Metabolomics of Lactiplantibacillus plantarum Fermentation on Ginseng Residues
-
摘要:目的
研究植物乳杆菌N-25发酵党参渣对其代谢物成分变化及相关代谢通路的影响。
方法以植物乳杆菌N-25发酵党参渣,设置空白对照组(Y1)、低剂量植物乳杆菌N-25组(Y2,接菌量1%)、中剂量植物乳杆菌N-25组(Y3,接菌量3%)、高剂量植物乳杆菌N-25组(Y4,接菌量5%),通过非靶向代谢组学方法测定发酵前后党参渣中的物质成分变化,并对差异代谢物和代谢通路进行比较分析。
结果经植物乳杆菌N-25发酵后,党参渣的代谢物由
2710 种增加至2736 种,从中筛选到560种共有的差异代谢物,被注释的有227种,包括脂质和类脂分子(14.54%)、苯丙烷和聚酮化合物(12.33%)、莽草酸及苯丙烷类(11.89%)、有机杂环化合物(10.13%)、生物碱及衍生物(8.81%)、有机酸及衍生物(8.37%)以及脂肪酸(7.93%)等,其中黄酮类化合物含量增加1.13倍,木脂素含量增加1.04倍,生物碱及其衍生物含量增加1.01倍,有机酸及其衍生物含量增加1.16倍。通过对共有差异代谢物富集的代谢通路进行分析,得到差异最具显著的代谢通路为异喹啉生物碱生物合成通路。另外,Y2、Y3、Y4组特有的差异代谢物数量为128、132、204种。Y2组特有的差异代谢物富集到的关键通路为氰氨酸代谢通路,Y3与Y4组特有的差异代谢物富集到的关键通路为缬氨酸、亮氨酸、异亮氨酸生物合成通路。不同的接菌量可以诱导党参渣产生不同的代谢产物,且涉及的功能也有所不同。结论植物乳杆菌N-25发酵党参渣,促进了黄酮类化合物、木脂素、生物碱及其衍生物、有机酸及其衍生物等活性物质的生成与释放;其共有差异代谢物富集的显著性差异代谢通路为异喹啉生物碱生物合成。
Abstract:ObjectiveMetabolites generated in the ginseng residue fermentation with Lactiplantibacillus plantarum were analyzed.
MethodsSpent residues of ginseng (Codonopsis pilosula) were inoculated with L. plantarum N-25 at low-dose of 1% (Y2), medium-dose of 3% (Y3) or high-dose of 5% (Y4) along with control of no inoculation (Y1). Non-targeted metabolomics was conducted to study the changes in the metabolites, and analyses of differential metabolites and metabolic pathways performed on the solid medium during fermentation.
ResultsThe fermentation raised the number of differential metabolites in the ginseng substrate from
2710 to2735 . Among them, 560 were found commonly existing in all samples, while 128 identified as unique in Y2, 132 in Y3, and 204 in Y4. And 227 metabolites were annotated which included lipids and lipoid molecules (14.54%), phenylpropanoids and polyketide compounds (12.33%), shikimate and phenylpropanoid (11.89%), organic heterocycle compounds (10.13%), biogenic amines and derivatives (8.81%), organic acids and derivatives (8.37%), and fatty acids (7.93%). Contents of some of the substances increased significantly in the fermentation. For instance, flavonoids rose by 1.13 times, lignans by 1.04 times, alkaloids and derivatives by 1.01 times, and organic acids and derivatives by 1.16 times. Of the metabolic pathways, that of isoquinoline alkaloid biosynthesis pathways was the most significantly enriched by the fermentation. The key pathway enhanced by the unique metabolites in Y2 was associated with the cyanogenic amino acid metabolism, while those in Y3 and Y4 with valine, leucine, and isoleucine biosynthesis. The inoculation dosage of L. plantarum N-25 significantly altered the contents and functions of the metabolites generated in the fermentation.ConclusionThe fermentation of C. pilosula residues inoculated with L. plantarum N-25 released functional ingredients such as flavonoids, lignans, alkaloids and derivatives, and organic acids and derivatives. It significantly enriched the pathway of isoquinoline alkaloid biosynthesis.
-
0. 引言
【研究意义】茶[Camellia sinensis (L.) O. Kuntze]内含物质丰富,富含茶多酚、生物碱、多糖、黄酮和氨基酸等多种次生代谢产物,具有防癌、抗氧化、降压、降脂、降糖、减肥、抑菌、防龋齿以及减少心血管疾病发生等多重保健功效,是全球最受欢迎的饮料之一[1−4]。茶树作为一种生长在不同农业气候区的木本植物[5],其产量与品质主要受光照、温度和水分等因子影响[6],其中光照通过光照强度和光质组成影响茶树的生长与品质形成,但是茶树光能利用率低,对光照强度要求低,对光质要求高[7]。研究光质对茶树光合响应与信号传导的机制对生产中调控茶树生长发育与品质形成具有重要意义。【前人研究进展】光质对茶树的生长发育产生不同的生理效应[8]和复杂的叠加效应与剂量效应[9]。单独的远红光(λ>700 nm)对光合作用的贡献较小[10],但综合研究表明,远红光与光合有效辐射光具有协同活性[11−12],其中红光与远红光比值(red to far-red light ratio, R/FR)是植物感知外界光环境变化的重要信号,参与调控光形态建成、植物发育等过程[13−14]。低比值的R/FR光环境能够提高茶树品种‘中茶108’的净光合速率、光饱和点与叶绿素的含量,降低光补偿点,而利于植株的生长[8],同时还能够响应非生物胁迫,提高植株抗性[15−17]。例如在低温、低比值R/FR环境条件下,依赖于C-重复结合因子(C-repeat binding factor, CBF)信号通路进行光温信号转导,大麦(Hordeum vulgare)CBF家族基因HvCBF14及其调节子基因HvCOR14b 上调表达[16],拟南芥(Arabidopsis thaliana)CBF家族基因AtCBF1、AtCBF2、AtCBF3则以依赖于生物钟的方式上调表达[18],协同调控,增强了植株的耐寒性。红光和远红光(600~750 nm)信号由光敏色素(phytochrome, PHY)感知到光刺激后,与光敏色素互作因子(phytochrome interacting factors, PIFs)互作,进行光信号传递,参与植物的种子萌发、光形态建成、避荫反应、昼夜节律和叶绿素代谢等过程[19]。PIFs不仅参与光信号响应,还作为温度感受器响应温度信号,如PIF3可以直接与CBF 基因家族的启动子结合,负调控拟南芥的冷驯化[20],PIF4能在高温条件下直接结合到生长素合成基因TAA1和YUC8的启动子上,调节生长素的合成,诱导拟南芥下胚轴的伸长[21−22],因此PIFs在光温信号转导中起着重要作用。在茶树中鉴定出PIFs 有4个类群7个基因:PIF1(CsPIF1)、PIF3(CsPIF3a, CsPIF3b)、PIF7(CsPIF7a, CsPIF7b)和PIF8(CsPIF8a, CsPIF8b),其中CsPIF3a被证明可以作为转录激活因子激活叶绿素代谢途径中CsHEMA和CsPOD的表达,从而调控叶绿素代谢[23]。【本研究切入点】虽然植物光温信号转导机制已经有较为深入的研究,但是有关于远红光对低温条件下茶树光合荧光特性的影响和PIFs的分子响应研究还未见系统的研究报道,有待深入研究。【拟解决的关键问题】本研究以茶树品种‘谷雨春’为试材,设置10 ℃模拟冬季低温条件,在普通白色LED灯的光环境中添加远红光LED灯,实现对光环境中R/FR比值的控制,探究不同R/FR值对茶树叶片气体交换参数、荧光参数以及未萌发芽光敏色素互作因子表达量的影响,以期阐明低温条件不同R/FR比值光环境下茶树的庇荫机制,为工厂化光设施育苗冬季补光提供理论指导。
1. 材料与方法
1.1 试验材料
供试茶树品种谷雨春,2年生未萌发盆栽苗,于2023年2月14日放置光照培养箱中适应培养7 d,设置培养温度10 ℃模拟冬季低温条件,光合光子通量密度约为90 μmol·m−2·s−1,光照周期14 h·d−1,湿度(70±10)%。
1.2 试验方法
1.2.1 试验处理
在适应培养7 d后,通过调节LED灯管数量,进行不同R/FR比值处理。参考王加真等[24]关于茶树LED光源设施栽培的理想光照强度研究,使用Hopocolor OHSP-350P植物光照分析仪进行总的光照强度和各处理红光与远红光照强度的测定、校准(图1)。设置远红光处理(FR)光质组成:85.5 μmol·m−2·s−1白光+4.5 μmol·m−2·s−1远红光,远红光占比5%,R/FR=4.1;白光处理(CK)光质组成:90 μmol·m−2·s−1白光,R/FR=10.4。光照周期为14 h·d−1,每个处理8盆,每盆2株茶苗。不同R/FR比值处理48 h后,取5.0 g腋芽用锡箔纸包好,立即放入液氮中冷冻3 min,然后快速放入−80 ℃冰箱中保存备用,用于总RNA的提取,每个处理设 3 个生物学重复。
1.2.2 光合特性测定
选取顶芽往下第3张全展功能叶,使用Walz GFS-
3000 光合仪测定叶片气体交换参数。测量叶室设置:光合光子通量密度800 μmol·m−2·s−1、叶室流速550 μmol·s−1、CO2浓度500 μmol·mol−1,叶室温度25 ℃,相对湿度60%。光合仪开机后进行ZP和MP调零,在排除外界与仪器对测量结果的影响后,测定净光合速率(Pn)、气孔导度(Gs)、细胞间二氧化碳浓度(Ci)、蒸腾速率(Tr),叶片水分利用效率(water use efficiency, WUE)计算公式为:WUE = Pn/Tr。1.2.3 叶绿素荧光参数测定
选取顶芽往下第3张全展功能叶,避开叶片中脉,使用Walz PAM-
2500 叶绿素荧光成像系统测定荧光动力学参数,叶片暗适应30 min后,打开暗适应夹,先打开测量光,再打开一次饱和脉冲光,测定初始荧光Fo、最大荧光Fm、实际量子产量(YⅡ)、非调节性能量耗散的量子产量Y (NO)、调节性能量耗散的量子产量Y(NPQ)、光化学淬灭系数(qL、qP)、非光化学淬灭系数(qN、NPQ)。同时测定不同光强设置下光合电子传递速率(electron transport rate, ETR),光合光子通量密度梯度为0、26、60、110、174、254、356、470、606、884、1006 μmol·m−2·s−1,每步20 s。1.2.4 总RNA提取及qRT-PCR检测
参照天根 RNAprep Pure 植物总 RNA 提取试剂盒说明,以离心柱法抽提茶树叶片中的总RNA,利用超微量核酸分析仪检测其浓度和纯度,1.0%琼脂糖凝胶电泳检测其完整性。采用天根FastKing RT Kit逆转录合成cDNA,采用天根SuperReal PreMix Plus试剂对光敏色素A(phytochrome A, PHYA)和PIFs基因表达情况进行检测。目的基因的特异性引物参考Zhang 等[23]和莫晓丽等[25]的研究报道(表1)。以CsACTIN为内参基因,反应体系20.0 μL:SYBR Green Master Mix 10.0 μL,正、反向引物各0.8 μL,灭菌水7.4 μL,cDNA模板1.0 μL。扩增程序:95 ℃ 30 s,95 ℃ 5 s,60 ℃ 20 s,40个循环。
表 1 qRT-PCR特异性引物Table 1. qRT-PCR specific primers基因
Gene name登录号
Gene ID上游引物(5'-3')
Forward primer sequence (5'-3')下游引物(5'-3')
Reverse primer sequence (5'-3')CsPIF1 TEA006532 TGGAGGACTAAGGGGACA TTTACGCCTGAGATTTGC CsPIF3a TEA033210 CAACAAGGTGGACAAAGC AACATCATCGGTGGCATA CsPIF3b TEA007077 GCAACAAGGTGGACAAAGC TAACATCATCGGCGGCAT CsPIF7a TEA025875 CTCGGTCCCTTTTCCTGA GTTGGCTGCGTTGTTTGA CsPIF7b TEA011633 GATGTGGTCAGAATCCGAAAA GAATCCTCATCCGTGGTTTTA CsPIF8a TEA032260 CCTCTTCTCCACCCTACAGC GAAACAATGCAGCCATCCTA CsPIF8b TEA023842 ACTCCGTTTCTCACAGCA CAGCAGCCCTACATCTTT CsPHY2 TEA002223 TGTTCCCTTCCCTCTTCGTT TCCATTACATTCGGGCTCTG CsPHY4 TEA005460 AGTCTTCAGGCAGTTCAGGG GGATGTGATGGAGGTAAGCG CsACTIN KA280216 GCCATCTTTGATTGGAATGG GGTGCCACAACCTTGATCTT 1.3 统计分析
采用2−△△Ct计算相对表达量,采用SPSS 23.0进行单因素方差分析(ANOVA),经Turkey法进行差异显著性检验,所有图片采用GraphPad Prism 9.5.1软件绘制。
2. 结果与分析
2.1 不同R/FR比值处理茶树叶片光合特性
光质通过影响两个光系统(Photosystem Ⅰ and Photosystem Ⅱ,PSⅠ和 PSⅡ)的不平衡激发来影响光合作用。由图2可知,在相同的光量子密度条件下,FR处理显著降低了茶树的Tr与Pn,较CK处理分别降低了44.06%和32.65%,而Ci较CK处理下降了11.96%,这可能是造成FR处理Pn显著下降的直接原因,表明10 ℃低温条件下添加5%的远红光产生了严重的庇荫效应,显著抑制了茶树叶片的光合作用。
2.2 不同R/FR比值处理茶树叶片荧光参数
叶绿素荧光是胁迫环境下描述叶绿体状态的重要指标。由图3可知,FR处理荧光参数Fo、Fm、Fv/Fm、Fv/Fo均减小,较CK分别减小6.33%、16.42%、5.06%、14.19%,同时光化学淬灭系数(qL、qP)、非光化学淬灭系数(qN、NPQ)均减小,较CK减小5.03%、3.80%、4.37%、14.10%,但是差异均不显著(P>0.05)。
FR处理下,茶树叶片Y(NO)所占的比例较CK处理升高了11.23%,Y(Ⅱ)和Y(NPQ)所占的比例分别下降了8.68%和4.84%(图4),表明茶树在受到远红光的庇荫效应后,PSⅡ吸收的激发能用于电子传递的份额降低,通过能量耗散的份额增加,叶片的光保护能力下降,即只能通过非调节性能量耗散的方式将过剩的光能耗散。因此,低温条件下FR处理可能对茶树产生了一定程度的光损伤。
2.3 不同R/FR比值处理茶树叶片快速响应曲线
电子传递速率(ETR)是叶绿体光合作用强度的重要指标。由图5可知,在达到光饱和前,相同光合有效辐射(PAR)条件下, FR处理的ETR均小于CK处理,表明FR处理导致茶树光合作用受到抑制。在ETR和PAR的拟合曲线中,两个处理的初始斜率相同,且变化趋势类似,当PAR约为100 μmol·m−2·s−1时斜率开始下降,而FR处理下降速度(即快速光响应曲线斜率)明显大于CK处理,综合表明FR处理降低了茶树光合电子传递速率及可接受的最大光合有效辐射。
2.4 不同R/FR比值处理茶树休眠芽PHYA和PIFs基因的相对表达量
为研究茶树芽对远红光刺激的分子响应机制,本研究测定了不同R/FR处理48 h后未萌发芽PHYA和PIFs基因的相对表达量,由图6结果可知,FR处理茶树休眠越冬芽中远红光受体PHYA家族基因CsPHY2、CsPHY4均上调表达,分别为CK处理的2.39和1.29倍,CsPIFs家族基因CsPIF1、CsPIF3a、CsPIF8a下调表达,分别为CK处理的54%、72%、54%,CsPIF8b上调表达,为CK处理的1.28倍。结果表明CsPHY2和CsPHY4作为远红光受体参与远红光刺激的响应,CsPIFs家族基因CsPIF1、CsPIF3a、CsPIF8a可能负调控植株的庇荫反应。
3. 讨论
3.1 低温条件下降低R/FR比值对茶树产生庇荫效应
遮阴会导致光照强度减弱,光质组成发生变化[26],远红光和绿光波段会在反射和透射光中富集,导致红光与远红光的比值降低。植物通过光敏色素感受环境中R/FR的比例变化,从而感知遮阴环境,启动包括茎与叶柄伸长、叶角抬高、抑制分枝、加速开花等庇荫综合征(shade avoidance syndrome, SAS)的发育反应[27−29]。这些反应影响植物光形态建成,促进植物冠层的光截获,作为植物响应遮阴胁迫的适应性策略,以维持其在光环境中的竞争优势[30]。因此,降低R/FR的比例会触发SAS。在前人研究中,相同光量子密度条件下,降低R/FR比值,导致生菜(Lactuca satva)[31]、冰草(Agropyron cristatum)[32]、大豆(Glycine max)[26]等均表现出茎秆长度、叶面积以及生物量增加的庇荫效应。但是不同植物对降低R/FR比值后的光合荧光特性的响应不一致,如大豆幼苗在正常光与弱光条件下,添加远红光、降低R/FR比值后,均导致Pn、光饱和点和PSⅡ最大量子产量Fv/Fm的升高[26];盐胁迫下的番茄(Solanum lycopersicum)在降低R/FR比值后,也会导致Pn升高[33];莴苣(Lactuca sativa)添加远红光可提高YⅡ、Pn,降低Y(NPQ)[34];本研究中茶树品种谷雨春与生菜[31]、冰草[32]在降低R/FR比值后,导致Pn下降的趋势一样。由于在光能的吸收、传输和转化过程中叶绿素起着重要作用,其含量与组成直接影响叶片的光合能力[35]。因此,研究结果的差异可能与总叶绿素及光合氮含量有关[31,36],还可能与两个光系统的不平衡激发有关。优先激发PSⅠ的远红光(λ>700 nm)能够降低叶片的吸收能力和光合作用量子产率。因此,降低R/FR的比值后,远红光对两个光系统的不平衡激发,导致ETR与Pn的下降。综合表明,降低R/FR比值虽然降低了叶片Pn,但SAS会导致茎秆的伸长,叶面积的增大,使得冠层的光截获能力提升,最终增加了生物量。
3.2 低温条件下降低R/FR比值降低了茶树叶片叶绿素含量
叶绿素在植物光合作用光吸收阶段起着核心作用,光作为叶绿素合成的重要条件,其与相应的光受体作用调控色素的合成[37],远红光通过影响叶绿素的含量以及叶绿素a与叶绿素b的比值来影响叶片的光合能力与光合活性[38]。与光合荧光特性类似,随R/FR比值的降低,不同植物叶绿素含量呈现出不同的变化趋势。如大豆 [26, 39−40]、菊花(Chrysanthemum morifolium)[41]等降低R/FR比值,叶绿素含量升高,而玉米(Zea mays)[42] 、黄瓜(Cucumis sativus)[43]和马铃薯(Solanum tuberosum)[44]则随着R/FR比值的降低,叶绿素含量降低。在本研究中,降低R/FR比值降低了CsPIF3a的表达量。由于茶树CsPIF3a基因是叶绿素合成的重要调节因子,CsPIF3a可以与叶绿素合成途径中编码谷氨酰-tRNA 还原酶基因CsHEMA和原叶绿素酸酯还原酶基因CsPOR启动子上的G-box作用元件结合,激活启动子的转录,参与叶绿素的生物合成,同时在拟南芥过表达株系CsPIF3a-OE中AtHEMA、AtHEME、AtCHLI和AtPORC等叶绿素生物合成的基因显著上调表达,叶片色泽更绿且叶绿素含量更高,表明CsPIF3a通过正向激活叶绿素合成相关基因的表达,诱导叶绿素在茶树叶片中的积累[23]。因此,CsPIF3a的表达量降低可能会导致叶绿素含量降低,而叶片的光吸收率与单位叶面积的叶绿素含量呈正相关[45],这与降低R/FR比值会导致光合能力下降的结果相一致,所以长时间低R/FR比值的光环境可能会导致茶树叶片叶绿素含量的降低,降低叶片的光合能力。有研究表明,添加15%的远红光后,中茶108叶片中叶绿素a、叶绿素b等含量均显著高于未添加远红光处理的叶片含量[8]。通过遮阴处理14 d后均能提高茶树叶片的叶绿素相对含量值[46],这与本研究结果不一致,推测可能是因为不同R/FR比值对植株叶绿素含量和光合能力的影响趋势不一致,例如在相同光照强度下,菊花叶片光合速率由大到小的R/FR值顺序依次为2.5、4.5、0.5、6.5[47],也可能是遮阴处理导致光照强度减弱以及品种间差异等因素导致[8],还可能是由于低温条件下光温互作调控的结果。
4. 结论
在低温条件下,低R/FR比值的光环境导致茶树叶片ETR、Pn、YⅡ和Y(NPQ)所占的比例下降,Y(NO)所占的比例升高,表明茶树叶片受到光抑制和光损伤,影响了光合机构的作用,导致光合电子传递能力下降。在此过程中,CsPIF1、CsPIF3a、CsPIF8a作为庇荫反应的负调控因子响应远红光刺激,其中叶绿素合成的重要调节因子CsPIF3a基因表达量降低,进一步削弱了茶树叶片的光合能力。
-
图 1 Y1组对Y2组、Y1组对Y3组、Y1组对Y4组的PCA分析
(a)Y1 vs. Y2,(b)Y1 vs. Y3,(c)Y1 vs. Y4;图中横坐标t[1]P表示第一主成分的预测主成分得分,展示样本组间差异,纵坐标t[1]O表示正交主成分得分,展示样本组内差异。
Figure 1. PCA scores for Y1 vs. Y2, Y1 vs. Y3, and Y1 vs. Y4
(a) Y1 vs. Y2; (b) Y1 vs. Y3; (c) Y1 vs. Y4; horizontal axis t[1] P: predicted scores on 1st principal component showing differences between sample groups; vertical axis t[1] O: scores of orthogonal principal component showing differences within same sample group.
图 3 Y1组对Y2组、Y1组对Y3组、Y1组对Y4组的差异代谢物筛选火山图
(a)Y1 vs.Y2;(b)Y1vs.Y3;(c)Y1vs.Y4。横坐标代表该组对比各物质的倍数变化(取以2为底的对数),纵坐标表示 t 检验的 P值(取以 10 为底对数的负数)。
Figure 3. Volcanic diagram of differential metabolite screening between Y1 and Y2, Y1 and Y3, and Y1 and Y4
(a) Y1 vs. Y2; (b) Y1 vs. Y3; (c) Y1 vs. Y4; horizontal axis: comparison of objects in same group on multiple quality changes (value in log2); vertical axis: P-values in student t-test (negative value of log10).
表 1 代谢物分类及占比
Table 1 Proportions of classified metabolites
代谢物种类
Metabolite class数量
Number占比
Percentage/%脂质和类脂分子
Lipids and lipid-like molecules119 4.349 莽草酸和苯丙烷类
Shikimates and Phenylpropanoids112 4.094 苯丙烷和聚酮
Phenylpropanoids and polyketides96 3.509 有机杂环化合物
Organoheterocyclic compounds89 3.253 苯环型化合物
Benzenoids84 3.070 脂肪酸
Fatty acids68 2.485 有机酸及其衍生物
Organic acids and derivatives65 2.376 萜类化合物
Terpenoids65 2.376 生物碱类
Alkaloids59 2.156 有机含氧化合物
Organic oxygen compounds44 1.608 氨基酸和肽核苷
Amino acids and Peptides32 1.170 核苷酸和类似物
Nucleosides, nucleotides, and analogues29 1.060 碳水化合物
Carbohydrates19 0.694 聚酮
Polyketides16 0.585 生物碱及其衍生物
Alkaloids and derivatives15 0.548 有机氮化合物
Organic nitrogen compounds9 0.329 木脂素、新木脂素及相关化合物
Lignans, neolignans and related compounds5 0.183 其他 Others 1810 66.155 共计 Total 2736 100.000 -
[1] 冯亚静,王晓霞,庄鹏宇,等. 党参的化学成分研究[J]. 中国中药杂志,2017,42(1) :135−139. FENG Y J,WANG X X,ZHUANG P Y,t al. Study on chemical constituents of Codonopsis pilosula[J]. China Journal of Chinese Materia Medica,2017, 42(1) :135−139.(in Chinese)
[2] ENDO K,TAGUCHI T,TAGUCHI F,et al. Antiinflammatory principles of Atractylodes rhizomes[J]. Chemical & Pharmaceutical Bulletin,1979, 27(12) :2954−2958.
[3] 2022—2026年党参市场调查研究报告[M]. 北京:中研普华研究院,2022. Market Research Report on Codonopsis pilosula from 2022 to 2026 [M]. Beijing:Zhongyan Puhua Research Institute,2022.
[4] INOUE M,SUZUKI R,SAKAGUCHI N,et al. Selective induction of cell death in cancer cells by Gallic acid[J]. Biological & Pharmaceutical Bulletin,1995,18(11) :1526−1530.
[5] 解超平. 饲料中添加发酵中药渣对铁脚麻鸡肉质性状的改善[J]. 畜禽业,2019,30(4) :9−10,12 . XIE C P. Improvement of meat quality of iron-footed hemp chicken by adding fermented Chinese medicine residue to feed[J]. Livestock and Poultry Industry,2019, 30(4) :9−10,12.
[6] 张晓燕,龚苏晓,张铁军,等. 药用植物废弃物再利用研究现状[J]. 中草药,2016,47(7) :1225−1229. ZHANG X Y,GONG S X,ZHANG T J,et al. Research status of recycling medicinal plant waste[J]. Chinese Traditional and Herbal Drugs,2016,47(7) :1225−1229.(in Chinese)
[7] 吴金梅,胡迎利. 复方党参药对固态发酵的实验研究[J]. 现代牧业,2019,3(2) :6−8. DOI: 10.3969/j.issn.1008-3111.2019.02.002 WU J M,HU Y L. Experimental study on solid state fermentation by compound Codonopsis pilosula[J]. Modern Animal Husbandry,2019,3(2) :6−8.(in Chinese) DOI: 10.3969/j.issn.1008-3111.2019.02.002
[8] 罗志毅,黄新,包国荣. 大黄中蒽醌类成分清除氧自由基作用的研究[J]. 海峡药学,2009,21(12) :43−45. DOI: 10.3969/j.issn.1006-3765.2009.12.015 LUO Z Y,HUANG X,BAO G R. ESR Study on the scavenging effects of the free anthraquinones from Rheum palmatum L. on superoxide anion radical[J]. Strait Pharmaceutical Journal,2009,21(12) :43−45.(in Chinese) DOI: 10.3969/j.issn.1006-3765.2009.12.015
[9] LI H C,TAN P,LEI W Z,et al. Effect of microwave-puffed on Auricularia auricula polysaccharide and probiotic fermentation on its biotransformation and quality characteristics during storage period[J]. International Journal of Biological Macromolecules,2024,281(Pt 3) :136448.
[10] 孟晓燕. 发酵中药渣对犊牛生长发育和健康状况的影响[J]. 山东畜牧兽医,2024,45(9) :14−15,18. DOI: 10.3969/j.issn.1007-1733.2024.09.005 MENG X Y. Effect of residue in fermentation on growth and health status of calves[J]. Shandong Journal of Animal Science and Veterinary Medicine,2024,45(9) :14−15,18.(in Chinese) DOI: 10.3969/j.issn.1007-1733.2024.09.005
[11] 李华伟. 四种发酵中药渣对母猪繁殖性能和仔猪生长性能的影响[D]. 武汉:武汉轻工大学,2017. LI H W. Effects of four kinds of fermented Chinese medicine residues on reproductive performance of sows and growth performance of piglets[D]. Wuhan:Wuhan Polytechnic University,2017.(in Chinese)
[12] 张余,赵生月,王颖颖,等. 植物乳杆菌发酵添加太子参的培养基优化及抗氧化活性研究[J]. 现代食品,2024,30(9) :187−196. ZHANG Y,ZHAO S Y,WANG Y Y,et al. Optimization of Lactobacillus plantarum fermentation medium incorporated with the Pseudostellaria heterophylla and investigation of the antioxidant activity of the generated fermentation broth[J]. Modern Food,2024,30(9) :187−196.(in Chinese)
[13] 张亚芹,李家军,李豪,等. 植物乳杆菌发酵四君子散对肉鸡生长性能的影响[J]. 山西农业科学,2024,52(2) :97−102. ZHANG Y Q,LI J J,LI H,et al. Effects of sijunzi powder fermentated by Lactobacillus plantarum on growth performance of broilers[J]. Journal of Shanxi Agricultural Sciences,2024,52(2) :97−102.(in Chinese)
[14] 侯楠楠,谢全喜,王倩,等. 植物乳杆菌发酵复方中药对阿魏酸和甘草次酸溶出率的影响[J]. 广东饲料,2024,33(3) :43−46. DOI: 10.3969/j.issn.1005-8613.2024.03.014 HOU N N,XIE Q X,WANG Q,et al. Effect of Lactobacillus plantarum fermentation compound Chinese medicine on dissolution rate of ferulic acid and glycyrrhetinic acid[J]. Guangdong Feed,2024,33(3) :43−46.(in Chinese) DOI: 10.3969/j.issn.1005-8613.2024.03.014
[15] 厉桓. 植物乳杆菌固态发酵黄芪互作研究及在肉鸡上的应用[D]. 郑州:河南农业大学,2023. LI H. Study on the interaction of Astragalus membranaceus by solid-state fermentation of Lactobacillus plantarum and its application in broilers[D]. Zhengzhou:Henan Agricultural University,2023.(in Chinese)
[16] WANG J Y,ZHANG J,GUO H N,et al. Optimization of exopolysaccharide produced by Lactobacillus plantarum R301 and its antioxidant and anti-inflammatory activities[J]. Foods,2023,12(13) :2481. DOI: 10.3390/foods12132481
[17] FU H,ZHANG Y Z,AN Q,et al. Anti-photoaging effect of Rhodiola rosea fermented by Lactobacillus plantarum on UVA-damaged fibroblasts[J]. Nutrients,2022,14(11) :2324. DOI: 10.3390/nu14112324
[18] EWEYS A S,ZHAO Y S,DARWESH O M. Improving the antioxidant and anticancer potential of Cinnamomum cassia via fermentation with Lactobacillus plantarum[J]. Biotechnology Reports,2022,36:e00768. DOI: 10.1016/j.btre.2022.e00768
[19] DONG J J,NA Y X,HOU A J,et al. A review of the botany,ethnopharmacology,phytochemistry,analysis method and quality control,processing methods,pharmacological effects,pharmacokinetics and toxicity of Codonopsis Radix[J]. Frontiers in Pharmacology,2023,14:1162036. DOI: 10.3389/fphar.2023.1162036
[20] 林洁鑫,王鹏杰,金珊,等. 基于广泛靶向代谢组学的不同产地红茶代谢产物比较分析[J]. 食品工业科技,2022,43(2) :9−19. LIN J X,WANG P J,JIN S,et al. Comparative analysis of black tea metabolites from different origins based on extensively targeted metabolomics[J]. Science and Technology of Food Industry,2022,43(2) :9−19.(in Chinese)
[21] LI Z L,GUO Q,LIN F Q,et al. Lactobacillus plantarum supernatant inhibits growth of Riemerella anatipestifer and mediates intestinal antimicrobial defense in Muscovy ducks[J]. Poultry Science,2024,103(2) :103216. DOI: 10.1016/j.psj.2023.103216
[22] 秦楠,张娜郡,陈超,等. 党参发酵工艺及成分变化研究[J]. 中华中医药学刊,2023,41(6) :232–236,277–278. QIN N,ZHANG N J,CHEN C,et al. Study on fermentation process and component change of Dangshen(Codonopsis pilosula) [J]. Chinese Archives of Traditional Chinese Medicine,2023,41(6) :232–236,277–278.(in Chinese)
[23] ZENG X,LI J X,LYU X K,et al. Untargeted metabolomics reveals multiple phytometabolites in the agricultural waste materials and medicinal materials of Codonopsis pilosula[J]. Frontiers in Plant Science,2022,12:814011. DOI: 10.3389/fpls.2021.814011
[24] 贾旭森. 新鲜白条党参酵母菌固体发酵工艺及其成分和抗氧化活性研究[D]. 兰州:兰州大学,2021. JIA X S. Study on solid fermentation technology,composition and antioxidant activity of fresh Codonopsis pilosula yeast[D]. Lanzhou:Lanzhou University,2021.(in Chinese)
[25] PANG Y S,ZHANG L,ZHONG Z T,et al. Nobiletin restores HFD-induced enteric nerve injury by regulating enteric glial activation and the GDNF/AKT/FOXO3a/P21 pathway[J]. Molecular Medicine,2024,30(1) :113. DOI: 10.1186/s10020-024-00841-8
[26] CAI S J,GOU Y D,CHEN Y Y,et al. Luteolin exerts anti-tumour immunity in hepatocellular carcinoma by accelerating CD8+ T lymphocyte infiltration[J]. Journal of Cellular and Molecular Medicine,2024,28(17) :e18535. DOI: 10.1111/jcmm.18535
[27] SU Y Y,FU X,ZHUANG P W. Untargeted metabolomics analysis of lactic acid bacteria fermented Acanthopanax senticosus with regard to regulated gut microbiota in mice[J]. Molecules,2024,29(17) :4074. DOI: 10.3390/molecules29174074
[28] ELBEIN A D,MOLYNEUX R J. Alkaloid glycosidase inhibitors[M]. Comprehensive Natural Products II. Amsterdam:Elsevier,2010:225–260.
[29] VARUN B V,VAITHEGI K,YI S,et al. Nature-inspired remodeling of (aza) indoles to meta-aminoaryl nicotinates for late-stage conjugation of vitamin B3 to (hetero) arylamines[J]. Nature Communications,2020,11(1) :6308. DOI: 10.1038/s41467-020-19610-2
[30] ARAÚJO I G A,SILVA D F,DO CARMO DE ALUSTAU M,et al. Calcium influx inhibition is involved in the hypotensive and vasorelaxant effects induced by yangambin[J]. Molecules,2014,19(5) :6863−6876. DOI: 10.3390/molecules19056863
[31] CASTRO-FARIA-NETO H C,MARTINS M A,SILVA P M,et al. Pharmacological profile of epiyangambin:A furofuran lignan with PAF antagonist activity[J]. Journal of Lipid Mediators,1993,7(1) :1−9.
[32] WANG H F,HUANG Z H,ZOU W,et al. Tracheloside,the main constituent of the total lignan extract from Trachelospermi Caulis,inhibited rheumatoid arthritis via IL-17/MAPK signaling pathway[J]. Fitoterapia,2025,180:106311. DOI: 10.1016/j.fitote.2024.106311
[33] PEUHU E,PAUL P,REMES M,et al. The antitumor lignan Nortrachelogenin sensitizes prostate cancer cells to TRAIL-induced cell death by inhibition of the Akt pathway and growth factor signaling[J]. Biochemical Pharmacology,2013,86(5) :571−583. DOI: 10.1016/j.bcp.2013.05.026
[34] IZQUIERDO-VEGA J,ARTEAGA-BADILLO D,SÁNCHEZ-GUTIÉRREZ M,et al. Organic acids from Roselle (Hibiscus sabdariffa L.) :A brief review of its pharmacological effects[J]. Biomedicines,2020,8(5) :100. DOI: 10.3390/biomedicines8050100
[35] KRAUSE D,SUH H S,TARASSISHIN L,et al. The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation role of hemeoxygenase-1[J]. The American Journal of Pathology,2011,179(3) :1360−1372. DOI: 10.1016/j.ajpath.2011.05.048
[36] SUGIYAMA T,TAKAHASHI K,MORI H. Royal jelly acid,10-hydroxy-trans-2-decenoic acid,as a modulator of the innate immune responses[J]. Endocrine,Metabolic & Immune Disorders Drug Targets,2012,12(4) :368–376.
[37] 殷典贺,王秋月. 熊果酸抗炎、抗氧化作用及其机制的研究进展[J]. 国际呼吸杂志,2015(13) :1022−1025. DOI: 10.3760/cma.j.issn.1673-436X.2015.13.015 YIN D H,WANG Q Y. Research progress on anti-inflammatory,antioxidant effects and its mechanism of ursolic acid[J]. International Journal of Respiration,2015(13) :1022−1025.(in Chinese) DOI: 10.3760/cma.j.issn.1673-436X.2015.13.015
[38] 赵艳妹,刘林娅,鲁明秋,等. 异黄酮生物合成通路及关键酶研究进展[J]. 食品与发酵工业,2024,50(2) :343−353. ZHAO Y M,LIU L Y,LU M Q,et al. Advances on pathway of isoflavone biosynthesis and relevant key enzymes[J]. Food and Fermentation Industries,2024,50(2) :343−353.(in Chinese)
[39] 李宗恒,张雪芳,陈延华,等. 基于16sRNA测序分析亚油酸对小鼠肠道菌群的影响[J]. 安徽医科大学学报,2024,59(7) :1116−1122. LI Z H,ZHANG X F,CHEN Y H,et al. The effects of linoleic acid on intestinal flora in mice were analyzed based on 16sRNA sequencing[J]. Acta Universitatis Medicinalis Anhui,2024,59(7) :1116−1122.(in Chinese)
[40] GAO W,GUAN P,GAO W P,et al. Lycorine attenuates lipopolysaccharide-induced inflammation and intestinal epithelial barrier dysfunction in Caco-2 cells through inhibiting the STING/NF-κB pathway[J]. Pakistan Journal of Pharmaceutical Sciences,2024,37(6) :1443−1454.(in Chinese)
[41] GUPTA N,BALOMAJUMDER C,AGARWAL V K. Enzymatic mechanism and biochemistry for cyanide degradation:A review[J]. Journal of Hazardous Materials,2010,176(1/2/3) :1−13.
[42] MACHINGURA M,SALOMON E,JEZ J M,et al. The β-cyanoalanine synthase pathway:Beyond cyanide detoxification[J]. Plant,Cell & Environment,2016,39(10) :2329–2341.
[43] PIOTROWSKI M,VOLMER J J. Cyanide metabolism in higher plants:Cyanoalanine hydratase is a NIT4 homolog[J]. Plant Molecular Biology,2006,61(1) :111−122.
[44] MIGGIANO R,MARTIGNON S,MINASSI A,et al. Crystal structure of Haemophilus influenzae 3-isopropylmalate dehydrogenase (LeuB) in complex with the inhibitor O-isobutenyl oxalylhydroxamate[J]. Biochemical and Biophysical Research Communications,2020,524(4) :996−1002. DOI: 10.1016/j.bbrc.2020.02.022
[45] BURKE G,FIEHN O,MORAN N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids[J]. The ISME Journal,2010,4(2) :242−252. DOI: 10.1038/ismej.2009.114