Citation: | CUI L L, CAI Q H, QIU J Y, et al. OsPLGG1 enhanced function of photorespiratory bypass [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−9 |
[1] |
PETERHANSEL C, HORST I, NIESSEN M, et al. Photorespiration [J]. The Arabidopsis Book, 2010, 8: e0130. doi: 10.1199/tab.0130
|
[2] |
KANGASJÄRVI S, NEUKERMANS J, LI S C, et al. Photosynthesis, photorespiration, and light signalling in defence responses [J]. Journal of Experimental Botany, 2012, 63(4): 1619−1636. doi: 10.1093/jxb/err402
|
[3] |
SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field [J]. Science, 2019, 363(6422): eaat9077. doi: 10.1126/science.aat9077
|
[4] |
SHIM S H, LEE S K, LEE D W, et al. Loss of function of rice plastidic glycolate/glycerate translocator 1 impairs photorespiration and plant growth [J]. Frontiers in Plant Science, 2020, 10: 1726. doi: 10.3389/fpls.2019.01726
|
[5] |
CUI L L, ZHANG C L, LI Z C, et al. Two plastidic glycolate/glycerate translocator 1 isoforms function together to transport photorespiratory glycolate and glycerate in rice chloroplasts [J]. Journal of Experimental Botany, 2021, 72(7): 2584−2599. doi: 10.1093/jxb/erab020
|
[6] |
SHEN B R, WANG L M, LIN X L, et al. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice [J]. Molecular Plant, 2019, 12(2): 199−214. doi: 10.1016/j.molp.2018.11.013
|
[7] |
MA X L, ZHANG Q Y, ZHU Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Molecular Plant, 2015, 8(8): 1274−1284. doi: 10.1016/j.molp.2015.04.007
|
[8] |
WANG L M, SHEN B R, LI B D, et al. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice [J]. Molecular Plant, 2020, 13(12): 1802−1815. doi: 10.1016/j.molp.2020.10.007
|
[9] |
KEBEISH R, NIESSEN M, THIRUVEEDHI K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana [J]. Nature Biotechnology, 2007, 25(5): 593−599. doi: 10.1038/nbt1299
|
[10] |
EISENHUT M, PLANCHAIS S, CABASSA C, et al. Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO2 levels [J]. The Plant Journal, 2013, 73(5): 836−849. doi: 10.1111/tpj.12082
|
[11] |
CAVANAGH A P, SOUTH P F, BERNACCHI C J, et al. Alternative pathway to photorespiration protects growth and productivity at elevated temperatures in a model crop [J]. Plant Biotechnology Journal, 2022, 20(4): 711−721. doi: 10.1111/pbi.13750
|
[12] |
WOO K C, FLÜGGE U I, HELDT H W. A two-translocator model for the transport of 2-oxoglutarate and glutamate in chloroplasts during ammonia assimilation in the light [J]. Plant Physiology, 1987, 84(3): 624−632. doi: 10.1104/pp.84.3.624
|
[13] |
SOMERVILLE S C, OGREN W L. An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport [J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(5): 1290−1294.
|
[14] |
PICK T R, BRÄUTIGAM A, SCHULZ M A, et al. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 3185−3190.
|
[15] |
SOUTH P F, WALKER B J, CAVANAGH A P, et al. Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana [J]. The Plant Cell, 2017, 29(4): 808−823. doi: 10.1105/tpc.16.00775
|
[16] |
PORCELLI V, VOZZA A, CALCAGNILE V, et al. Molecular identification and functional characterization of a novel glutamate transporter in yeast and plant mitochondria [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2018, 1859(11): 1249−1258. doi: 10.1016/j.bbabio.2018.08.001
|
[17] |
MONNÉ M, DADDABBO L, GAGNEUL D, et al. Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates [J]. Journal of Biological Chemistry, 2018, 293(11): 4213−4227. doi: 10.1074/jbc.RA117.000771
|
[18] |
EISENHUT M, HOCKEN N, WEBER A P M. Plastidial metabolite transporters integrate photorespiration with carbon, nitrogen, and sulfur metabolism [J]. Cell Calcium, 2015, 58(1): 98−104. doi: 10.1016/j.ceca.2014.10.007
|
[19] |
CAMPBELL W J, OGREN W L. Glyoxylate inhibition of ribulosebisphosphate carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts [J]. Photosynthesis Research, 1990, 23(3): 257−268. doi: 10.1007/BF00034856
|
[20] |
FLÜGEL F, TIMM S, ARRIVAULT S, et al. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis [J]. The Plant Cell, 2017, 29(10): 2537−2551. doi: 10.1105/tpc.17.00256
|
[21] |
WEBER A P M, SCHWACKE R, FLÜGGE U I. Solute transporters of the plastid envelope membrane [J]. Annual Review of Plant Biology, 2005, 56: 133−164. doi: 10.1146/annurev.arplant.56.032604.144228
|
[22] |
FLÜGGE U I. Transport in and out of plastids: Does the outer envelope membrane control the flow? [J]. Trends in Plant Science, 2000, 5(4): 135−137. doi: 10.1016/S1360-1385(00)01578-8
|
[23] |
SOLL J, BÖLTER B, WAGNER R, et al. response: The chloroplast outer envelope: A molecular sieve? [J]. Trends in Plant Science, 2000, 5(4): 137−138. doi: 10.1016/S1360-1385(00)01579-X
|
[24] |
BREUERS R K H. The plastid outer envelope–a highly dynamic interface between plastid and cytoplasm [J]. Frontiers in Plant Science, 2011, 2: 97.
|
[25] |
DUNCAN O, VAN DER MERWE M J, DALEY D O, et al. The outer mitochondrial membrane in higher plants [J]. Trends in Plant Science, 2013, 18(4): 207−217. doi: 10.1016/j.tplants.2012.12.004
|
[26] |
INOUE K. Emerging knowledge of the organelle outer membranes - research snapshots and an updated list of the chloroplast outer envelope proteins [J]. Frontiers in Plant Science, 2015, 6: 278.
|
[27] |
HARSMAN A, SCHOCK A, HEMMIS B, et al. OEP40, a regulated glucose-permeable β-barrel solute channel in the chloroplast outer envelope membrane [J]. Journal of Biological Chemistry, 2016, 291(34): 17848−17860. doi: 10.1074/jbc.M115.712398
|
[28] |
GUAN L, DENKERT N, EISA A, et al. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10568−10575.
|
[29] |
FOWLER S, THOMASHOW M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J]. The Plant Cell, 2002, 14(8): 1675−1690. doi: 10.1105/tpc.003483
|
[30] |
DREA S C, LAO N T, WOLFE K H, et al. Gene duplication, exon gain and neofunctionalization of OEP16-related genes in land plants [J]. Plant Journal, 2006, 46(5): 723−735. doi: 10.1111/j.1365-313X.2006.02741.x
|
[31] |
ZANG X S, GENG X L, LIU K L, et al. Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants [J]. Plant Science, 2017, 258: 1−11. doi: 10.1016/j.plantsci.2017.01.011
|
[32] |
AINSWORTH E A, ORT D R. How do we improve crop production in a warming world? [J]. Plant Physiology, 2010, 154(2): 526−530. doi: 10.1104/pp.110.161349
|
[33] |
KEECH O, ZHOU W X, FENSKE R, et al. The genetic dissection of a short-term response to low CO2 supports the possibility for peroxide-mediated decarboxylation of photorespiratory intermediates in the peroxisome [J]. Molecular Plant, 2012, 5(6): 1413−1416. doi: 10.1093/mp/sss104
|
[34] |
WALKER B J, SOUTH P F, ORT D R. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration [J]. Photosynthesis Research, 2016, 129(1): 93−103. doi: 10.1007/s11120-016-0277-3
|