Research Progress on Effects of Plant Hormones and Other Regulatory Factors on Rice Root Growth and Development
-
摘要:
水稻(Oryza sativa L.)作为全世界重要的粮食作物,提高其产量是保障国家粮食安全的重要策略。根系作为水稻最重要的器官之一,在水稻的生长发育、信号感知、激素合成、水分和养分吸收以及产量形成中起重要作用。然而,水稻根系的形成及生长发育也受到多种因素的影响。其中,植物激素在调控水稻根系生长发育过程中发挥着重要作用,使植物能够根据环境需求调节其发育、生长和生理状态。本文综述了影响水稻根系生长发育的非生物因素和生物因素;概述了与根系生长相关的基因及调控网络,重点阐述了植物激素在水稻根系形成及生长发育中的作用机制;总结了几种激素之间相互协同对根系的生长调控,并对其他影响根系的小分子物质进行讨论,旨在为水稻根系研究及提高水稻产量提供理论依据,也为今后更加精细化研究激素信号通路之间复杂的串扰以及和其他信号之间的作用机制提供新方向。
Abstract:Being one of the major food sources in the world, rice (Oryza sativa L.) has been studied to promote its growth and increase its production for the security of human livelihood. Since the root system is crucial for the growth, signal perception, hormone synthesis, water and nutrient uptakes, and production of a rice plant, the formation, development, and functions of the system need to be well understood. However, since the affecting factors are numerous, the study could be challenging. For instance, plant hormones are of special interest regarding their roles in regulating root growth and development under ever-changing environmental conditions. This article comprehensively reviewed subjects involving abiotic and biotic factors, related genes and regulatory networks, regulating plant hormones, and synergisms among hormones, metabolic trace minerals, and low-molecular substances. By emphasizing the studies on the plant hormones, it is hoped that research to further rice yield improvement and in-depth understanding of the basic biological mechanisms, complex interactions/interferences among biochemicals, and functional signaling pathways associated with rice root system development and functions will be realized.
-
Keywords:
- rice /
- root structure /
- plant hormones /
- regulatory network /
- growth and development
-
0. 引言
【研究意义】茶[Camellia sinensis (L.) O. Kuntze]内含物质丰富,富含茶多酚、生物碱、多糖、黄酮和氨基酸等多种次生代谢产物,具有防癌、抗氧化、降压、降脂、降糖、减肥、抑菌、防龋齿以及减少心血管疾病发生等多重保健功效,是全球最受欢迎的饮料之一[1−4]。茶树作为一种生长在不同农业气候区的木本植物[5],其产量与品质主要受光照、温度和水分等因子影响[6],其中光照通过光照强度和光质组成影响茶树的生长与品质形成,但是茶树光能利用率低,对光照强度要求低,对光质要求高[7]。研究光质对茶树光合响应与信号传导的机制对生产中调控茶树生长发育与品质形成具有重要意义。【前人研究进展】光质对茶树的生长发育产生不同的生理效应[8]和复杂的叠加效应与剂量效应[9]。单独的远红光(λ>700 nm)对光合作用的贡献较小[10],但综合研究表明,远红光与光合有效辐射光具有协同活性[11−12],其中红光与远红光比值(red to far-red light ratio, R/FR)是植物感知外界光环境变化的重要信号,参与调控光形态建成、植物发育等过程[13−14]。低比值的R/FR光环境能够提高茶树品种‘中茶108’的净光合速率、光饱和点与叶绿素的含量,降低光补偿点,而利于植株的生长[8],同时还能够响应非生物胁迫,提高植株抗性[15−17]。例如在低温、低比值R/FR环境条件下,依赖于C-重复结合因子(C-repeat binding factor, CBF)信号通路进行光温信号转导,大麦(Hordeum vulgare)CBF家族基因HvCBF14及其调节子基因HvCOR14b 上调表达[16],拟南芥(Arabidopsis thaliana)CBF家族基因AtCBF1、AtCBF2、AtCBF3则以依赖于生物钟的方式上调表达[18],协同调控,增强了植株的耐寒性。红光和远红光(600~750 nm)信号由光敏色素(phytochrome, PHY)感知到光刺激后,与光敏色素互作因子(phytochrome interacting factors, PIFs)互作,进行光信号传递,参与植物的种子萌发、光形态建成、避荫反应、昼夜节律和叶绿素代谢等过程[19]。PIFs不仅参与光信号响应,还作为温度感受器响应温度信号,如PIF3可以直接与CBF 基因家族的启动子结合,负调控拟南芥的冷驯化[20],PIF4能在高温条件下直接结合到生长素合成基因TAA1和YUC8的启动子上,调节生长素的合成,诱导拟南芥下胚轴的伸长[21−22],因此PIFs在光温信号转导中起着重要作用。在茶树中鉴定出PIFs 有4个类群7个基因:PIF1(CsPIF1)、PIF3(CsPIF3a, CsPIF3b)、PIF7(CsPIF7a, CsPIF7b)和PIF8(CsPIF8a, CsPIF8b),其中CsPIF3a被证明可以作为转录激活因子激活叶绿素代谢途径中CsHEMA和CsPOD的表达,从而调控叶绿素代谢[23]。【本研究切入点】虽然植物光温信号转导机制已经有较为深入的研究,但是有关于远红光对低温条件下茶树光合荧光特性的影响和PIFs的分子响应研究还未见系统的研究报道,有待深入研究。【拟解决的关键问题】本研究以茶树品种‘谷雨春’为试材,设置10 ℃模拟冬季低温条件,在普通白色LED灯的光环境中添加远红光LED灯,实现对光环境中R/FR比值的控制,探究不同R/FR值对茶树叶片气体交换参数、荧光参数以及未萌发芽光敏色素互作因子表达量的影响,以期阐明低温条件不同R/FR比值光环境下茶树的庇荫机制,为工厂化光设施育苗冬季补光提供理论指导。
1. 材料与方法
1.1 试验材料
供试茶树品种谷雨春,2年生未萌发盆栽苗,于2023年2月14日放置光照培养箱中适应培养7 d,设置培养温度10 ℃模拟冬季低温条件,光合光子通量密度约为90 μmol·m−2·s−1,光照周期14 h·d−1,湿度(70±10)%。
1.2 试验方法
1.2.1 试验处理
在适应培养7 d后,通过调节LED灯管数量,进行不同R/FR比值处理。参考王加真等[24]关于茶树LED光源设施栽培的理想光照强度研究,使用Hopocolor OHSP-350P植物光照分析仪进行总的光照强度和各处理红光与远红光照强度的测定、校准(图1)。设置远红光处理(FR)光质组成:85.5 μmol·m−2·s−1白光+4.5 μmol·m−2·s−1远红光,远红光占比5%,R/FR=4.1;白光处理(CK)光质组成:90 μmol·m−2·s−1白光,R/FR=10.4。光照周期为14 h·d−1,每个处理8盆,每盆2株茶苗。不同R/FR比值处理48 h后,取5.0 g腋芽用锡箔纸包好,立即放入液氮中冷冻3 min,然后快速放入−80 ℃冰箱中保存备用,用于总RNA的提取,每个处理设 3 个生物学重复。
1.2.2 光合特性测定
选取顶芽往下第3张全展功能叶,使用Walz GFS-
3000 光合仪测定叶片气体交换参数。测量叶室设置:光合光子通量密度800 μmol·m−2·s−1、叶室流速550 μmol·s−1、CO2浓度500 μmol·mol−1,叶室温度25 ℃,相对湿度60%。光合仪开机后进行ZP和MP调零,在排除外界与仪器对测量结果的影响后,测定净光合速率(Pn)、气孔导度(Gs)、细胞间二氧化碳浓度(Ci)、蒸腾速率(Tr),叶片水分利用效率(water use efficiency, WUE)计算公式为:WUE = Pn/Tr。1.2.3 叶绿素荧光参数测定
选取顶芽往下第3张全展功能叶,避开叶片中脉,使用Walz PAM-
2500 叶绿素荧光成像系统测定荧光动力学参数,叶片暗适应30 min后,打开暗适应夹,先打开测量光,再打开一次饱和脉冲光,测定初始荧光Fo、最大荧光Fm、实际量子产量(YⅡ)、非调节性能量耗散的量子产量Y (NO)、调节性能量耗散的量子产量Y(NPQ)、光化学淬灭系数(qL、qP)、非光化学淬灭系数(qN、NPQ)。同时测定不同光强设置下光合电子传递速率(electron transport rate, ETR),光合光子通量密度梯度为0、26、60、110、174、254、356、470、606、884、1006 μmol·m−2·s−1,每步20 s。1.2.4 总RNA提取及qRT-PCR检测
参照天根 RNAprep Pure 植物总 RNA 提取试剂盒说明,以离心柱法抽提茶树叶片中的总RNA,利用超微量核酸分析仪检测其浓度和纯度,1.0%琼脂糖凝胶电泳检测其完整性。采用天根FastKing RT Kit逆转录合成cDNA,采用天根SuperReal PreMix Plus试剂对光敏色素A(phytochrome A, PHYA)和PIFs基因表达情况进行检测。目的基因的特异性引物参考Zhang 等[23]和莫晓丽等[25]的研究报道(表1)。以CsACTIN为内参基因,反应体系20.0 μL:SYBR Green Master Mix 10.0 μL,正、反向引物各0.8 μL,灭菌水7.4 μL,cDNA模板1.0 μL。扩增程序:95 ℃ 30 s,95 ℃ 5 s,60 ℃ 20 s,40个循环。
表 1 qRT-PCR特异性引物Table 1. qRT-PCR specific primers基因
Gene name登录号
Gene ID上游引物(5'-3')
Forward primer sequence (5'-3')下游引物(5'-3')
Reverse primer sequence (5'-3')CsPIF1 TEA006532 TGGAGGACTAAGGGGACA TTTACGCCTGAGATTTGC CsPIF3a TEA033210 CAACAAGGTGGACAAAGC AACATCATCGGTGGCATA CsPIF3b TEA007077 GCAACAAGGTGGACAAAGC TAACATCATCGGCGGCAT CsPIF7a TEA025875 CTCGGTCCCTTTTCCTGA GTTGGCTGCGTTGTTTGA CsPIF7b TEA011633 GATGTGGTCAGAATCCGAAAA GAATCCTCATCCGTGGTTTTA CsPIF8a TEA032260 CCTCTTCTCCACCCTACAGC GAAACAATGCAGCCATCCTA CsPIF8b TEA023842 ACTCCGTTTCTCACAGCA CAGCAGCCCTACATCTTT CsPHY2 TEA002223 TGTTCCCTTCCCTCTTCGTT TCCATTACATTCGGGCTCTG CsPHY4 TEA005460 AGTCTTCAGGCAGTTCAGGG GGATGTGATGGAGGTAAGCG CsACTIN KA280216 GCCATCTTTGATTGGAATGG GGTGCCACAACCTTGATCTT 1.3 统计分析
采用2−△△Ct计算相对表达量,采用SPSS 23.0进行单因素方差分析(ANOVA),经Turkey法进行差异显著性检验,所有图片采用GraphPad Prism 9.5.1软件绘制。
2. 结果与分析
2.1 不同R/FR比值处理茶树叶片光合特性
光质通过影响两个光系统(Photosystem Ⅰ and Photosystem Ⅱ,PSⅠ和 PSⅡ)的不平衡激发来影响光合作用。由图2可知,在相同的光量子密度条件下,FR处理显著降低了茶树的Tr与Pn,较CK处理分别降低了44.06%和32.65%,而Ci较CK处理下降了11.96%,这可能是造成FR处理Pn显著下降的直接原因,表明10 ℃低温条件下添加5%的远红光产生了严重的庇荫效应,显著抑制了茶树叶片的光合作用。
2.2 不同R/FR比值处理茶树叶片荧光参数
叶绿素荧光是胁迫环境下描述叶绿体状态的重要指标。由图3可知,FR处理荧光参数Fo、Fm、Fv/Fm、Fv/Fo均减小,较CK分别减小6.33%、16.42%、5.06%、14.19%,同时光化学淬灭系数(qL、qP)、非光化学淬灭系数(qN、NPQ)均减小,较CK减小5.03%、3.80%、4.37%、14.10%,但是差异均不显著(P>0.05)。
FR处理下,茶树叶片Y(NO)所占的比例较CK处理升高了11.23%,Y(Ⅱ)和Y(NPQ)所占的比例分别下降了8.68%和4.84%(图4),表明茶树在受到远红光的庇荫效应后,PSⅡ吸收的激发能用于电子传递的份额降低,通过能量耗散的份额增加,叶片的光保护能力下降,即只能通过非调节性能量耗散的方式将过剩的光能耗散。因此,低温条件下FR处理可能对茶树产生了一定程度的光损伤。
2.3 不同R/FR比值处理茶树叶片快速响应曲线
电子传递速率(ETR)是叶绿体光合作用强度的重要指标。由图5可知,在达到光饱和前,相同光合有效辐射(PAR)条件下, FR处理的ETR均小于CK处理,表明FR处理导致茶树光合作用受到抑制。在ETR和PAR的拟合曲线中,两个处理的初始斜率相同,且变化趋势类似,当PAR约为100 μmol·m−2·s−1时斜率开始下降,而FR处理下降速度(即快速光响应曲线斜率)明显大于CK处理,综合表明FR处理降低了茶树光合电子传递速率及可接受的最大光合有效辐射。
2.4 不同R/FR比值处理茶树休眠芽PHYA和PIFs基因的相对表达量
为研究茶树芽对远红光刺激的分子响应机制,本研究测定了不同R/FR处理48 h后未萌发芽PHYA和PIFs基因的相对表达量,由图6结果可知,FR处理茶树休眠越冬芽中远红光受体PHYA家族基因CsPHY2、CsPHY4均上调表达,分别为CK处理的2.39和1.29倍,CsPIFs家族基因CsPIF1、CsPIF3a、CsPIF8a下调表达,分别为CK处理的54%、72%、54%,CsPIF8b上调表达,为CK处理的1.28倍。结果表明CsPHY2和CsPHY4作为远红光受体参与远红光刺激的响应,CsPIFs家族基因CsPIF1、CsPIF3a、CsPIF8a可能负调控植株的庇荫反应。
3. 讨论
3.1 低温条件下降低R/FR比值对茶树产生庇荫效应
遮阴会导致光照强度减弱,光质组成发生变化[26],远红光和绿光波段会在反射和透射光中富集,导致红光与远红光的比值降低。植物通过光敏色素感受环境中R/FR的比例变化,从而感知遮阴环境,启动包括茎与叶柄伸长、叶角抬高、抑制分枝、加速开花等庇荫综合征(shade avoidance syndrome, SAS)的发育反应[27−29]。这些反应影响植物光形态建成,促进植物冠层的光截获,作为植物响应遮阴胁迫的适应性策略,以维持其在光环境中的竞争优势[30]。因此,降低R/FR的比例会触发SAS。在前人研究中,相同光量子密度条件下,降低R/FR比值,导致生菜(Lactuca satva)[31]、冰草(Agropyron cristatum)[32]、大豆(Glycine max)[26]等均表现出茎秆长度、叶面积以及生物量增加的庇荫效应。但是不同植物对降低R/FR比值后的光合荧光特性的响应不一致,如大豆幼苗在正常光与弱光条件下,添加远红光、降低R/FR比值后,均导致Pn、光饱和点和PSⅡ最大量子产量Fv/Fm的升高[26];盐胁迫下的番茄(Solanum lycopersicum)在降低R/FR比值后,也会导致Pn升高[33];莴苣(Lactuca sativa)添加远红光可提高YⅡ、Pn,降低Y(NPQ)[34];本研究中茶树品种谷雨春与生菜[31]、冰草[32]在降低R/FR比值后,导致Pn下降的趋势一样。由于在光能的吸收、传输和转化过程中叶绿素起着重要作用,其含量与组成直接影响叶片的光合能力[35]。因此,研究结果的差异可能与总叶绿素及光合氮含量有关[31,36],还可能与两个光系统的不平衡激发有关。优先激发PSⅠ的远红光(λ>700 nm)能够降低叶片的吸收能力和光合作用量子产率。因此,降低R/FR的比值后,远红光对两个光系统的不平衡激发,导致ETR与Pn的下降。综合表明,降低R/FR比值虽然降低了叶片Pn,但SAS会导致茎秆的伸长,叶面积的增大,使得冠层的光截获能力提升,最终增加了生物量。
3.2 低温条件下降低R/FR比值降低了茶树叶片叶绿素含量
叶绿素在植物光合作用光吸收阶段起着核心作用,光作为叶绿素合成的重要条件,其与相应的光受体作用调控色素的合成[37],远红光通过影响叶绿素的含量以及叶绿素a与叶绿素b的比值来影响叶片的光合能力与光合活性[38]。与光合荧光特性类似,随R/FR比值的降低,不同植物叶绿素含量呈现出不同的变化趋势。如大豆 [26, 39−40]、菊花(Chrysanthemum morifolium)[41]等降低R/FR比值,叶绿素含量升高,而玉米(Zea mays)[42] 、黄瓜(Cucumis sativus)[43]和马铃薯(Solanum tuberosum)[44]则随着R/FR比值的降低,叶绿素含量降低。在本研究中,降低R/FR比值降低了CsPIF3a的表达量。由于茶树CsPIF3a基因是叶绿素合成的重要调节因子,CsPIF3a可以与叶绿素合成途径中编码谷氨酰-tRNA 还原酶基因CsHEMA和原叶绿素酸酯还原酶基因CsPOR启动子上的G-box作用元件结合,激活启动子的转录,参与叶绿素的生物合成,同时在拟南芥过表达株系CsPIF3a-OE中AtHEMA、AtHEME、AtCHLI和AtPORC等叶绿素生物合成的基因显著上调表达,叶片色泽更绿且叶绿素含量更高,表明CsPIF3a通过正向激活叶绿素合成相关基因的表达,诱导叶绿素在茶树叶片中的积累[23]。因此,CsPIF3a的表达量降低可能会导致叶绿素含量降低,而叶片的光吸收率与单位叶面积的叶绿素含量呈正相关[45],这与降低R/FR比值会导致光合能力下降的结果相一致,所以长时间低R/FR比值的光环境可能会导致茶树叶片叶绿素含量的降低,降低叶片的光合能力。有研究表明,添加15%的远红光后,中茶108叶片中叶绿素a、叶绿素b等含量均显著高于未添加远红光处理的叶片含量[8]。通过遮阴处理14 d后均能提高茶树叶片的叶绿素相对含量值[46],这与本研究结果不一致,推测可能是因为不同R/FR比值对植株叶绿素含量和光合能力的影响趋势不一致,例如在相同光照强度下,菊花叶片光合速率由大到小的R/FR值顺序依次为2.5、4.5、0.5、6.5[47],也可能是遮阴处理导致光照强度减弱以及品种间差异等因素导致[8],还可能是由于低温条件下光温互作调控的结果。
4. 结论
在低温条件下,低R/FR比值的光环境导致茶树叶片ETR、Pn、YⅡ和Y(NPQ)所占的比例下降,Y(NO)所占的比例升高,表明茶树叶片受到光抑制和光损伤,影响了光合机构的作用,导致光合电子传递能力下降。在此过程中,CsPIF1、CsPIF3a、CsPIF8a作为庇荫反应的负调控因子响应远红光刺激,其中叶绿素合成的重要调节因子CsPIF3a基因表达量降低,进一步削弱了茶树叶片的光合能力。
-
图 1 水稻根系组成[18]
A:4日龄水稻幼苗的根系, 标尺= 0.5 cm;B:7日龄水稻幼苗的根系,标尺= 1 cm;C:水稻根毛,标尺= 1 mm。SR:初生根;AR: 不定根;CR:冠根;RH:根毛。
Figure 1. Root system of a rice plant [18]
A: root of a 4-d-old rice seeding, scale bar=0.5 cm; B: root of a 7-d-old rice seeding, scale bar=1 cm; C: root hairs of a rice plant, scale bar=1 mm; SR: seminal root; AR: adventitious root; CR: crown root; RH: root hair.
表 1 水稻中已克隆的根系生长发育相关基因及其功能
Table 1 Cloned genes and functions associated with rice root growth and development
基因符号
Gene symbol基因号
Genomic Locus突变体表型
Mutant phenotype参考文献
ReferencesOsA8 Os03g0100800 OsA8的敲除突变植株根系生物量减少 [1] OsPHR3 Os02g0139000 OsPHR3突变体不定根和根毛发育减弱 [2] OsWRKY74 Os09g0334500 过表达植株在Pi或是P缺乏时,根的生物量更高 [3] OsAMT1;3 Os02g0620500 低铵条件下,敲除突变体植株总侧根数、种子根和侧根长度均降低 [4] OsGRX6 Os01g0667900 过表达OsGRX6的植株根干重下降 [5] OsPHO2 Os05g0557700 OsPHO2的敲除突变体植株根系更短 [6] GCN5 Os10g0415900 GCN5敲除突变体植株冠状根较少,根长降低 [7] OsAIP1 Os01g0125800 OsAIP1过表达和敲除植株根毛长度较短,直径增大 [8] OsCYCP4;1 Os10g0563900 过表达OsCYCP4;1植株根长度较短 [9] OsCSLD1 Os10g0578200 OsCSLD1突变体植株根毛长度偏短、局部扭曲膨胀 [10] RT Os04g0497200 突变体rt根长较短 [11] OsDRP2B Os02g0738900 突变体主根长度变短,侧根直径增加 [12] OsTSD2 Os02g0755000 突变体初生根较短、侧根更密 [13] OsPUB15 Os08g0110500 OsPUB15突变体种子根缺失 [14] OsCatB Os06g0727200 过表达CatB植株根重下降 [15] miR390 Os03g0817300 过表达miR390植株侧根数增加 [16] 表 2 水稻中已克隆的根系生长发育相关激素基因及其功能
Table 2 Cloned genes and functions related to hormones of root growth and development
基因符号
Gene symbol基因号
Genomic Locus突变体表型
Mutant phenotype参考文献
ReferencesTDD1 Os04g0463500 ostdd1根长减短 [42] OsYUCCA1 Os01g0645400 osyucca1冠状根增加 [42] FIB Os01g0169800 突变体fib根系发育缺陷 [43] OsAUX1 Os01g0856500 osaux1根长增加,根毛较短,过表达植株相反 [44] OsPIN2 Os06g0660200 ospin2突变体根卷曲,侧根形成模式改变 [45] OsTIR1 Os05g0150500 ostir1初生根增长,不定根和侧根密度降低 [46] OsAFB2 Os04g0395600 osafb2初生根增长,不定根和侧根密度降低 [46] OsLOGL5 Os03g0857900 OsLOGL5表达量的改变影响根系伸长和侧根发育 [47] BG3 Os01g0680200 bg3-D根生长量减少 [48] OsBRD1 Os03g0602300 osbrd1根系发育不良,冠根数量少 [49] OsBRI1 Os01g0718300 osbri1根系生长异常 [50] OsBZR1 Os07g0580500 OsBZR1过表达植株侧根数增加 [49] OsKS1 Os04g0611800 ks1突变体根长较短和根分生组织更小 [51] OsSWEET3a Os05g0214300 OsSWEET3a的敲除系和过表达系均表现出根生长迟缓 [52] OsSLR1 Os03g0707600 突变体slr1根长较短且数目减少 [53] OsNCED2 Os12g0435200 干旱条件下,过表达植株冠根和侧根数增加,敲除突变体相反 [54] OsACS1 Os03g0727600 OsACS1过表达植株根系更短 [55] OsERS2 Os05g0155200 osers2突变体植株具有短根表型 [56] OsCOI2 Os03g0265500 MeJA处理后的coi2根比野生型长 [57] AIM1 Os02g0274100 突变体aim1根长和不定根根长显著变短 [58] -
[1] CHANG C R,HU Y B,SUN S B,et al. Proton pump OsA8 is linked to phosphorus uptake and translocation in rice[J]. Journal of Experimental Botany,2009,60(2) :557−565. DOI: 10.1093/jxb/ern298
[2] SUN Y F,LUO W Z,JAIN A,et al. OsPHR3 affects the traits governing nitrogen homeostasis in rice[J]. BMC Plant Biology,2018,18(1) :241. DOI: 10.1186/s12870-018-1462-7
[3] DAI X Y,WANG Y Y,ZHANG W H. OsWRKY74,a WRKY transcription factor,modulates tolerance to phosphate starvation in rice[J]. Journal of Experimental Botany,2016,67(3) :947−960. DOI: 10.1093/jxb/erv515
[4] LI K N,ZHANG S N,TANG S,et al. The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters[J]. Plant Physiology,2022,189(3) :1608−1624. DOI: 10.1093/plphys/kiac178
[5] EL-KEREAMY A,BI Y M,MAHMOOD K,et al. Overexpression of the CC-type glutaredoxin,OsGRX6 affects hormone and nitrogen status in rice plants[J]. Frontiers in Plant Science,2015,6:934.
[6] CAO Y,YAN Y,ZHANG F,et al. Fine characterization of OsPHO2 knockout mutants reveals its key role in Pi utilization in rice[J]. Journal of Plant Physiology,2014,171(3/4) :340−348.
[7] ZHOU S L,JIANG W,LONG F,et al. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem[J]. The Plant Cell,2017,29(5) :1088−1104. DOI: 10.1105/tpc.16.00908
[8] SHI M,XIE Y R,ZHENG Y Y,et al. Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover[J]. Plant Journal,2013,73(5) :747−760. DOI: 10.1111/tpj.12065
[9] XU L,WANG F,LI R L,et al. OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice[J]. Journal of Integrative Plant Biology,2020,62(7) :1017−1033. DOI: 10.1111/jipb.12885
[10] KIM C M,PARK S H,JE B I,et al. OsCSLD1,a cellulose synthase-like D1 gene,is required for root hair morphogenesis in rice[J]. Plant Physiology,2007,143(3) :1220−1230. DOI: 10.1104/pp.106.091546
[11] INUKAI Y,SAKAMOTO T,MORINAKA Y,et al. ROOT GROWTH INHIBITING,a rice endo-1,4-β-d-glucanase,regulates cell wall loosening and is essential for root elongation[J]. Journal of Plant Growth Regulation,2012,31(3) :373−381. DOI: 10.1007/s00344-011-9247-3
[12] XIONG G Y,LI R,QIAN Q,et al. The rice dynamin-related protein DRP2B mediates membrane trafficking,and thereby plays a critical role in secondary cell wall cellulose biosynthesis[J]. Plant Journal,2010,64(1) :56−70.
[13] QU L H,WU C Y,ZHANG F,et al. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification[J]. Journal of Experimental Botany,2016,67(18) :5349−5362. DOI: 10.1093/jxb/erw297
[14] PARK J J,YI J,YOON J,et al. OsPUB15,an E3 ubiquitin ligase,functions to reduce cellular oxidative stress during seedling establishment[J]. Plant Journal,2011,65(2) :194−205. DOI: 10.1111/j.1365-313X.2010.04416.x
[15] JOO J,LEE Y H,SONG S I. Rice CatA,CatB,and CatC are involved in environmental stress response,root growth,and photorespiration,respectively[J]. Journal of Plant Biology,2014,57(6) :375−382. DOI: 10.1007/s12374-014-0383-8
[16] LU Y Z,FENG Z,LIU X Y,et al. MiR393 and miR390 synergistically regulate lateral root growth in rice under different conditions[J]. BMC Plant Biology,2018,18(1) :261. DOI: 10.1186/s12870-018-1488-x
[17] MORITA S,NEMOTO K. Morphology and anatomy of rice roots with special reference to coordination in organo- and histogenesis[M]//Structure and Function of Roots. Dordrecht:Springer Netherlands,1995:75–86.
[18] SUN H W,LI W Q,BURRITT D J,et al. Strigolactones interact with other phytohormones to modulate plant root growth and development[J]. The Crop Journal,2022,10(6) :1517−1527. DOI: 10.1016/j.cj.2022.07.014
[19] ROBBINS N E II,DINNENY J R. Growth is required for perception of water availability to pattern root branches in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(4) :E822−E831.
[20] SEBASTIAN J,YEE M C,GOUDINHO VIANA W,et al. Grasses suppress shoot-borne roots to conserve water during drought[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(31) :8861−8866.
[21] BENGOUGH A G,LOADES K,MCKENZIE B M. Root hairs aid soil penetration by anchoring the root surface to pore walls[J]. Journal of Experimental Botany,2016,67(4) :1071−1078. DOI: 10.1093/jxb/erv560
[22] CLARK L H,HARRIS W H. Observations on the root anatomy of rice (Oryza sativa L. ) [J]. American Journal of Botany,1981,68(2) :154. DOI: 10.1002/j.1537-2197.1981.tb12374.x
[23] MOTTE H,VANNESTE S,BEECKMAN T. Molecular and environmental regulation of root development[J]. Annual Review of Plant Biology,2019,70:465−488. DOI: 10.1146/annurev-arplant-050718-100423
[24] CARRILLO-CARRASCO V P,HERNANDEZ-GARCIA J,MUTTE S K,et al. The birth of a giant:Evolutionary insights into the origin of auxin responses in plants[J]. The EMBO Journal,2023,42(6) :e113018. DOI: 10.15252/embj.2022113018
[25] YAMAZAKI K,FUJIWARA T. The effect of phosphate on the activity and sensitivity of nutritropism toward ammonium in rice roots[J]. Plants,2022,11(6) :733. DOI: 10.3390/plants11060733
[26] WANG H Q,ZHAO X Y,XUAN W,et al. Rice roots avoid asymmetric heavy metal and salinity stress via an RBOH-ROS-auxin signaling cascade[J]. Molecular Plant,2023,16(10) :1678−1694. DOI: 10.1016/j.molp.2023.09.007
[27] ZHU S X,ZHAO W,SUN S X,et al. Community metagenomics reveals the processes of cadmium resistance regulated by microbial functions in soils with Oryza sativa root exudate input[J]. Science of the Total Environment,2024,949:175015. DOI: 10.1016/j.scitotenv.2024.175015
[28] WU B B,WANG J Y,DAI H Y,et al. Radial oxygen loss triggers diel fluctuation of cadmium dissolution in the rhizosphere of rice[J]. Environmental Science & Technology,2024,58(33) :14718−14725.
[29] HUANG Y Z,JI Z,TAO Y J,et al. Improving rice nitrogen-use efficiency by modulating a novel monouniquitination machinery for optimal root plasticity response to nitrogen[J]. Nature Plants,2023,9(11) :1902−1914. DOI: 10.1038/s41477-023-01533-7
[30] LEI Z L,DING Y X,XU W F,et al. Microbial community structure in rice rhizosheaths under drought stress[J]. Journal of Plant Ecology,2023,16(5) :rtad012. DOI: 10.1093/jpe/rtad012
[31] DING Z J,XU C,YAN J Y,et al. The LRR receptor-like kinase ALR1 is a plant aluminum ion sensor[J]. Cell Research,2024,34(4) :281−294. DOI: 10.1038/s41422-023-00915-y
[32] RONZAN M,PIACENTINI D,FATTORINI L,et al. Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin[J]. Environmental and Experimental Botany,2018,151:64−75. DOI: 10.1016/j.envexpbot.2018.04.008
[33] QIN H,HUANG R F. The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response[J]. Molecular Breeding,2020,40(5) :47. DOI: 10.1007/s11032-020-1100-6
[34] ARSOVA B,FOSTER K J,SHELDEN M C,et al. Dynamics in plant roots and shoots minimize stress,save energy and maintain water and nutrient uptake[J]. New Phytologist,2020,225(3) :1111−1119. DOI: 10.1111/nph.15955
[35] JIA Z T,GIEHL R F H,VON WIRÉN N. Local auxin biosynthesis acts downstream of brassinosteroids to trigger root foraging for nitrogen[J]. Nature Communications,2021,12(1) :5437. DOI: 10.1038/s41467-021-25250-x
[36] LI J H,ZHANG Z Y,CHONG K,et al. Chilling tolerance in rice:Past and present[J]. Journal of Plant Physiology,2022,268:153576. DOI: 10.1016/j.jplph.2021.153576
[37] GROVER M,BODHANKAR S,SHARMA A,et al. PGPR mediated alterations in root traits:Way toward sustainable crop production[J]. Frontiers in Sustainable Food Systems,2021,4:618230. DOI: 10.3389/fsufs.2020.618230
[38] WU Q Q,PENG X J,YANG M F,et al. Rhizobia promote the growth of rice shoots by targeting cell signaling,division and expansion[J]. Plant Molecular Biology,2018,97(6) :507−523. DOI: 10.1007/s11103-018-0756-3
[39] XU F Y,LIAO H P,ZHANG Y J,et al. Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying[J]. The ISME Journal,2022,16(3) :801−811. DOI: 10.1038/s41396-021-01133-3
[40] MEENA K K,BITLA U M,SORTY A M,et al. Mitigation of salinity stress in wheat seedlings due to the application of phytohormone-rich culture filtrate extract of methylotrophic actinobacterium Nocardioides sp. NIMMe6[J]. Frontiers in Microbiology,2020,11:2091.
[41] ZHANG Y J,DU H,XU F Y,et al. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses[J]. Plant Physiology,2020,183(2) :780−792. DOI: 10.1104/pp.19.01020
[42] ZHANG T,LI R N,XING J L,et al. The YUCCA-auxin-WOX11 module controls crown root development in rice[J]. Frontiers in Plant Science,2018,9:523. DOI: 10.3389/fpls.2018.00523
[43] YOSHIKAWA T,ITO M,SUMIKURA T,et al. The rice FISH BONE gene encodes a tryptophan aminotransferase,which affects pleiotropic auxin-related processes[J]. Plant Journal,2014,78(6) :927−936. DOI: 10.1111/tpj.12517
[44] SUN C D,LI D M,GAO Z Y,et al. OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice[J]. Journal of Integrative Plant Biology,2022,64(1) :118−134. DOI: 10.1111/jipb.13183
[45] LI W Q,ZHANG M J,QIAO L,et al. Characterization of wavy root 1,an agravitropism allele,reveals the functions of OsPIN2 in fine regulation of auxin transport and distribution and in ABA biosynthesis and response in rice (Oryza sativa L. ) [J]. The Crop Journal,2022,10(4) :980−992. DOI: 10.1016/j.cj.2021.12.004
[46] GUO F,HUANG Y Z,QI P P,et al. Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield,tillering,plant height,root system,germination,and auxinic herbicide resistance[J]. New Phytologist,2021,229(5) :2676−2692. DOI: 10.1111/nph.17061
[47] CHEN L,JAMESON G B,GUO Y C,et al. The LONELY GUY gene family:From mosses to wheat,the key to the formation of active cytokinins in plants[J]. Plant Biotechnology Journal,2022,20(4) :625−645. DOI: 10.1111/pbi.13783
[48] XIAO Y H,LIU D P,ZHANG G X,et al. Big Grain3,encoding a purine permease,regulates grain size via modulating cytokinin transport in rice[J]. Journal of Integrative Plant Biology,2019,61(5) :581−597. DOI: 10.1111/jipb.12727
[49] JIAO X M,WANG H C,YAN J J,et al. Promotion of BR biosynthesis by miR444 is required for ammonium-triggered inhibition of root growth[J]. Plant Physiology,2020,182(3) :1454−1466. DOI: 10.1104/pp.19.00190
[50] 赵雪松,王倩,闫青地,等. 油菜素内酯对水稻根系发育的调控作用[J]. 中国细胞生物学学报,2016,38(10) :1191−1198. DOI: 10.11844/cjcb.2016.10.0109 ZHAO X S,WANG Q,YAN Q D,et al. Function of brassinolide in the regulation of root development in rice[J]. Chinese Journal of Cell Biology,2016,38(10) :1191−1198. (in Chinese) DOI: 10.11844/cjcb.2016.10.0109
[51] HE Y Q,HONG G J,ZHANG H H,et al. The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4[J]. The Plant Cell,2020,32(9) :2806−2822. DOI: 10.1105/tpc.19.00499
[52] MORII M,SUGIHARA A,TAKEHARA S,et al. The dual function of OsSWEET3a as a gibberellin and glucose transporter is important for young shoot development in rice[J]. Plant & Cell Physiology,2020,61(11) :1935−1945.
[53] DAVIÈRE J M,ACHARD P. A pivotal role of DELLAs in regulating multiple hormone signals[J]. Molecular Plant,2016,9(1) :10−20. DOI: 10.1016/j.molp.2015.09.011
[54] HUANG L Y,BAO Y C,QIN S W,et al. The ABA synthesis enzyme allele OsNCED2T promotes dryland adaptation in upland rice[J]. The Crop Journal,2024,12(1) :68−78. DOI: 10.1016/j.cj.2023.12.001
[55] QIN H,WANG J,CHEN X B,et al. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress[J]. New Phytologist,2019,223(2) :798−813. DOI: 10.1111/nph.15824
[56] ZHAO H,DUAN K X,MA B,et al. Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice[J]. Nature Communications,2020,11(1) :518. DOI: 10.1038/s41467-020-14313-0
[57] INAGAKI H,HAYASHI K,TAKAOKA Y,et al. Genome editing reveals both the crucial role of OsCOI2 in jasmonate signaling and the functional diversity of COI1 homologs in rice[J]. Plant & Cell Physiology,2023,64(4) :405−421.
[58] XU L,ZHAO H Y,RUAN W Y,et al. ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice[J]. The Plant Cell,2017,29(3) :560−574. DOI: 10.1105/tpc.16.00665
[59] WAADT R,SELLER C A,HSU P K,et al. Plant hormone regulation of abiotic stress responses[J]. Nature Reviews Molecular Cell Biology,2022,23(10) :680−694. DOI: 10.1038/s41580-022-00479-6
[60] ZHAO B Q,LIU Q Y,WANG B S,et al. Roles of phytohormones and their signaling pathways in leaf development and stress responses[J]. Journal of Agricultural and Food Chemistry,2021,69(12) :3566−3584. DOI: 10.1021/acs.jafc.0c07908
[61] MAO C J,HE J M,LIU L N,et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal,2020,18(2) :429−442. DOI: 10.1111/pbi.13209
[62] ZHAO J,YANG B,LI W J,et al. A genome-wide association study reveals that the glucosyltransferase OsIAGLU regulates root growth in rice[J]. Journal of Experimental Botany,2021,72(4) :1119−1134. DOI: 10.1093/jxb/eraa512
[63] ZHANG S Z,WU T,LIU S J,et al. Disruption of OsARF19 is critical for floral organ development and plant architecture in rice (Oryza sativa L. ) [J]. Plant Molecular Biology Reporter,2016,34(4) :748−760. DOI: 10.1007/s11105-015-0962-y
[64] WANG M,QIAO J Y,YU C L,et al. The auxin influx carrier,OsAUX3,regulates rice root development and responses to aluminium stress[J]. Plant,Cell & Environment,2019,42(4) :1125–1138.
[65] YE R G,WU Y R,GAO Z Y,et al. Primary root and root hair development regulation by OsAUX4 and its participation in the phosphate starvation response[J]. Journal of Integrative Plant Biology,2021,63(8) :1555−1567. DOI: 10.1111/jipb.13142
[66] JIANG L H,YAO B L,ZHANG X Y,et al. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth[J]. Plant Journal,2023,115(1) :155−174. DOI: 10.1111/tpj.16218
[67] GAO J,ZHAO Y,ZHAO Z K,et al. RRS1 shapes robust root system to enhance drought resistance in rice[J]. New Phytologist,2023,238(3) :1146−1162. DOI: 10.1111/nph.18775
[68] CHEN Y,YANG Q F,SANG S H,et al. Rice inositol polyphosphate kinase (OsIPK2) directly interacts with OsIAA11 to regulate lateral root formation[J]. Plant & Cell Physiology,2017,58(11) :1891−1900.
[69] KITOMI Y,INAHASHI H,TAKEHISA H,et al. OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice[J]. Plant Science,2012,190:116−122. DOI: 10.1016/j.plantsci.2012.04.005
[70] NI J,WANG G H,ZHU Z X,et al. OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice[J]. Plant Journal,2011,68(3) :433−442. DOI: 10.1111/j.1365-313X.2011.04698.x
[71] QI Y H,WANG S K,SHEN C J,et al. OsARF12,a transcription activator on auxin response gene,regulates root elongation and affects iron accumulation in rice (Oryza sativa) [J]. New Phytologist,2012,193(1) :109−120. DOI: 10.1111/j.1469-8137.2011.03910.x
[72] WANG X F,HE F F,MA X X,et al. OsCAND1 is required for crown root emergence in rice[J]. Molecular Plant,2011,4(2) :289−299. DOI: 10.1093/mp/ssq068
[73] HAN Y F,ZHANG C Z,SHA H J,et al. Ubiquitin-conjugating enzyme OsUBC11 affects the development of roots via auxin pathway[J]. Rice,2023,16(1) :9. DOI: 10.1186/s12284-023-00626-3
[74] WYBOUW B,DE RYBEL B. Cytokinin - A developing story[J]. Trends in Plant Science,2019,24(2) :177−185. DOI: 10.1016/j.tplants.2018.10.012
[75] ZHAO J Z,YU N N,JU M,et al. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice[J]. Journal of Experimental Botany,2019,70(21) :6277−6291. DOI: 10.1093/jxb/erz382
[76] GAO S P,FANG J,XU F,et al. CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation[J]. Plant Physiology,2014,165(3) :1035−1046. DOI: 10.1104/pp.114.238584
[77] DO NASCIMENTO F C,DE SOUZA A F F,DE SOUZA V M,et al. OsCKX5 modulates root system morphology and increases nutrient uptake in rice[J]. Journal of Plant Growth Regulation,2022,41(6) :2157−2170. DOI: 10.1007/s00344-021-10419-x
[78] NONGPIUR R C,RAWAT N,SINGLA-PAREEK S L,et al. OsRR26,a type-B response regulator,modulates salinity tolerance in rice via phytohormone-mediated ROS accumulation in roots and influencing reproductive development[J]. Planta,2024,259(5) :96. DOI: 10.1007/s00425-024-04366-6
[79] LIU H L,HUANG J Q,ZHANG X J,et al. The RAC/ROP GTPase activator OsRopGEF10 functions in crown root development by regulating cytokinin signaling in rice[J]. The Plant Cell,2023,35(1) :453−468. DOI: 10.1093/plcell/koac297
[80] HOU J Q,ZHENG X K,REN R F,et al. The histone deacetylase 1/GSK3/SHAGGY-like kinase 2/BRASSINAZOLE-RESISTANT 1 module controls lateral root formation in rice[J]. Plant Physiology,2022,189(2) :858−873. DOI: 10.1093/plphys/kiac015
[81] JIANG Y H,BAO L,JEONG S Y,et al. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice[J]. Plant Journal,2012,70(3) :398−408. DOI: 10.1111/j.1365-313X.2011.04877.x
[82] LO S F,YANG S Y,CHEN K T,et al. A novel class of gibberellin 2-oxidases control semidwarfism,tillering,and root development in rice[J]. The Plant Cell,2008,20(10) :2603−2618. DOI: 10.1105/tpc.108.060913
[83] LI J T,ZHAO Y,CHU H W,et al. SHOEBOX modulates root meristem size in rice through dose-dependent effects of gibberellins on cell elongation and proliferation[J]. PLoS Genetics,2015,11(8) :e1005464. DOI: 10.1371/journal.pgen.1005464
[84] MO W P,TANG W J,DU Y X,et al. PHYTOCHROME-INTERACTING FACTOR-LIKE14 and SLENDER RICE1 interaction controls seedling growth under salt stress[J]. Plant Physiology,2020,184(1) :506−517. DOI: 10.1104/pp.20.00024
[85] LI J N,ZHANG Y X,LI Z Y,et al. OsPEX1,an extensin-like protein,negatively regulates root growth in a gibberellin-mediated manner in rice[J]. Plant Molecular Biology,2023,112(1/2) :47−59.
[86] TENG Z N,LYU J H,CHEN Y K,et al. Effects of stress-induced ABA on root architecture development:Positive and negative actions[J]. The Crop Journal,2023,11(4) :1072−1079. DOI: 10.1016/j.cj.2023.06.007
[87] CHEN H,MA B,ZHOU Y,et al. E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(17) :4513−4518.
[88] SANTOSH KUMAR V V,YADAV S K,VERMA R K,et al. The abscisic acid receptor OsPYL6 confers drought tolerance to indica rice through dehydration avoidance and tolerance mechanisms[J]. Journal of Experimental Botany,2021,72(4) :1411−1431. DOI: 10.1093/jxb/eraa509
[89] XU N,CHU Y L,CHEN H L,et al. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging[J]. PLoS Genetics,2018,14(10) :e1007662. DOI: 10.1371/journal.pgen.1007662
[90] KAWAI T,SHIBATA K,AKAHOSHI R,et al. WUSCHEL-related homeobox family genes in rice control lateral root primordium size[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(1) :e2101846119.
[91] YOON J,CHO L H,YANG W Z,et al. Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis[J]. Journal of Experimental Botany,2020,71(18) :5348−5364. DOI: 10.1093/jxb/eraa209
[92] MA B,YIN C C,HE S J,et al. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L. ) seedlings[J]. PLoS Genetics,2014,10(10) :e1004701. DOI: 10.1371/journal.pgen.1004701
[93] ZHAO H,MA B,DUAN K X,et al. The GDSL lipase MHZ11 modulates ethylene signaling in rice roots[J]. The Plant Cell,2020,32(5) :1626−1643. DOI: 10.1105/tpc.19.00840
[94] MA B,ZHOU Y,CHEN H,et al. Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(10) :2520−2525.
[95] ZHOU Y,GAO Y H,ZHANG B C,et al. CELLULOSE SYNTHASE-LIKE C proteins modulate cell wall establishment during ethylene-mediated root growth inhibition in rice[J]. The Plant Cell,2024,36(9) :3751−3769. DOI: 10.1093/plcell/koae195
[96] WU F H,GAO Y P,YANG W J,et al. Biological functions of strigolactones and their crosstalk with other phytohormones[J]. Frontiers in Plant Science,2022,13:821563. DOI: 10.3389/fpls.2022.821563
[97] WANG B B,ZHU X L,GUO X L,et al. Nitrate modulates lateral root formation by regulating the auxin response and transport in rice[J]. Genes,2021,12(6) :850. DOI: 10.3390/genes12060850
[98] SUN H W,GUO X L,QI X J,et al. SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply[J]. Plant Journal,2021,106(3) :649−660. DOI: 10.1111/tpj.15188
[99] RAYA-GONZÁLEZ J,ORTIZ-CASTRO R,RUÍZ-HERRERA L F,et al. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 regulates lateral root formation via auxin signaling in Arabidopsis[J]. Plant Physiology,2014,165(2) :880−894. DOI: 10.1104/pp.114.239806
[100] SUZUKI G,LUCOB-AGUSTIN N,KASHIHARA K,et al. Rice MEDIATOR25,OsMED25,is an essential subunit for jasmonate-mediated root development and OsMYC2-mediated leaf senescence[J]. Plant Science,2021,306:110853. DOI: 10.1016/j.plantsci.2021.110853
[101] MUZAFFAR A,CHEN Y S,LEE H T,et al. A newly evolved rice-specific gene JAUP1 regulates jasmonate biosynthesis and signalling to promote root development and multi-stress tolerance[J]. Plant Biotechnology Journal,2024,22(5) :1417−1432. DOI: 10.1111/pbi.14276
[102] WATERS M T,GUTJAHR C,BENNETT T,et al. Strigolactone signaling and evolution[J]. Annual Review of Plant Biology,2017,68:291−322. DOI: 10.1146/annurev-arplant-042916-040925
[103] XIANG D,MENG F N,WANG A D,et al. Root-secreted peptide OsPEP1 regulates primary root elongation in rice[J]. Plant Journal,2021,107(2) :480−492. DOI: 10.1111/tpj.15303
[104] LI J Y,MENG L J,REN S H,et al. OsGSTU17,a tau class glutathione S-transferase gene,positively regulates drought stress tolerance in Oryza sativa[J]. Plants,2023,12(17) :3166. DOI: 10.3390/plants12173166
[105] YANG H S,FANG Y Y,LIANG Z M,et al. Polyamines:Pleiotropic molecules regulating plant development and enhancing crop yield and quality[J]. Plant Biotechnology Journal,2024,22(11) :3194−3201. DOI: 10.1111/pbi.14440
[106] MAI H F,QIN T,WEI H,et al. Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice[J]. Plant Biotechnology Journal,2024,22(4) :833−847. DOI: 10.1111/pbi.14227
[107] GAO Y Q,GUO R,WANG H Y,et al. Melatonin increases root cell wall phosphorus reutilization via an NO dependent pathway in rice (Oryza sativa) [J]. Journal of Pineal Research,2024,76(5) :e12995. DOI: 10.1111/jpi.12995