文章快速检索     高级检索
  福建农业学报  2016, Vol. 31 Issue (4): 377-383  
0

引用本文 [复制中英文]

覃江梅, 程小娟, 魏辉, 蔡立君, 尤民生. 小菜蛾气味结合蛋白PxylOBP13基因克隆与序列分析[J]. 福建农业学报, 2016, 31(4): 377-383.
[复制中文]
QIN Jiang-mei, CHENG Xiao-juan, WEI Hui, CAI Li-jun, YOU Min-sheng. Cloning and Sequence Analysis of an Odorant Binding Protein Gene PxylOBP13 in the Diamondback Moth, Plutella xylostella (Lepidoptera:Plutellidae)[J]. Fujian Journal of Agricultural Sciences, 2016, 31(4): 377-383.
[复制英文]

基金项目

国家自然科学基金项目(31301666、31230061、31320103922);福建省自然科学基金(2014J05031)

通信作者

尤民生(1954-),男,教授,研究方向:农业昆虫防治与综合治理(E-mail:msyou@iae.fjau.edu.cn);蔡立君(1982-),女,博士,研究方向:农业昆虫防治与综合治理(E-mail:cai-lijun@live.cn)

作者简介

覃江梅(1990-),女,硕士生,研究方向:农业昆虫与害虫防治(E-mail:qinjiangmei0325@163.com)

文章历史

收稿日期: 2016-01-23
修回日期: 2016-02-25
小菜蛾气味结合蛋白PxylOBP13基因克隆与序列分析
覃江梅1,2,3,4, 程小娟1,2,3,5, 魏辉6, 蔡立君1,2,3,4, 尤民生1,2,3,4     
1. 福建农林大学应用生态研究所, 福建 福州 350002;
2. 闽台特色作物病虫生态防控协同创新中心, 福建 福州 350002;
3. 农业部闽台作物有害生物综合治理重点实验室, 福建 福州 350002;
4. 福建农林大学植物保护学院, 福建 福州 350002;
5. 福建农林大学生命科学学院, 福建 福州 350002;
6. 福建省农业科学院植物保护研究所, 福建 福州 350013
摘要: 小菜蛾是为害十字花科蔬菜的重要害虫, 干扰其嗅觉识别功能是实现小菜蛾有效治理的重要途径。本研究克隆并鉴定了1个小菜蛾气味结合蛋白基因, 命名为PxylOBP13(GenBank登录号为KT156679);该基因开放阅读框全长387bp, 编码128个氨基酸;预测蛋白分子量为14.33KDa, 等电点为7.55, N端无信号肽序列, 有3个疏水性区域, 具有气味结合蛋白家族的保守结构域和6个保守的半胱氨酸残基, 与6种鳞翅目昆虫的气味结合蛋白氨基酸序列一致性达50%以上。研究结果可为进一步研究小菜蛾气味结合蛋白功能, 阐明小菜蛾嗅觉机制, 制定科学有效的治理措施提供依据。
关键词: 小菜蛾    气味结合蛋白    克隆    序列分析    
Cloning and Sequence Analysis of an Odorant Binding Protein Gene PxylOBP13 in the Diamondback Moth, Plutella xylostella (Lepidoptera:Plutellidae)
QIN Jiang-mei1,2,3,4 , CHENG Xiao-juan1,2,3,5 , WEI Hui6 , CAI Li-jun1,2,3,4 , YOU Min-sheng1,2,3,4     
1. Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
2. Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
3. Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, Fujian 350002, China;
4. College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
5. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
6. Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
Abstract: The diamondback moth (DBM), Plutella xylostella (L.) is a key insect pest on cruciferous plants all over the world. Olfactory perception is critical for survival and reproduction in insects, and correspondingly provides a new target to control DBM. Hereby, an odorant binding protein (OBP) gene from P.xylostella,PxylOBP13 (GenBank accession number:KT156679) was cloned; the bio-information characteristics were analyzed; and a phylogenetic tree was constructed. The results showed that the full-length of open reading frame of PxylOBP13 is 387 bp and encodes 128 amino acids; PxylOBP13 contains 6 conserved cysteine residues and the conserved domain of odorant binding protein family, and 3 hydrophobic regions which are potential binding sites for hydrophobic odorants. The protein molecular mass was predicted as 14.33 kDa with an isoelectric point of 7.55, but the N-terminal without signal peptide; the similarity of sequence between PxylOBP13 and six lepidopteran insects can reach above 50%. The results can provide theoretical support for further research on the function of OBPs in DBM and development of effective management of DBM based on olfactory mechanism.
Key Words: Plutella xylostella    odorant binding protein    cloning    sequence analysis    

小菜蛾Plutella xylostella (L.)属鳞翅目Lepidopetera菜蛾科Plutellidae,是为害十字花科作物的重要害虫之一,据估计全世界每年因小菜蛾为害造成的经济损失和用于小菜蛾治理的费用高达40亿~50亿美元[1]。目前对小菜蛾的防治仍以化学防治为主,而杀虫剂的大量使用,导致小菜蛾对多种杀虫剂产生了抗性。有效天敌的匮乏与抗药性是目前小菜蛾防治工作的主要障碍[2]。因此,探索防治小菜蛾的高效、环保新途径迫在眉睫。

嗅觉对于昆虫的生存和繁衍至关重要,影响其觅食、定位寄主植物、交配、产卵、躲避天敌,以及种群间通讯等行为[3-4]。通过干扰昆虫的嗅觉识别功能,使其不能识别寄主植物或交配对象,从而实现害虫的有效治理是目前昆虫学研究的热点之一。

气味结合蛋白(odorant binding proteins,OBPs)是昆虫识别外界环境中气味信号的第一载体,一般在昆虫嗅觉树突周围大量表达,负责筛选、结合和运输疏水性气味分子到达特异性气味受体。自第1个昆虫OBP通过放射性配基结合方法得到鉴定以来[5],已经有超过300个来自不同昆虫种类的OBP基因在NCBI GeneBank注册登录[6]。近年来通过转录组数据分析,至少有10种鳞翅目昆虫的OBPs已被鉴定,其中包括二化螟Chilo suppressalis、苹果蠹蛾Cydia pomonella、茎夜蛾Sesamia nonagrioides、小地老虎Agrotis ipsilon、灰翅夜蛾Spodoptera littoralis、棉铃虫Helicoverpa armigera、云南松毛虫Dendrolimus houi、思茅松毛虫D.kikuchii、亚洲玉米螟Ostrinia furnacalis和甜菜夜蛾Sp. exigua[7-15]

OBPs具有分子量小,等电点低,对小分子配体有亲和性,可溶性等特征[16]。OBPs通常由120~150个氨基酸组成,具有该家族特有的保守结构域[16-18],即6个保守半胱氨酸残基和N端信号肽[20-22]。按照蛋白氨基酸序列的一致性,OBPs可分为3个亚类:性信息素结合蛋白(pheromone binding proteins,PBPs)、普通气味结合蛋白(general odorant binding proteins,GOBPs)和触角结合蛋白(antennal-binding protein X,ABPX)[23]。其中,GOBPs根据氨基酸序列的不同又分为GOBP1和GOBP2[24-25]。此外,根据蛋白保守区域的不同又可将OBPs分为4类:(1)典型OBPs,有6个保守的半胱氨酸残基,且这6个保守的半胱氨酸残基组成3个二硫键,分子量大小在14 kDa左右,如家蚕 Bombyx mori BmorPBP[5];(2)Plus-C OBPs,包含6~9个半胱氨酸残基和1个高度保守的脯氨酸残基,其中保守的半胱氨酸残基不少于2个,分子量大小为17~25 kDa,如冈比亚按蚊Anopheles gambiae AgamOBP48[17];(3)Minus-C OBPs,其半胱氨酸残基数少于6个,如黑腹果蝇Drosophila melanogaster OBP99a、OBP99b和OBP99d[20];(4)非典型OBPs,半胱氨酸残基数量不少于6个,有一段长的C末端,分子量较大,如冈比亚按蚊AgamOBP35[26]

目前,已确认的小菜蛾OBP基因有8个,包括2个GOBPs(PxylGOBP1PxylGOBP2),3个PBPs(PxylPBP1PxylPBP2PxylPBP3),及3个OBPs(PxylOBP3、PxylOBP9、PxylOBP19)[27-29]。根据小菜蛾全基因组与转录组数据[30],预测小菜蛾共有39条OBPs基因[31]。这意味着仍有许多小菜蛾的OBP基因尚待验证与分析。

在小菜蛾基因组与转录组数据的基础上,本研究对小菜蛾的1个OBP基因进行克隆、鉴定,并对其序列进行分析,为进一步明确其在小菜蛾嗅觉识别中的作用,揭示小菜蛾嗅觉识别分子机制,从而制定有效的防控措施奠定基础。

1 材料和方法 1.1 供试昆虫

供试小菜蛾来自福建农林大学应用生态研究所,以萝卜苗长期饲养,养虫室温度(25±2)℃,相对湿度70%~80%,光照周期为16L∶8D。

1.2 主要试剂

总RNA提取试剂Trizol购自美国Invitrogen公司;反转录试剂盒(GoScriptTM Reverse Transcription System)购自美国Promega公司;胶回收试剂盒购自天根公司;DNA分子量标准DL2000、ExTaq酶、ExTaq DNA聚合酶等试剂购自Takara公司;pEASY-T5克隆载体与Trans-T1克隆感受态细胞购自北京全式金生物技术有限公司。

1.3 总RNA 提取与cDNA合成

分别切取羽化当天的小菜蛾雌雄成虫头部(含触角),用液氮速冻后按照Trizol试剂使用说明提取总RNA。经1%的琼脂糖凝胶电泳及核酸微量测定仪(Nanodrop 2000)检测RNA完整性与浓度后,按照反转录试剂盒Promega A5000(GoScriptTM Reverse Transcription System)说明书进行反转录获得cDNA。

1.4 小菜蛾PxylOBP13基因的克隆

根据前期生物信息学预测获得的PxylOBP13基因开放阅读框序列,利用软件Primer premier 5.0设计全长引物(PxylOBP13-F:5'-CCGG-AATTCATGACGGATGAAGAAGCAAAAT-3';PxylOBP13-R:5'-ACGCGTCGACAACCTTG-AACCCGTACTTCGG-3'),用于目的片段的扩增。RT-PCR扩增反应条件:94℃预变性,2 min;94℃ 30 s;55℃ 30 s;72℃ 30 s;共35个循环;72℃延伸10 min;4℃保存。PCR产物用1%琼脂糖凝胶电泳检测扩增产物;用胶回收试剂盒进行PCR产物纯化回收,连接到pEASY-T5载体上,挑选经菌液PCR验证条带正确的阳性克隆子送样测序。

1.5 序列分析

获得序列后,采用BioEdit软件对序列进行翻译;在线ExPASy软件(http://web.expasy.org/)预测蛋白的分子量、等电点及疏水性;在线软件SignalP 4.1(http://www.cbs.dtu.dk/services/SignalP/)预测蛋白的信号肽;利用NCBI中的BLASTp工具(http://blast.ncbi.nlm.nih.gov/Blast.cgi PROGRAM=blastp)对目的基因的氨基酸序列进行搜索、比对;利用软件Clustalx 1.83进行氨基酸多序列比对;利用软件MEGA5.1构建系统发育树。

2 结果与分析 2.1 PxylOBP13的克隆与序列分析

以小菜蛾头部总RNA合成的cDNA为模板进行RT-PCR扩增,得到与预期片段大小相符的条带。PCR产物经胶回收试剂盒纯化后,与pEASY-T5克隆载体连接,并转化到Trans-T1感受态细胞中。经测序获得小菜蛾气味结合蛋白的开放阅读框(open reading frame,ORF),全长为387 bp,将其命名为PxylOBP13(GenBank登录号:KT156679)。利用软件BioEdit对PxylOBP13核苷酸序列进行翻译,发现该基因ORF全长编码128个氨基酸残基(图 1)。

图 1 PxylOBP13核苷酸序列及对应的氨基酸序列 Figure 1 Nucleotide and deduced amino acid sequence of the PxylOBP13 6个保守的半胱氨酸用方框标示。

经在线软件ExPASy预测,PxylOBP13分子量为14.33 kDa,等电点为7.55。PxylOBP13含有气味结合蛋白家族6个保守半胱氨酸残基与保守结构域(1~122),且6个半胱氨酸的排列方式为C1-X26-C2-X3-C3-X43-C4-X14-C5-X8-C6,符合气味结合蛋白家族典型的排列结构模型:C1-X20-66-C2-X3-C3-X21-43-C4-X8-14-C5-X8-C6。经软件SignalP 4.1预测,结果显示,PxylOBP13无信号肽序列(图 2)。通过软件ExPASy进行疏水性分析,结果显示PxylOBP13氨基酸序列含有3个明显的疏水性区域,推测这3个区域很可能是疏水性气味分子的结合位点(图 3)。

图 2 PxylOBP13信号肽预测 Figure 2 Signal peptide prediction of the PxylOBP13
图 3 PxylOBP13蛋白疏水性分析 Figure 3 Hydrophobicity of the PxylOBP13
2.2 PxylOBP13氨基酸序列比对与系统进化分析

利用NCBI中的BLASTp工具对PxylOBP13氨基酸序列进行同源性搜索,结果发现,PxylOBP13序列与帝王斑蝶Danaus plexippus OBP(GenBank登录号为EHJ64255.1)、稻纵卷叶螟Cnaphalocrocis medinalis OBP21(GenBank登录号为ALT31651.1)、棉铃虫Helicoverpa armigera OBP(GenBank登录号为AEX 07279.1)、烟青虫H.assulta OBP(GenBank登录号为AEX07274.1)、甜菜夜蛾Spodoptera exigua OBP(GenBank登录号为ADY17886.1)及斜纹夜蛾Sp. Litura OBP29(GenBank登录号为ALD65903.1)等序列的一致性达50%以上,其中与帝王斑蝶OBP的一致性最高,达59%。

氨基酸序列多重序列比对结果显示,这些序列均有6个保守的半胱氨酸,第2个半胱氨酸和第3个半胱氨酸之间有3个氨基酸残基,第5个与第6个半胱氨酸之间有8个氨基酸(图 4),这些氨基酸残基在序列中也高度保守。

图 4 PxylOBP13的氨基酸序列比对分析 Figure 4 Alignment analysis of the amino acid sequence of PxylOBP13 注:星号表示保守的半胱氨酸残基位点。

将PxylOBP13氨基酸序列与鳞翅目其他共18个物种的OBPs利用Clustalx 1.83软件进行多重序列比对,然后利用MEGA5.1通过邻接法,以步长值1000构建系统进化树(图 5)。结果显示PxylOBP13与8种鳞翅目昆虫OBP基因聚在一支,与PxylOBP13进化关系最近的是斜纹夜蛾SlitOBP29、甜菜夜蛾SexiOBP、烟青虫HassOBP、棉铃虫HarmOBP、大螟Sesamia inferens SinfOBP3、稻纵卷叶螟CmedOBP、冬尺蠖蛾Operophtera brumata ObruOBP和帝王斑蝶DpleOBP,这与氨基酸序列比对的结果相吻合。

图 5 PxylOBP13的进化树分析 Figure 5 Phylogenetic tree of the PxylOBP13 ①Acon:苹果银蛾Argyresthia conjugella;Gmol:梨小食心虫Grapholita molesta;Sinf:大螟Sesamia inferens;Slit:斜纹夜蛾Spodoptera litura;Hvir:烟芽夜蛾Heliothis virescens;Dple:帝王斑蝶Danaus plexippus;Sexi:甜菜夜蛾Spodoptera exigua;Aips:小地老虎Agrotis ipsilon;Bmor:家蚕Bombyx mori;Msex:烟草天蛾Manduca sexta;Obru:冬尺蠖蛾Operophtera brumata;Dhou:云南松毛虫Dendrolimus houi;Dkik:思茅松毛虫Dendrolimus kikuchii;Cmed:稻纵卷叶螟Cnaphalocrocis medinalis;Hass:烟青虫Helicoverpa assulta;Harm:棉铃虫Helicoverpa armigera;Adis:双委夜蛾Athetis dissimilis;Cpun:桃蛀螟Conogethes punctiferalis;Pxyl:小菜蛾Plutella xyllostella。②PxylOBP13用黑色圆点标出。
3 讨论与结论

本研究克隆得到的小菜蛾OBP基因PxylOBP13(GenBank登录号为KT156679)编码128个氨基酸,蛋白相对分子量为14.33 kDa,等电点为7.55,符合小分子蛋白的特征[21]。该基因编码的氨基酸序列含有6个保守半胱氨酸残基与气味结合蛋白家族所特有的保守结构域,且这6个保守半胱氨酸残基的排列符合气味结合蛋白经典结构模型“C1-X15-39-C2-X3-C3-X21-44-C4-X7-12-C5-X8-C6”[32],应属于典型OBPs亚家族。经信号肽预测,PxylOBP13蛋白的N端无信号肽序列,这种现象在梨小食心虫和棉铃虫中也有报道[33-35]

对PxylOBP13氨基酸序列进行同源性比对,发现PxylOBP13序列与帝王斑蝶DpleOBP、稻纵卷叶螟CmedOBP21、棉铃虫HarmOBP、烟青虫HassOBP、甜菜夜蛾SexiOBP,以及斜纹夜蛾SlitOBP29等的序列一致性达到50%以上,此结果与系统进化树结果一致,表明PxylOBP13与这些基因进化关系较近,推测这些基因具有相似的功能。下一步将开展该基因功能的研究。

嗅觉在昆虫生存与繁衍等行为决策中行使种内种间通讯的功能[33]。克隆、鉴定昆虫OBPs基因,并进行序列分析,不仅能丰富昆虫OBPs基因家族成员,更为主要的是可为明确昆虫嗅觉识别机制奠定基础;并在充分认识昆虫嗅觉识别机制的基础上,利用RNA干扰(RNA interference,RNAi)嗅觉识别基因来开展害虫综合治理提供依据。

参考文献
[1] FURLONG M J, WRIGHT D J, DOSDALL L M. Diamond-back moth ecology and management:problems, progress, and prospects[J]. Annual Review of Entomology, 2013, 58 (1) : 517 –541. (0)
[2] 谢苗, 尤民生. 氟虫腈对小菜蛾幼虫体内解毒酶的影响[J]. 应用昆虫学报, 2011, 48 (6) : 1728 –1733. (0)
[3] BUCK L, AXEL R. A novel multigene family may encode odorant receptors:a molecular basis for odor recognition[J]. Cell, 1991, 65 (1) : 175 –187. (0)
[4] BENTON R, SACHSE S, MICHNICK S W, et al. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo[J]. PLoS Biology, 2006, 4 (5) : e20 . (0)
[5] VOGT R G, RIDDIFORD L M. Pheromone binding and inactivation by moth antennae[J]. Nature, 1981, 293 : 161 –163. (0)
[6] ZHOU J J, FIELD L M, HE X L. Insect odorant-binding proteins:do they offer an alternative pest control strategy?[J]. Outlooks on Pest Management, 2010, 21 (1) : 31 –34. (0)
[7] CAO D P, LIU Y, WEI J J, et al. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis[J]. International Journal of Biological Sciences, 2014, 10 (8) : 846 –860. (0)
[8] STEPHEN F, GARCZYNSKI B S, COATES T R, et al. Application of Cydia pomonella expressed sequence tags:Identification and expression of three general odorant binding proteins in codling moth[J]. Insect Science, 2013, 20 (5) : 559 –574. (0)
[9] NICOLAS G, AURORE G, FABRICE L, et al. Candidate chemosensory genes in the stemborer Sesamia nonagrioides[J]. International Journal of Biological Sciences, 2013, 9 (5) : 481 –495. (0)
[10] GU S H, SUN L, YANG R N, et al. Molecular characterization and differential expression of olfactory genes in the antennae of the black cutworm moth Agrotis ipsilon[J]. PLoS One, 2014, 9 (8) : e103420 . (0)
[11] EMMANUELLE J J, FABRICE L, NICOLAS M, et al. Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis[J]. International Journal Biological Sciences, 2012, 8 (7) : 1036 –1050. (0)
[12] LIU Y, GU S H, ZHANG Y J, et al. Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome[J]. PLoS One, 2012, 7 (10) : e48260 . (0)
[13] ZHANG S F, ZHEN Z, WANG H B, et al. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii(Lepidoptera:Lasiocampidae)[J]. Insect Biochemistry & Molecular Biology, 2014, 52 (1) : 69 –81. (0)
[14] ZHANG T T, COATES B S, GE X, et al. Male-and female-biased gene expression of olfactory-related genes in the antennae of asian corn borer, Ostrinia furnacalis (Guenee) (Lepidoptera:Crambidae)[J]. PLoS One, 2015, 10 (6) : e0128550 . (0)
[15] ZHU J Y, ZHANG L F, ZE S Z, et al. Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua[J]. Journal of Insect Physiology, 2013, 59 (7) : 722 –728. (0)
[16] PELOSI P, ZHOU J J, BAN L, et al. Soluble proteins in insect chemical communication[J]. Cellular and Molecular Life Sciences, 2006, 63 (14) : 1658 –1676. (0)
[17] ZHOU J J, HUANG W S, ZHANG G A, et al. "Plus-C" odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae[J]. Gene, 2004, 327 (1) : 117 –129. (0)
[18] LAGARDE A, SPINELLI S, QIAO H, et al. Crystal structure of a novel type of odorant-binding protein from Anopheles gambiae, belonging to the C-plus class[J]. Biochemical Journal, 2011, 437 (3) : 423 –430. (0)
[19] GONG D P, ZHANG H J, ZHAO P, et al. The odorant binding protein gene family from the genome of silkworm, Bombyx mori[J]. Bmc Genomics, 2009, 10 (1) : 141 –149. (0)
[20] HEKMAT-SCAFE D S, SCAFE C R, MCKINNEY A J, et al. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster[J]. Genome Research, 2002, 12 (9) : 1357 –1369. (0)
[21] PELOSI P, MAIDA R. Odorant-binding proteins in insects[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 1995, 111 (3) : 503 –514. (0)
[22] FAN J, FRANCIS F, LIU Y, et al. An overview of odorant-binding protein functions in insect peripheral olfactory reception[J]. Genetics and Molecular Research, 2011, 10 (4) : 3056 –3069. (0)
[23] KRIEGER J, NICKISCH-ROSENEGK E V, MAMELI M, et al. Binding proteins from the antennae of Bombyx mori[J]. Insect Biochemistry and Molecular Biology, 1996, 26 (3) : 297 –307. (0)
[24] VOGT R G, PRETWICH G D, LERNER M R. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects[J]. Journal of Neurobiology, 1991, 22 (1) : 74 –84. (0)
[25] STEINBRECHT R A, LAUE M, ZIEGELBERGER G. Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx[J]. Cell & Tissue Research, 1995, 282 (2) : 203 –217. (0)
[26] XU P X, ZWIEBEL L J, SMITH D P. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae[J]. Insect Molecular Biology, 2003, 12 (12) : 549 –560. (0)
[27] ZHANG Z C, WANG M Q, LU Y B, et al. Molecular characterization and expression pattern of two general odorant binding proteins from the diamondback moth, Plutella xylostella[J]. Journal of Chemical Ecology, 2009, 35 (10) : 1188 –1196. (0)
[28] SUN M J, LIU Y, WANG G R. Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella[J]. Journal of Insect Physiology, 2013, 59 (1) : 46 –55. (0)
[29] ZHU J, PELOSI P, YANG L, et al. Ligand-binding properties of three odorant-binding proteins of the diamondback moth Plutella xylostella[J]. Journal of Integrative Agriculture, 2016, 15 (3) : 580 –590. (0)
[30] YOU M S, YUE Z, He W Y, et al. A heterozygous moth genome provides insights into herbivory and detoxification[J]. Nature Genetics, 2013, 45 (2) : 220 –225. (0)
[31] 郑丽双. 小菜蛾气味结合蛋白基因的鉴定及其表达模式分析[D]. 福州:福建农林大学, 2015. (0)
[32] ZHOU J J, ROBERTSON G, HE X, et al. Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components[J]. Journal of Molecular Biology, 2009, 389 (3) : 529 –545. (0)
[33] ZHANG T T, GU S H, WU K M, et al. Construction and analysis of cDNA libraries from the antennae of male and female cotton bollworms Helicoverpa armigera (Hubner) and expression analysis of putative odorant-binding protein genes[J]. Biochemial and Biophysical Research Communications, 2011, 407 (2) : 393 –399. (0)
[34] 张天涛. 棉铃虫嗅觉相关蛋白的鉴定及功能研究[D]. 杨凌:西北农林科技大学, 2011. (0)
[35] 宋月芹, 解幸承, 董钧锋, 等. 梨小食心虫气味结合蛋白GmolOBP3的cDNA克隆、表达谱及结合特性分析[J]. 昆虫学报, 2014, 57 (3) : 274 –285. (0)