• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

牛羊早期妊娠诊断技术研究进展

张振良, 吕占民, 卢守亮, 卢春霞, 倪建宏, 刘长彬

张振良,吕占民,卢守亮,等. 牛羊早期妊娠诊断技术研究进展[J]. 福建农业学报,2025,40(1) :91−98. DOI: 10.19303/j.issn.1008-0384.2025.01.011
引用本文: 张振良,吕占民,卢守亮,等. 牛羊早期妊娠诊断技术研究进展[J]. 福建农业学报,2025,40(1) :91−98. DOI: 10.19303/j.issn.1008-0384.2025.01.011
ZHANG Z L,LYU Z M,LU S L,et al. Research Progress on Early Diagnosis of Pregnancy in Cattle and Sheep[J]. Fujian Journal of Agricultural Sciences,2025,40(1) :91−98. DOI: 10.19303/j.issn.1008-0384.2025.01.011
Citation: ZHANG Z L,LYU Z M,LU S L,et al. Research Progress on Early Diagnosis of Pregnancy in Cattle and Sheep[J]. Fujian Journal of Agricultural Sciences,2025,40(1) :91−98. DOI: 10.19303/j.issn.1008-0384.2025.01.011

牛羊早期妊娠诊断技术研究进展

基金项目: 国家自然科学基金项目(31860647);新疆生产建设兵团科技合作计划项目(2023AB009-01);新疆生产建设兵团科技创新人才计划项目(2020CB022、2022CB012);新疆生产建设兵团农业GG项目(2023—2025);新疆农垦科学院院级项目(2024YJQN13)
详细信息
    作者简介:

    张振良(1994 —),男,硕士,助理研究员,主要从事动物繁殖新技术相关研究,E-mail:1550734333@qq.com

    通讯作者:

    倪建宏(1969 —),男,硕士,研究员,主要从事动物繁殖新技术相关研究,E-mail:397876078@qq.com

    刘长彬(1978 —),男,博士,研究员,主要从事动物繁殖新技术相关研究,E-mail:xlchangbin@163.com

  • 中图分类号: S823;S826

Research Progress on Early Diagnosis of Pregnancy in Cattle and Sheep

  • 摘要:

    规模化养殖中,母畜空怀将使养殖场遭受严重的经济损失,应用早期妊娠诊断技术,可有效降低空怀母畜数量,缩短产犊(羔)间隔,提高养殖效益。本文从诊断方法、诊断时间、诊断准确率等方面对牛羊早期妊娠临床诊断法和妊娠相关标志物诊断法进行综述。在临床诊断中,B超妊娠诊断较普遍,妊娠28~35 d超声检查可以获得比较可靠的结果,但其可靠性很大程度上取决于所用设备频率、操作者技能。在妊娠相关标志物诊断中,孕酮(Progesterone, P4)浓度检测法操作繁琐,对检测环境要求高,难以在生产中大面积推广。早期妊娠因子是受精后最早出现的特异性指标,但目前其检测完全依赖于使用玫瑰花环抑制试验,后续需开发简便的检测方法。干扰素刺激基因和外泌体miRNAs可能有助于牛羊早期妊娠诊断,但这些技术尚处于研究开发阶段。商业化的妊娠相关糖蛋白(pregnancy-associated glycoproteins, PAGs)检测试剂盒可作为B超妊娠诊断的替代方法,用于确定牛羊的早期妊娠或晚期胚胎损失。未来需要研发国产的商业化PAG检测试剂盒,以降低检测成本。本文通过总结不同检测方法的优缺点及实际应用效果,为生产者选择早期妊娠诊断方法提供参考,为牛羊早期妊娠诊断方法后期研究方向提供参考。

    Abstract:

    In a commercial livestock or dairy farm, the so-called “empty sows” of those female animals failed to conceive in impregnation means economic loss for the business. Being able to accurately detect a pregnancy early, therefore, is indispensable for a timely determination allowing a short calving interval to enhance operational efficiency and profitability. This article reviewed the availability and advancements in the techniques and markers for the diagnosis on cattle and sheep. Published reports on the methodologies, examination time, and test result accuracy on the diagnosis are summarized with comments. For instance, B-ultrasound is commonly applied in clinical practices for 28–35 d pregnancy in the animals. Although relatively reliable results can be expected from the tests, they depend on the frequency and equipment selected as well as the skill of the operator. As a marker, progesterone (P4) is an indicator whose concentration in the animal is measured for the diagnosis. The method required specific testing environment, and consequently, is not popularly employed in the field. The initial fertilization indicator or physiochemical pregnancy signs in impregnated animals are currently detected by using the complex erythrocyte rosette test. Hence, not until a simple method is developed can a wide application based on the approach be realized. In theory, the interferon-stimulated genes and exosomal miRNAs may be useful for the diagnosis, but no testing technology has yet been established. And the commercially available PAG test kits for early-stage pregnancy or late-stage embryo loss are cost prohibitive for average farmers at present. By briefly describing the basics and presenting the pros and cons of various available devices and methods, this article provides a concise reference for the livestock ranchers in their decision-making and for the animal husbandry scientists in directing their efforts to develop a reliable and affordable means of fertilization detection in cattle and sheep.

  • 【研究意义】茶[Camellia sinensis (L.) O. Kuntze]内含物质丰富,富含茶多酚、生物碱、多糖、黄酮和氨基酸等多种次生代谢产物,具有防癌、抗氧化、降压、降脂、降糖、减肥、抑菌、防龋齿以及减少心血管疾病发生等多重保健功效,是全球最受欢迎的饮料之一[14]。茶树作为一种生长在不同农业气候区的木本植物[5],其产量与品质主要受光照、温度和水分等因子影响[6],其中光照通过光照强度和光质组成影响茶树的生长与品质形成,但是茶树光能利用率低,对光照强度要求低,对光质要求高[7]。研究光质对茶树光合响应与信号传导的机制对生产中调控茶树生长发育与品质形成具有重要意义。【前人研究进展】光质对茶树的生长发育产生不同的生理效应[8]和复杂的叠加效应与剂量效应[9]。单独的远红光(λ>700 nm)对光合作用的贡献较小[10],但综合研究表明,远红光与光合有效辐射光具有协同活性[1112],其中红光与远红光比值(red to far-red light ratio, R/FR)是植物感知外界光环境变化的重要信号,参与调控光形态建成、植物发育等过程[1314]。低比值的R/FR光环境能够提高茶树品种‘中茶108’的净光合速率、光饱和点与叶绿素的含量,降低光补偿点,而利于植株的生长[8],同时还能够响应非生物胁迫,提高植株抗性[1517]。例如在低温、低比值R/FR环境条件下,依赖于C-重复结合因子(C-repeat binding factor, CBF)信号通路进行光温信号转导,大麦(Hordeum vulgareCBF家族基因HvCBF14及其调节子基因HvCOR14b 上调表达[16],拟南芥(Arabidopsis thalianaCBF家族基因AtCBF1AtCBF2AtCBF3则以依赖于生物钟的方式上调表达[18],协同调控,增强了植株的耐寒性。红光和远红光(600~750 nm)信号由光敏色素(phytochrome, PHY)感知到光刺激后,与光敏色素互作因子(phytochrome interacting factors, PIFs)互作,进行光信号传递,参与植物的种子萌发、光形态建成、避荫反应、昼夜节律和叶绿素代谢等过程[19]PIFs不仅参与光信号响应,还作为温度感受器响应温度信号,如PIF3可以直接与CBF 基因家族的启动子结合,负调控拟南芥的冷驯化[20],PIF4能在高温条件下直接结合到生长素合成基因TAA1YUC8的启动子上,调节生长素的合成,诱导拟南芥下胚轴的伸长[2122],因此PIFs在光温信号转导中起着重要作用。在茶树中鉴定出PIFs 有4个类群7个基因:PIF1CsPIF1)、PIF3CsPIF3a, CsPIF3b)、PIF7CsPIF7a, CsPIF7b)和PIF8CsPIF8a, CsPIF8b),其中CsPIF3a被证明可以作为转录激活因子激活叶绿素代谢途径中CsHEMACsPOD的表达,从而调控叶绿素代谢[23]。【本研究切入点】虽然植物光温信号转导机制已经有较为深入的研究,但是有关于远红光对低温条件下茶树光合荧光特性的影响和PIFs的分子响应研究还未见系统的研究报道,有待深入研究。【拟解决的关键问题】本研究以茶树品种‘谷雨春’为试材,设置10 ℃模拟冬季低温条件,在普通白色LED灯的光环境中添加远红光LED灯,实现对光环境中R/FR比值的控制,探究不同R/FR值对茶树叶片气体交换参数、荧光参数以及未萌发芽光敏色素互作因子表达量的影响,以期阐明低温条件不同R/FR比值光环境下茶树的庇荫机制,为工厂化光设施育苗冬季补光提供理论指导。

    供试茶树品种谷雨春,2年生未萌发盆栽苗,于2023年2月14日放置光照培养箱中适应培养7 d,设置培养温度10 ℃模拟冬季低温条件,光合光子通量密度约为90 μmol·m−2·s−1,光照周期14 h·d−1,湿度(70±10)%。

    在适应培养7 d后,通过调节LED灯管数量,进行不同R/FR比值处理。参考王加真等[24]关于茶树LED光源设施栽培的理想光照强度研究,使用Hopocolor OHSP-350P植物光照分析仪进行总的光照强度和各处理红光与远红光照强度的测定、校准(图1)。设置远红光处理(FR)光质组成:85.5 μmol·m−2·s−1白光+4.5 μmol·m−2·s−1远红光,远红光占比5%,R/FR=4.1;白光处理(CK)光质组成:90 μmol·m−2·s−1白光,R/FR=10.4。光照周期为14 h·d−1,每个处理8盆,每盆2株茶苗。不同R/FR比值处理48 h后,取5.0 g腋芽用锡箔纸包好,立即放入液氮中冷冻3 min,然后快速放入−80 ℃冰箱中保存备用,用于总RNA的提取,每个处理设 3 个生物学重复。

    图  1  不同试验处理光谱组成
    Figure  1.  Spectral composition of different experimental treatments

    选取顶芽往下第3张全展功能叶,使用Walz GFS-3000光合仪测定叶片气体交换参数。测量叶室设置:光合光子通量密度800 μmol·m−2·s−1、叶室流速550 μmol·s−1、CO2浓度500 μmol·mol−1,叶室温度25 ℃,相对湿度60%。光合仪开机后进行ZP和MP调零,在排除外界与仪器对测量结果的影响后,测定净光合速率(Pn)、气孔导度(Gs)、细胞间二氧化碳浓度(Ci)、蒸腾速率(Tr),叶片水分利用效率(water use efficiency, WUE)计算公式为:WUE = Pn/Tr

    选取顶芽往下第3张全展功能叶,避开叶片中脉,使用Walz PAM-2500叶绿素荧光成像系统测定荧光动力学参数,叶片暗适应30 min后,打开暗适应夹,先打开测量光,再打开一次饱和脉冲光,测定初始荧光Fo、最大荧光Fm、实际量子产量(YⅡ)、非调节性能量耗散的量子产量Y (NO)、调节性能量耗散的量子产量Y(NPQ)、光化学淬灭系数(qLqP)、非光化学淬灭系数(qN、NPQ)。同时测定不同光强设置下光合电子传递速率(electron transport rate, ETR),光合光子通量密度梯度为0、26、60、110、174、254、356、470、606、884、1006 μmol·m−2·s−1,每步20 s。

    参照天根 RNAprep Pure 植物总 RNA 提取试剂盒说明,以离心柱法抽提茶树叶片中的总RNA,利用超微量核酸分析仪检测其浓度和纯度,1.0%琼脂糖凝胶电泳检测其完整性。采用天根FastKing RT Kit逆转录合成cDNA,采用天根SuperReal PreMix Plus试剂对光敏色素A(phytochrome A, PHYA)和PIFs基因表达情况进行检测。目的基因的特异性引物参考Zhang 等[23]和莫晓丽等[25]的研究报道(表1)。以CsACTIN为内参基因,反应体系20.0 μL:SYBR Green Master Mix 10.0 μL,正、反向引物各0.8 μL,灭菌水7.4 μL,cDNA模板1.0 μL。扩增程序:95 ℃ 30 s,95 ℃ 5 s,60 ℃ 20 s,40个循环。

    表  1  qRT-PCR特异性引物
    Table  1.  qRT-PCR specific primers
    基因
    Gene name
    登录号
    Gene ID
    上游引物(5'-3')
    Forward primer sequence (5'-3')
    下游引物(5'-3')
    Reverse primer sequence (5'-3')
    CsPIF1 TEA006532 TGGAGGACTAAGGGGACA TTTACGCCTGAGATTTGC
    CsPIF3a TEA033210 CAACAAGGTGGACAAAGC AACATCATCGGTGGCATA
    CsPIF3b TEA007077 GCAACAAGGTGGACAAAGC TAACATCATCGGCGGCAT
    CsPIF7a TEA025875 CTCGGTCCCTTTTCCTGA GTTGGCTGCGTTGTTTGA
    CsPIF7b TEA011633 GATGTGGTCAGAATCCGAAAA GAATCCTCATCCGTGGTTTTA
    CsPIF8a TEA032260 CCTCTTCTCCACCCTACAGC GAAACAATGCAGCCATCCTA
    CsPIF8b TEA023842 ACTCCGTTTCTCACAGCA CAGCAGCCCTACATCTTT
    CsPHY2 TEA002223 TGTTCCCTTCCCTCTTCGTT TCCATTACATTCGGGCTCTG
    CsPHY4 TEA005460 AGTCTTCAGGCAGTTCAGGG GGATGTGATGGAGGTAAGCG
    CsACTIN KA280216 GCCATCTTTGATTGGAATGG GGTGCCACAACCTTGATCTT
    下载: 导出CSV 
    | 显示表格

    采用2−△△Ct计算相对表达量,采用SPSS 23.0进行单因素方差分析(ANOVA),经Turkey法进行差异显著性检验,所有图片采用GraphPad Prism 9.5.1软件绘制。

    光质通过影响两个光系统(Photosystem Ⅰ and Photosystem Ⅱ,PSⅠ和 PSⅡ)的不平衡激发来影响光合作用。由图2可知,在相同的光量子密度条件下,FR处理显著降低了茶树的TrPn,较CK处理分别降低了44.06%和32.65%,而Ci较CK处理下降了11.96%,这可能是造成FR处理Pn显著下降的直接原因,表明10 ℃低温条件下添加5%的远红光产生了严重的庇荫效应,显著抑制了茶树叶片的光合作用。

    图  2  不同R/FR处理茶树叶片光合特性
    *表示在0.05水平上差异显著。
    Figure  2.  Photosynthetic characteristics of tea leaves under different R/FR treatments
    * indicates significant difference at P<0.05.

    叶绿素荧光是胁迫环境下描述叶绿体状态的重要指标。由图3可知,FR处理荧光参数FoFmFv/FmFv/Fo均减小,较CK分别减小6.33%、16.42%、5.06%、14.19%,同时光化学淬灭系数(qLqP)、非光化学淬灭系数(qN、NPQ)均减小,较CK减小5.03%、3.80%、4.37%、14.10%,但是差异均不显著(P>0.05)。

    图  3  不同R/FR处理茶树叶片荧光参数
    Figure  3.  Fluorescence parameters of tea leaves treated with different R/FR

    FR处理下,茶树叶片Y(NO)所占的比例较CK处理升高了11.23%,Y(Ⅱ)和Y(NPQ)所占的比例分别下降了8.68%和4.84%(图4),表明茶树在受到远红光的庇荫效应后,PSⅡ吸收的激发能用于电子传递的份额降低,通过能量耗散的份额增加,叶片的光保护能力下降,即只能通过非调节性能量耗散的方式将过剩的光能耗散。因此,低温条件下FR处理可能对茶树产生了一定程度的光损伤。

    图  4  不同R/FR处理茶树叶片对光能吸收的分配占比
    Figure  4.  The distribution proportion of light energy absorption in tea leaves under different R/FR treatments

    电子传递速率(ETR)是叶绿体光合作用强度的重要指标。由图5可知,在达到光饱和前,相同光合有效辐射(PAR)条件下, FR处理的ETR均小于CK处理,表明FR处理导致茶树光合作用受到抑制。在ETR和PAR的拟合曲线中,两个处理的初始斜率相同,且变化趋势类似,当PAR约为100 μmol·m−2·s−1时斜率开始下降,而FR处理下降速度(即快速光响应曲线斜率)明显大于CK处理,综合表明FR处理降低了茶树光合电子传递速率及可接受的最大光合有效辐射。

    图  5  不同R/FR处理茶树叶片快速光响应曲线
    Figure  5.  Rapid light response curves of tea leaves under different R/FR treatments

    为研究茶树芽对远红光刺激的分子响应机制,本研究测定了不同R/FR处理48 h后未萌发芽PHYAPIFs基因的相对表达量,由图6结果可知,FR处理茶树休眠越冬芽中远红光受体PHYA家族基因CsPHY2CsPHY4均上调表达,分别为CK处理的2.39和1.29倍,CsPIFs家族基因CsPIF1CsPIF3aCsPIF8a下调表达,分别为CK处理的54%、72%、54%,CsPIF8b上调表达,为CK处理的1.28倍。结果表明CsPHY2CsPHY4作为远红光受体参与远红光刺激的响应,CsPIFs家族基因CsPIF1CsPIF3aCsPIF8a可能负调控植株的庇荫反应。

    图  6  PHYAPIFs基因的相对表达量
    *、**分别表示在0.05、0.01水平上差异显著。
    Figure  6.  Relative expression levels of PHYA and PIFs genes
    * and **indicates significant difference at P<0.05 or P<0.01, respectively.

    遮阴会导致光照强度减弱,光质组成发生变化[26],远红光和绿光波段会在反射和透射光中富集,导致红光与远红光的比值降低。植物通过光敏色素感受环境中R/FR的比例变化,从而感知遮阴环境,启动包括茎与叶柄伸长、叶角抬高、抑制分枝、加速开花等庇荫综合征(shade avoidance syndrome, SAS)的发育反应[2729]。这些反应影响植物光形态建成,促进植物冠层的光截获,作为植物响应遮阴胁迫的适应性策略,以维持其在光环境中的竞争优势[30]。因此,降低R/FR的比例会触发SAS。在前人研究中,相同光量子密度条件下,降低R/FR比值,导致生菜(Lactuca satva[31]、冰草(Agropyron cristatum[32]、大豆(Glycine max[26]等均表现出茎秆长度、叶面积以及生物量增加的庇荫效应。但是不同植物对降低R/FR比值后的光合荧光特性的响应不一致,如大豆幼苗在正常光与弱光条件下,添加远红光、降低R/FR比值后,均导致Pn、光饱和点和PSⅡ最大量子产量Fv/Fm的升高[26];盐胁迫下的番茄(Solanum lycopersicum)在降低R/FR比值后,也会导致Pn升高[33];莴苣(Lactuca sativa)添加远红光可提高YⅡ、Pn,降低Y(NPQ)[34];本研究中茶树品种谷雨春与生菜[31]、冰草[32]在降低R/FR比值后,导致Pn下降的趋势一样。由于在光能的吸收、传输和转化过程中叶绿素起着重要作用,其含量与组成直接影响叶片的光合能力[35]。因此,研究结果的差异可能与总叶绿素及光合氮含量有关[31,36],还可能与两个光系统的不平衡激发有关。优先激发PSⅠ的远红光(λ>700 nm)能够降低叶片的吸收能力和光合作用量子产率。因此,降低R/FR的比值后,远红光对两个光系统的不平衡激发,导致ETR与Pn的下降。综合表明,降低R/FR比值虽然降低了叶片Pn,但SAS会导致茎秆的伸长,叶面积的增大,使得冠层的光截获能力提升,最终增加了生物量。

    叶绿素在植物光合作用光吸收阶段起着核心作用,光作为叶绿素合成的重要条件,其与相应的光受体作用调控色素的合成[37],远红光通过影响叶绿素的含量以及叶绿素a与叶绿素b的比值来影响叶片的光合能力与光合活性[38]。与光合荧光特性类似,随R/FR比值的降低,不同植物叶绿素含量呈现出不同的变化趋势。如大豆 [26, 3940]、菊花(Chrysanthemum morifolium[41]等降低R/FR比值,叶绿素含量升高,而玉米(Zea mays[42] 、黄瓜(Cucumis sativus[43]和马铃薯(Solanum tuberosum[44]则随着R/FR比值的降低,叶绿素含量降低。在本研究中,降低R/FR比值降低了CsPIF3a的表达量。由于茶树CsPIF3a基因是叶绿素合成的重要调节因子,CsPIF3a可以与叶绿素合成途径中编码谷氨酰-tRNA 还原酶基因CsHEMA和原叶绿素酸酯还原酶基因CsPOR启动子上的G-box作用元件结合,激活启动子的转录,参与叶绿素的生物合成,同时在拟南芥过表达株系CsPIF3a-OEAtHEMAAtHEMEAtCHLIAtPORC等叶绿素生物合成的基因显著上调表达,叶片色泽更绿且叶绿素含量更高,表明CsPIF3a通过正向激活叶绿素合成相关基因的表达,诱导叶绿素在茶树叶片中的积累[23]。因此,CsPIF3a的表达量降低可能会导致叶绿素含量降低,而叶片的光吸收率与单位叶面积的叶绿素含量呈正相关[45],这与降低R/FR比值会导致光合能力下降的结果相一致,所以长时间低R/FR比值的光环境可能会导致茶树叶片叶绿素含量的降低,降低叶片的光合能力。有研究表明,添加15%的远红光后,中茶108叶片中叶绿素a、叶绿素b等含量均显著高于未添加远红光处理的叶片含量[8]。通过遮阴处理14 d后均能提高茶树叶片的叶绿素相对含量值[46],这与本研究结果不一致,推测可能是因为不同R/FR比值对植株叶绿素含量和光合能力的影响趋势不一致,例如在相同光照强度下,菊花叶片光合速率由大到小的R/FR值顺序依次为2.5、4.5、0.5、6.5[47],也可能是遮阴处理导致光照强度减弱以及品种间差异等因素导致[8],还可能是由于低温条件下光温互作调控的结果。

    在低温条件下,低R/FR比值的光环境导致茶树叶片ETR、Pn、YⅡ和Y(NPQ)所占的比例下降,Y(NO)所占的比例升高,表明茶树叶片受到光抑制和光损伤,影响了光合机构的作用,导致光合电子传递能力下降。在此过程中,CsPIF1CsPIF3aCsPIF8a作为庇荫反应的负调控因子响应远红光刺激,其中叶绿素合成的重要调节因子CsPIF3a基因表达量降低,进一步削弱了茶树叶片的光合能力。

  • 表  1   不同妊娠相关标志物诊断法在牛羊生产中的应用

    Table  1   Various methods for pregnancy diagnosis on cattle and sheep based on pregnancy-related markers

    妊娠诊断方法
    Pregnancy diagnostic
    生产中应用效果
    Application effect in production
    优点
    Advantage
    局限性
    Disadvantage
    孕酮浓度检测
    P4 detection
    AI后10、21和30 d,流产奶牛P4显著低于妊娠奶牛[29]
    羊在AI后14~30 d,妊娠组P4显著高于未妊娠组[30]
    方便、可批量操作 程序复杂、对检测环境要求严格
    早孕因子检测
    EPF detection
    牛配种后1个月,妊娠与空怀差异显著 [32]
    绵羊进行早孕诊断,准确率90.81%[33]
    诊断时间早,妊娠24 h后即可检出 肿瘤 EPF可能造成假阳性结果
    IFN-τ及ISGs
    IFN-τ and ISGs
    AI后22 d流产奶牛ISG15比妊娠奶牛低[41]
    羊在AI后15 d内 ISG15的表达均上调[41]
    诊断时间早 判别标准需要进一步研究
    妊娠相关糖蛋白检测
    PAG detection
    牛PAG检测试剂盒准确率可达93.9%[60]
    羊PAG检测试剂盒敏感性100.0%,特异性95.8%[57]
    诊断时间早 检测成本和技术要求高
    外泌体miRNAs 牛:miR-26a可能是潜在妊娠诊断标志物[65]
    羊:miR-379可能是潜在妊娠诊断标志物[69]
    诊断时间早 在试验研究阶段,无相应检测产品
    下载: 导出CSV
  • [1] 包凯,曹宇,刘光磊,等. 奶牛的早期妊娠诊断研究进展[J]. 现代畜牧兽医,2016(8) :49−52. DOI: 10.3969/j.issn.1672-9692.2016.08.012

    BAO K,CAO Y,LIU G L,et al. Advance of early pregnancy diagnosis technology in dairy cows[J]. Modern Journal of Animal Husbandry and Veterinary Medicine,2016(8) :49−52. (in Chinese) DOI: 10.3969/j.issn.1672-9692.2016.08.012

    [2]

    DE VRIES A. Economic value of pregnancy in dairy cattle[J]. Journal of Dairy Science,2006,89(10) :3876−3885. DOI: 10.3168/jds.S0022-0302(06)72430-4

    [3]

    CONSENTINI C E C,ALVES R L O R,SILVA M A,et al. What are the factors associated with pregnancy loss after timed-artificial insemination in Bos indicus cattle?[J]. Theriogenology,2023,196:264−269. DOI: 10.1016/j.theriogenology.2022.10.037

    [4]

    PURSLEY J R,SANTOS A,MINELA T. Review:Initial increase in pregnancy-specific protein B in maternal circulation after artificial insemination is a key indicator of embryonic survival in dairy cows[J]. Animal,2023,17:100746. DOI: 10.1016/j.animal.2023.100746

    [5]

    PINEDO P J,MANRÍQUEZ D,CIARLETTA C,et al. Association between body condition score fluctuations and pregnancy loss in Holstein cows[J]. Journal of Animal Science,2022,100(10) :skac266. DOI: 10.1093/jas/skac266

    [6] 钟朱夏,胡修忠,向敏,等. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报,2024,55(3) :874−881.

    ZHONG Z X,HU X Z,XIANG M,et al. Research progress on biological function and application of pregnancy associated glycoproteins in livestock production[J]. Acta Veterinaria et Zootechnica Sinica,2024,55(3) :874−881. (in Chinese)

    [7] 李雯乔,李发弟,王新基,等. 家畜早期妊娠诊断的研究进展[J]. 畜牧兽医学报,2023,54(5) :1782−1791.

    LI W Q,LI F D,WANG X J,et al. Advance of early pregnancy diagnosis in livestock[J]. Acta Veterinaria et Zootechnica Sinica,2023,54(5) :1782−1791. (in Chinese)

    [8] 贾晓,邱瑾,舒娟,等. 血清孕酮水平检测在克隆胚胎移植受体牛的筛选及妊娠诊断中的应用[J]. 中国生物工程杂志,2020,40(7) :1−8.

    JIA X,QIU J,SHU J,et al. Serum progesterone level detection for the screening of recipient cattle for cloned embryo transfer and their pregnancy diagnosis[J]. China Biotechnology,2020,40(7) :1−8. (in Chinese)

    [9] 宋立峰,刘静静,刘月琴,等. 用于检测绵羊妊娠早孕因子多克隆抗体的制备[J]. 中国草食动物科学,2014,34(S1) :203−205. DOI: 10.3969/j.issn.2095-3887.2014.z1.075

    SONG L F,LIU J J,LIU Y Q,et al. Preparation of polyclonal antibody for detecting early pregnancy factor in sheep[J]. China Herbivore Science,2014,34(S1) :203−205. (in Chinese) DOI: 10.3969/j.issn.2095-3887.2014.z1.075

    [10]

    BREUKELMAN S P,PERÉNYI Z,TAVERNE M M,et al. Characterisation of pregnancy losses after embryo transfer by measuring plasma progesterone and bovine pregnancy-associated glycoprotein-1 concentrations[J]. Veterinary Journal,2012,194(1) :71−76. DOI: 10.1016/j.tvjl.2012.02.020

    [11] 余婕,向敏,刘辰晖,等. 干扰素-τ调控牛母体妊娠识别分子机制的研究进展[J]. 中国奶牛,2021(8) :28−32.

    YU J,XIANG M,LIU C H,et al. Research progress on molecular mechanism of maternal recognition of pregnancy regulated by interferon-tau in cows[J]. China Dairy Cattle,2021(8) :28−32. (in Chinese)

    [12]

    ROMANO J E,PINEDO P,BRYAN K,et al. Comparison between allantochorion membrane and amniotic sac detection by per rectal palpation for pregnancy diagnosis on pregnancy loss,calving rates,and abnormalities in newborn calves[J]. Theriogenology,2017,90:219−227. DOI: 10.1016/j.theriogenology.2016.11.004

    [13] 李玮. 早期妊娠诊断技术在肉牛生产中的应用研究[J]. 中国畜牧业,2024(12) :104−105. DOI: 10.3969/j.issn.2095-2473.2024.12.051

    LI W. Application research of early pregnancy diagnosis technology in beef cattle production[J]. China Animal Industry,2024(12) :104−105. (in Chinese) DOI: 10.3969/j.issn.2095-2473.2024.12.051

    [14]

    BORŞ S I,BORȘ A. Economics of rebreeding nonpregnant dairy cows diagnosed by transrectal ultrasonography on day 25 after artificial insemination[J]. Animals,2022,12(6) :761. DOI: 10.3390/ani12060761

    [15]

    SILVA E,STERRY R A,KOLB D,et al. Accuracy of a pregnancy-associated glycoprotein ELISA to determine pregnancy status of lactating dairy cows twenty-seven days after timed artificial insemination[J]. Journal of Dairy Science,2007,90(10) :4612−4622. DOI: 10.3168/jds.2007-0276

    [16]

    SZENCI O. Recent possibilities for the diagnosis of early pregnancy and embryonic mortality in dairy cows[J]. Animals,2021,11(6) :1666. DOI: 10.3390/ani11061666

    [17]

    KAREN A,BAJCSY A C,MINOIA R,et al. Relationship of progesterone,bovine pregnancy-associated glycoprotein-1 and nitric oxide with late embryonic and early fetal mortalities in dairy cows[J]. The Journal of Reproduction and Development,2014,60(2) :162−167. DOI: 10.1262/jrd.2013-033

    [18]

    BRZOZOWSKA A,STANKIEWICZ T,BŁASZCZYK B,et al. Ultrasound parameters of early pregnancy and Doppler indices of blood vessels in the placenta and umbilical cord throughout the pregnancy period in sheep[J]. BMC Veterinary Research,2022,18(1) :326. DOI: 10.1186/s12917-022-03424-z

    [19]

    RAMÍREZ-GONZÁLEZ D,POTO Á,PEINADO B,et al. Ultrasonography of pregnancy in murciano-granadina goat breed:Fetal growth indices and umbilical artery Doppler parameters[J]. Animals,2023,13(4) :618. DOI: 10.3390/ani13040618

    [20] 李福慧. 规模化奶牛场B超早期妊娠诊断规程的研究[D]. 呼和浩特:内蒙古农业大学,2021.

    LI F H. Research on early pregnancy diagnosis procedure by ultrasonography in scaled dairy farm[D]. Hohhot:Inner Mongolia Agricultural University,2021. (in Chinese)

    [21] 刘宗玲,张文倩,郭志杰,等. 湖羊B超早期妊娠诊断的研究[J]. 中国草食动物科学,2022,42(3) :63−66. DOI: 10.3969/j.issn.2095-3887.2022.03.014

    LIU Z L,ZHANG W Q,GUO Z J,et al. Study on early pregnancy diagnosis of hu sheep by B-ultrasound[J]. China Herbivore Science,2022,42(3) :63−66. (in Chinese) DOI: 10.3969/j.issn.2095-3887.2022.03.014

    [22] 熊琪,张群,金晶,等. 直肠B超在湖北黑头山羊发情鉴定和早期妊娠诊断中的应用[J]. 湖北农业科学,2020,59(S1) :180−184.

    XIONG Q,ZHANG Q,JIN J,et al. Application of rectal B-ultrasound in the estrus identification and early pregnancy diagnosis of Hubei black headed goat[J]. Hubei Agricultural Sciences,2020,59(S1) :180−184. (in Chinese)

    [23]

    SZELÉNYI Z,SZENCI O,KOVÁCS L,et al. Practical aspects of twin pregnancy diagnosis in cattle[J]. Animals,2021,11(4) :1061. DOI: 10.3390/ani11041061

    [24]

    LÓPEZ-GATIUS F,SZENCI O. Clinical management of pregnancy-related problems between days 28 and 60 in the dairy cow[J]. Theriogenology,2023,206:140−148. DOI: 10.1016/j.theriogenology.2023.04.024

    [25]

    LONERGAN P,SÁNCHEZ J M. Symposium review:Progesterone effects on early embryo development in cattle[J]. Journal of Dairy Science,2020,103(9) :8698−8707. DOI: 10.3168/jds.2020-18583

    [26]

    YAN L Y,ROBINSON R,SHI Z D,et al. Efficacy of progesterone supplementation during early pregnancy in cows:A meta-analysis[J]. Theriogenology,2016,85(8) :1390–1398.

    [27] 苏妮,孙振师,张化恒. 奶牛三种早孕诊断方法的比较[J]. 山东畜牧兽医,2012,33(4) :17−18.

    SU N,SUN Z S,ZHANG H H. Comparison of three diagnostic methods for early pregnancy in dairy cows[J]. Shandong Journal of Animal Science and Veterinary Medicine,2012,33(4) :17−18. (in Chinese)

    [28] 李永鹏. 根据乳汁孕酮水平进行奶山羊早期妊娠诊断的研究[J]. 畜牧兽医学报,1984,15(2) :18−25.

    LI Y P. Pregnancy diagnosis in the dairy goats from milk progesterone concentration[J]. Chinese Journal of Animal and Veterinary Sciences,1984,15(2) :18−25. (in Chinese)

    [29]

    MARTINS J P N,WANG D,MU N,et al. Level of circulating concentrations of progesterone during ovulatory follicle development affects timing of pregnancy loss in lactating dairy cows[J]. Journal of Dairy Science,2018,101(11) :10505−10525. DOI: 10.3168/jds.2018-14410

    [30]

    NYMAN S,GUSTAFSSON H,BERGLUND B. Extent and pattern of pregnancy losses and progesterone levels during gestation in Swedish Red and Swedish Holstein dairy cows[J]. Acta Veterinaria Scandinavica,2018,60(1) :68. DOI: 10.1186/s13028-018-0420-6

    [31] 赵梦圆. 绵羊早期妊娠诊断关键生殖激素及差异蛋白筛选[D]. 太谷:山西农业大学,2019.

    ZHAO M Y. Screening of key reproductive hormones and differential proteins in early pregnancy diagnosis of sheep[D]. Taigu:Shanxi Agricultural University,2019. (in Chinese)

    [32]

    HAN X,WANG S Y,REN Y,et al. Selection of early pregnancy specific proteins and development a rapid immunochromatographic test strip in cows[J]. Theriogenology,2022,187:127−134. DOI: 10.1016/j.theriogenology.2022.04.029

    [33] 贺加双,马卫明,邓立新,等. 玫瑰花环抑制实验检测肉牛早孕因子(EPF) 活性[J]. 中国牛业科学,2011,37(3) :11−13. DOI: 10.3969/j.issn.1001-9111.2011.03.003

    HE J S,MA W M,DENG L X,et al. Detection of beef cattle pregnancy using rosette inhibition test[J]. China Cattle Science,2011,37(3) :11−13. (in Chinese) DOI: 10.3969/j.issn.1001-9111.2011.03.003

    [34] 郑毛亮,李广,陶大勇,等. 用血清酸滴定法对3个品种绵羊进行早期妊娠诊断的研究[J]. 安徽农业科学,2011,39(8) :4708−4709. DOI: 10.3969/j.issn.0517-6611.2011.08.116

    ZHENG M L,LI G,TAO D Y,et al. Early pregnancy diagnosis by serum acid titration in three sheep breeds[J]. Journal of Anhui Agricultural Sciences,2011,39(8) :4708−4709. (in Chinese) DOI: 10.3969/j.issn.0517-6611.2011.08.116

    [35] 陈超,张欣欣,安志高,等. 奶牛早期妊娠诊断技术的研究进展[J]. 中国奶牛,2019(4) :26−29.

    CHEN C,ZHANG X X,AN Z G,et al. Research progress on early pregnancy diagnosis techniques for dairy cows[J]. China Dairy Cattle,2019(4) :26−29. (in Chinese)

    [36]

    WILTBANK M C,MONTEIRO P L J,DOMINGUES R R,et al. Review:Maintenance of the ruminant corpus luteum during pregnancy:Interferon-tau and beyond[J]. Animal,2023,17:100827. DOI: 10.1016/j.animal.2023.100827

    [37]

    BAI H,KAWAHARA M,TAKAHASHI M,et al. Recent progress of interferon-tau research and potential direction beyond pregnancy recognition[J]. The Journal of Reproduction and Development,2022,68(5) :299−306. DOI: 10.1262/jrd.2022-061

    [38]

    TALUKDER A K,YOUSEF M S,RASHID M B,et al. Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro:Possible involvement of interferon tau as an intermediator[J]. The Journal of Reproduction and Development,2017,63(4) :425−434. DOI: 10.1262/jrd.2017-056

    [39]

    KIKUCHI M,KIZAKI K,SHIGENO S,et al. Newly identified interferon tau-responsive Hes family BHLH transcription factor 4 and cytidine/uridine monophosphate kinase 2 genes in peripheral blood granulocytes during early pregnancy in cows[J]. Domestic Animal Endocrinology,2019,68:64−72. DOI: 10.1016/j.domaniend.2019.01.006

    [40]

    AHMAD SHEIKH A,HOODA O K,KALYAN A,et al. Interferon-tau stimulated gene expression:A proxy to predict embryonic mortality in dairy cows[J]. Theriogenology,2018,120:61−67. DOI: 10.1016/j.theriogenology.2018.07.028

    [41]

    YOSHINO H,KIZAKI K,HIRATA T I,et al. Interferon-stimulated gene expression in peripheral blood leucocytes as a convenient prediction marker for embryo status in embryo-transferred Japanese black cows during the peri-implantation period[J]. Veterinary Sciences,2023,10(7) :408. DOI: 10.3390/vetsci10070408

    [42]

    DOMINGUES R R,ANDRADE J P N,CUNHA T O,et al. Profiles of interferon-stimulated genes in multiple tissues and circulating pregnancy-associated glycoproteins and their association with pregnancy loss in dairy cows[J]. Biology of Reproduction,2024,110(3) :558−568. DOI: 10.1093/biolre/ioad164

    [43]

    KOSE M,KAYA M S,AYDILEK N,et al. Expression profile of interferon tau-stimulated genes in ovine peripheral blood leukocytes during embryonic death[J]. Theriogenology,2016,85(6) :1161−1166. DOI: 10.1016/j.theriogenology.2015.11.032

    [44]

    MAUFFRÉ V,GRIMARD B,EOZENOU C,et al. Interferon stimulated genes as peripheral diagnostic markers of early pregnancy in sheep:A critical assessment[J]. Animal,2016,10(11) :1856−1863. DOI: 10.1017/S175173111600077X

    [45]

    GIORDANO J O,GUENTHER J N,LOPES G,et al. Changes in serum pregnancy-associated glycoprotein,pregnancy-specific protein B,and progesterone concentrations before and after induction of pregnancy loss in lactating dairy cows[J]. Journal of Dairy Science,2012,95(2) :683−697. DOI: 10.3168/jds.2011-4609

    [46]

    WALLACE R M,POHLER K G,SMITH M F,et al. Placental PAGs:Gene origins,expression patterns,and use as markers of pregnancy[J]. Reproduction,2015,149(3) :R115−R126. DOI: 10.1530/REP-14-0485

    [47]

    OLIVEIRA FILHO R V,FRANCO G A,REESE S T,et al. Using pregnancy associated glycoproteins (PAG) for pregnancy detection at day 24 of gestation in beef cattle[J]. Theriogenology,2020,141:128−133. DOI: 10.1016/j.theriogenology.2019.09.014

    [48]

    NANAS I,CHOUZOURIS T M,DOVOLOU E,et al. Early embryo losses,progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows[J]. Journal of Thermal Biology,2021,98:102951. DOI: 10.1016/j.jtherbio.2021.102951

    [49]

    REESE S T,GEARY T W,FRANCO G A,et al. Pregnancy associated glycoproteins (PAGs) and pregnancy loss in high vs sub fertility heifers[J]. Theriogenology,2019,135:7−12. DOI: 10.1016/j.theriogenology.2019.05.026

    [50]

    DOMINGUES R R,ANDRADE J P N,CUNHA T O,et al. Is pregnancy loss initiated by embryonic death or luteal regression? Profiles of pregnancy-associated glycoproteins during elevated progesterone and pregnancy loss[J]. JDS Communications,2022,4(2) :149−154.

    [51]

    DE MIRANDA E SILVA CHAVES C,DIAS DA COSTA R L,RONCATO DUARTE K M,et al. Visual ELISA for detection of pregnancy-associated glycoproteins (PAGs) in ewe serum[J]. Theriogenology,2017,97:78−82. DOI: 10.1016/j.theriogenology.2017.04.026

    [52]

    STECKELER P,WEBER F,ZERBE H,et al. Evaluation of a bovine visual pregnancy test for the detection of pregnancy-associated glycoproteins in sheep[J]. Reproduction in Domestic Animals,2019,54(2) :280−288. DOI: 10.1111/rda.13356

    [53]

    AKKÖSE M,ÇıNAR E M,YAZLıK M O,et al. Serum pregnancy–associated glycoprotein profiles during early gestation in Karya and Konya Merino sheep[J]. Veterinary Medicine and Science,2024,10(1) :e1345. DOI: 10.1002/vms3.1345

    [54]

    ROBERTS J N,MAY K J,VEIGA-LOPEZ A. Time-dependent changes in pregnancy-associated glycoproteins and progesterone in commercial crossbred sheep[J]. Theriogenology,2017,89:271−279. DOI: 10.1016/j.theriogenology.2016.10.029

    [55]

    MOSAAD A F,EL-NAKHLA S M,ABD EL-RASOUL F H,et al. Effect of ambient lead on progesterone and pregnancy-associated glycoprotein 1 and their relationship with abortion in Zaraibi goats:A field study[J]. Tropical Animal Health and Production,2024,56(1) :40. DOI: 10.1007/s11250-023-03877-w

    [56]

    DE CAROLIS M,BARBATO O,ACUTI G,et al. Plasmatic profile of pregnancy-associated glycoprotein (PAG) during gestation and postpartum in Sarda and lacaune sheep determined with two radioimmunoassay systems[J]. Animals,2020,10(9) :1502. DOI: 10.3390/ani10091502

    [57]

    LAMGLAIT B,RAMBAUD T. Diagnosis of pregnancy in barbary sheep (Ammotragus lervia) using a bovine assay for pregnancy-associated glycoproteins[J]. Journal of Zoo and Wildlife Medicine,2017,48(2) :525−528. DOI: 10.1638/2016-0129.1

    [58]

    DE MIRANDA E SILVA CHAVES C,DA COSTA R L D,DUARTE K M R,et al. Evaluation of a cattle rapid test for early pregnancy diagnosis in sheep[J]. Tropical Animal Health and Production,2020,52(3) :1345−1349. DOI: 10.1007/s11250-019-02130-7

    [59] 李艳艳. 牛妊娠相关糖蛋白(PAG) ELISA检测技术的应用研究[D]. 杨凌:西北农林科技大学,2015.

    LI Y Y. Study on the application of ELISA for detection of bovine pregnancy-associated glycoprotein (PAG) [D]. Yangling:Northwest A & F University,2015. (in Chinese)

    [60] 薄小辉. 妊娠相关糖蛋白在奶牛早期妊娠诊断上的应用研究[D]. 北京:中国农业科学院,2017.

    BO X H. Study on the application of pregnancy-related glycoprotein in the diagnosis of early pregnancy in dairy cows[D]. Beijing:Chinese Academy of Agricultural Sciences,2017. (in Chinese)

    [61]

    MOUSSAFIR Z,ALLAI L,EL KHALIL K,et al. Could a bovine pregnancy rapid test be an alternative to a commercial pregnancy-associated glycoprotein ELISA test in dairy cattle?[J]. Animal Reproduction Science,2018,192:78−83. DOI: 10.1016/j.anireprosci.2018.02.016

    [62]

    HAN J R,ZHANG Y B,GE P,et al. Exosome-derived CIRP:An amplifier of inflammatory diseases[J]. Frontiers in Immunology,2023,14:1066721. DOI: 10.3389/fimmu.2023.1066721

    [63]

    YÁÑEZ-MÓ M,SILJANDER P R,ANDREU Z,et al. Biological properties of extracellular vesicles and their physiological functions[J]. Journal of Extracellular Vesicles,2015,4(1) :27066. DOI: 10.3402/jev.v4.27066

    [64]

    LU J,GETZ G,MISKA E A,et al. MicroRNA expression profiles classify human cancers[J]. Nature,2005,435(7043) :834−838. DOI: 10.1038/nature03702

    [65]

    TREIBER T,TREIBER N,MEISTER G. Regulation of microRNA biogenesis and function[J]. Thrombosis and Haemostasis,2012,107(4) :605−610. DOI: 10.1160/TH11-12-0836

    [66]

    POHLER K G,GREEN J A,MOLEY L A,et al. Circulating microRNA as candidates for early embryonic viability in cattle[J]. Molecular Reproduction and Development,2017,84(8) :731−743. DOI: 10.1002/mrd.22856

    [67]

    ZHAO G,GUO S,JIANG K F,et al. MiRNA profiling of plasma-derived exosomes from dairy cows during gestation[J]. Theriogenology,2019,130:89−98. DOI: 10.1016/j.theriogenology.2019.03.001

    [68]

    IOANNIDIS J,XAVIER DONADEU F. Circulating miRNA signatures of early pregnancy in cattle[J]. BMC Genomics,2016,17:184. DOI: 10.1186/s12864-016-2529-1

    [69]

    MARKKANDAN K,AHN K,LEE D J,et al. Profiling and identification of pregnancy-associated circulating microRNAs in dairy cattle[J]. Genes & Genomics,2018,40(10) :1111−1117.

    [70]

    NAKAMURA K,KUSAMA K,BAI R L,et al. Induction of IFNT-stimulated genes by conceptus-derived exosomes during the attachment period[J]. PLoS One,2016,11(6) :e0158278. DOI: 10.1371/journal.pone.0158278

    [71]

    KLISCH K,SCHRANER E M. Intraluminal vesicles of binucleate trophoblast cell granules are a possible source of placental exosomes in ruminants[J]. Placenta,2020,90:58−61. DOI: 10.1016/j.placenta.2019.12.006

    [72]

    CLEYS E R,HALLERAN J L,MCWHORTER E,et al. Identification of microRNAs in exosomes isolated from serum and umbilical cord blood,as well as placentomes of gestational day 90 pregnant sheep[J]. Molecular Reproduction and Development,2014,81(11) :983−993. DOI: 10.1002/mrd.22420

    [73]

    BURNS G,BROOKS K,WILDUNG M,et al. Extracellular vesicles in luminal fluid of the ovine uterus[J]. PLoS One,2014,9(3) :e90913. DOI: 10.1371/journal.pone.0090913

    [74]

    HUANG T,LIANG X Y,BAO H,et al. Multi-omics analysis reveals the associations between altered gut microbiota,metabolites,and cytokines during pregnancy[J]. mSystems,2024,9(3) :e0125223. DOI: 10.1128/msystems.01252-23

表(1)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-22
  • 修回日期:  2024-10-08
  • 录用日期:  2025-02-12
  • 网络出版日期:  2025-02-12
  • 刊出日期:  2025-01-27

目录

/

返回文章
返回