chinese Journal of Oil Crop Sciences, 2011, 33(3): 247−252.(in Chinese)

    [29]

    WANG S P, ZHANG Y X, FANG Z W, et al. Cytological and proteomic analysis of wheat pollen abortion induced by chemical hybridization agent [J]. International Journal of Molecular Sciences, 2019, 20(7): 1615. DOI: 10.3390/ijms20071615

    [30] 肖旭峰, 李猛, 龙俊敏, 等. 镉诱导小白菜活性氧及抗氧化酶活性与自噬关系分析 [J]. 江西农业大学学报, 2019, 41(5):873−880.

    XIAO X F, LI M, LONG J M, et al. Relationship of active oxygen, antioxidant enzyme activity and autophagy under Cd stress in pakchoi [J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2019, 41(5): 873−880.(in Chinese)

    [31] 江敏, 郑舒文, 宁慧宇, 等. 外源水杨酸对涝渍胁迫下小麦产量及相关生理指标的影响 [J]. 江苏农业科学, 2017, 45(5):55−57.

    JIANG M, ZHENG S W, NING H Y, et al. Effects of exogenous salicylic acid on wheat yield and related physiological indexes under waterlogging stress [J]. Jiangsu Agricultural Sciences, 2017, 45(5): 55−57.(in Chinese)

    [32] 于晶晶, 王小燕, 段营营, 等. 江汉平原主推小麦品种抗渍能力研究 [J]. 湖北农业科学, 2014, 53(4):760−764. DOI: 10.3969/j.issn.0439-8114.2014.04.005

    YU J J, WANG X Y, DUAN Y Y, et al. Studies on the waterlogging resistance of main wheat varieties in Jianghan plain [J]. Hubei Agricultural Sciences, 2014, 53(4): 760−764.(in Chinese) DOI: 10.3969/j.issn.0439-8114.2014.04.005

    [33] 向永玲, 方正武, 赵记伍, 等. 灌浆期涝渍害对弱筋小麦籽粒产量及品质的影响 [J]. 麦类作物学报, 2020, 40(6):730−736. DOI: 10.7606/j.issn.1009-1041.2020.06.11

    XIANG Y L, FANG Z W, ZHAO J W, et al. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat [J]. Journal of Triticeae Crops, 2020, 40(6): 730−736.(in Chinese) DOI: 10.7606/j.issn.1009-1041.2020.06.11

图(4)  /  表(1)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  352
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-08-20
  • 网络出版日期:  2021-05-16

目录

/

返回文章
返回