Citation: | WANG S F, LIU F, LIN W B, et al. Research Progress on Species and Ecological Restoration Applications of Salt-tolerant Plants in Southern Coastal Regions [J]. Fujian Journal of Agricultural Sciences,2024,39(7):868−878 doi: 10.19303/j.issn.1008-0384.2024.07.014 |
[1] |
陈洋芳. 我国南方滨海地区植被修复的主要难题—盐雾危害[D]. 厦门: 厦门大学, 2017
CHEN Y F. The main problem of vegetation restoration in coastal areas of Southern China-salt fog hazard[D]. Xiamen: Xiamen University, 2017. (in Chinese)
|
[2] |
曹舰艇, 范志阳, 黄建明, 等. 盐雾危害是南方滨海地区园林绿化的主要困难 [J]. 应用生态学报, 2021, 32(8):2923−2930.
CAO J T, FAN Z Y, HUANG J M, et al. Aerosol salt damage is the main problem of landscaping in the coastal areas of southern China [J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2923−2930. (in Chinese)
|
[3] |
魏嘉, 蔡勤安, 李源, 等. 植物对盐碱胁迫响应机制的研究进展 [J]. 山东农业科学, 2022, 54(4):156−164.
WEI J, CAI Q A, LI Y, et al. Research progress on response mechanism of the plant to saline-alkali stress [J]. Shandong Agricultural Sciences, 2022, 54(4): 156−164. (in Chinese)
|
[4] |
贾林, 刘璐瑶, 王鹏山, 等. 盐地碱蓬的耐盐机理及改良土壤机理研究进展 [J]. 中国农学通报, 2021, 37(3):73−80. doi: 10.11924/j.issn.1000-6850.casb20191200947
JIA L, LIU L Y, WANG P S, et al. Salt-tolerance and soil improvement mechanism of Suaeda salsa: Research progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 73−80. (in Chinese) doi: 10.11924/j.issn.1000-6850.casb20191200947
|
[5] |
王宏信, 骆娟, 李向林. 海滨耐盐植物耐盐性及其形态和生理适应性研究进展 [J]. 生物学杂志, 2019, 36(6):86−89. doi: 10.3969/j.issn.2095-1736.2019.06.086
WANG H X, LUO J, LI X L. Research advances in salt tolerance and adaptability of strand halo-tolerant plants in morphology and physiology [J]. Journal of Biology, 2019, 36(6): 86−89. (in Chinese) doi: 10.3969/j.issn.2095-1736.2019.06.086
|
[6] |
张琳婷, 王文卿, 朱雪平, 等. 30种药食两用的南方滨海耐盐植物的开发利用 [J]. 防护林科技, 2016, (10):73−77.
ZHANG L T, WANG W Q, ZHU X P, et al. Development and utilization of 30 kinds of salt-tolerant plants in southern coastal areas with dual functions of medicine and food [J]. Protection Forest Science and Technology, 2016(10): 73−77. (in Chinese)
|
[7] |
张洁, 陈国光, 王尚晓, 等. 福建省沿海砂质岸线防护林分布特征及生态修复探讨 [J]. 华东地质, 2022, 43(1):72−78.
ZHANG J, CHEN G G, WANG S X, et al. Distribution status and restoration suggestions on shelter forests in sandy shoreline of Fujian Province [J]. East China Geology, 2022, 43(1): 72−78. (in Chinese)
|
[8] |
孔宁谦, 黄大中. 广西海岸带气候资源的综合评价与开发利用 [J]. 海洋开发, 1987, 4(3):46−51.
KONG N Q, HUANG D Z. Comprehensive evaluation, exploitation and utilization of climate resources in Guangxi coastal zone [J]. Ocean Development, 1987, 4(3): 46−51. (in Chinese)
|
[9] |
翁宇斌, 罗美雪, 任岳森. 福建省海岛岸线修测及其意义 [J]. 海洋开发与管理, 2011, 28(5):45−50. doi: 10.3969/j.issn.1005-9857.2011.05.010
WENG Y B, LUO M X, REN Y S. Resurvey the island coastline of Fujian Province and its significance [J]. Ocean Development and Management, 2011, 28(5): 45−50. (in Chinese) doi: 10.3969/j.issn.1005-9857.2011.05.010
|
[10] |
陈国杰, 张群, 张嘉灵, 等. 福建平潭岛滨海砂生种子植物植被资源及其区系特征分析 [J]. 热带作物学报, 2022, 43(2):399−408. doi: 10.3969/j.issn.1000-2561.2022.02.021
CHEN G J, ZHANG Q, ZHANG J L, et al. Vegetation resources and floristic characteristics of sand seed plants in Pingtan Island, Fujian Province [J]. Chinese Journal of Tropical Crops, 2022, 43(2): 399−408. (in Chinese) doi: 10.3969/j.issn.1000-2561.2022.02.021
|
[11] |
郭婷婷, 高文洋, 高艺, 等. 台湾海峡气候特点分析[J]. 海洋预报, 2010, 27(1): 53-58.
GUO T T, GAO W Y, GAO Y, et al. Analysis of climate characteristics in Taiwan Strait[J]. Marine Forecasts, 2010, 27(1): 53-58. (in Chinese)
|
[12] |
游巍斌, 何东进, 林立, 等. 闽东滨海湿地生态脆弱性动态评价 [J]. 福建农林大学学报(自然科学版), 2013, 42(6):648−653.
YOU W B, HE D J, LIN L, et al. Dynamic assessment on ecological vulnerability of coastal wetlands in eastern Fujian Province [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2013, 42(6): 648−653. (in Chinese)
|
[13] |
董玉祥, 张青年, 黄德全. 海岸风蚀地貌研究进展与展望 [J]. 地球科学进展, 2019, 34(1):1−10. doi: 10.11867/j.issn.1001-8166.2019.01.0001
DONG Y X, ZHANG Q N, HUANG D Q. Progress and prospect of research on coastal wind-eroded landform [J]. Advances in Earth Science, 2019, 34(1): 1−10. (in Chinese) doi: 10.11867/j.issn.1001-8166.2019.01.0001
|
[14] |
侯梦莹, 李芊芊, 袁甜甜, 等. 南方滨海地区盐雾沉降的时空分布: 以福建古雷半岛为例 [J]. 生态学杂志, 2019, 38(8):2524−2530.
HOU M Y, LI Q Q, YUAN T T, et al. Spatiotemporal distribution of salt spray deposition in the coastal areas of South China: A case study of the Gulei Peninsula, Fujian [J]. Chinese Journal of Ecology, 2019, 38(8): 2524−2530. (in Chinese)
|
[15] |
刘利民. 探究沿海防护林优良适生树种造林效果 [J]. 花卉, 2017, (10):142−143. doi: 10.3969/j.issn.1005-7897.2017.10.093
LIU L M. Exploring the afforestation effect of excellent suitable tree species in coastal shelterbelt [J]. Flowers, 2017(10): 142−143. (in Chinese) doi: 10.3969/j.issn.1005-7897.2017.10.093
|
[16] |
杜运领, 陈玉珍, 钱爱国, 等. 4种典型滨海植物的耐盐能力 [J]. 应用海洋学学报, 2022, 41(1):15−24. doi: 10.3969/J.ISSN.2095-4972.2022.01.003
DU Y L, CHEN Y Z, QIAN A G, et al. Salt tolerance of four typical coastal plants [J]. Journal of Applied Oceanography, 2022, 41(1): 15−24. (in Chinese) doi: 10.3969/J.ISSN.2095-4972.2022.01.003
|
[17] |
张耀文. 海水入侵作用下滨海盐渍土演化过程研究: 以小凌河冲洪积扇为例[D]. 哈尔滨: 中国地震局工程力学研究所, 2022.
ZHANG Y W. Study on evolution process of coastal saline soil under seawater intrusion-a case study of Xiaolinghe alluvial fan[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2022. (in Chinese)
|
[18] |
DU J H, HESP P A. Salt spray distribution and its impact on vegetation zonation on coastal dunes: A review [J]. Estuaries and Coasts, 2020, 43(8): 1885−1907. doi: 10.1007/s12237-020-00820-2
|
[19] |
徐千瑞, 顾嘉诚, 李贺鹏, 等. 盐雾胁迫对极小种群植物日本荚蒾光合生理的影响 [J]. 热带亚热带植物学报, 2023, 31(2):241−248. doi: 10.11926/jtsb.4568
XU Q R, GU J C, LI H P, et al. Effect of salt spray stress on photosynthetic physiology of Viburnum japonicum with extremely small population [J]. Journal of Tropical and Subtropical Botany, 2023, 31(2): 241−248. (in Chinese) doi: 10.11926/jtsb.4568
|
[20] |
钱莲文, 王文卿, 陈清海, 等. 福建海岸带与海岛乡土园林植物筛选及应用 [J]. 福建林业科技, 2019, 46(3):29−34.
QIAN L W, WANG W Q, CHEN Q H, et al. Selection and application of coastal zone and island landscape plants in Fujian Province [J]. Journal of Fujian Forestry Science and Technology, 2019, 46(3): 29−34. (in Chinese)
|
[21] |
李丽香, 姜勇, 漆光超, 等. 广西海岸潮上带草本植物种类与群落特征研究 [J]. 广西科学院学报, 2018, 34(2):103−113,120.
LI L X, JIANG Y, QI G C, et al. Research on the species and community characteristics of herb plants in the supralittoral zone along the coast of Guangxi [J]. Journal of Guangxi Academy of Sciences, 2018, 34(2): 103−113,120. (in Chinese)
|
[22] |
唐春艳, 张奎汉, 白晶晶, 等. 广东省滨海乡土耐盐植物资源及园林应用研究[J]. 广东园林, 2016, 38(2): 43-47.
TANG C Y, ZHANG K H, BAI J J, et al. Indigenous resources and landscape utilization of salt-tolerant plants in Guangdong coastal areas[J]. Guangdong Landscape Architecture, 2016, 38(2): 43-47. (in Chinese)
|
[23] |
林广思. 华南滨海区主要抗风耐盐碱园林绿化植物及其种植要点[J]. 林业调查规划, 2004, 29(3): 78-81.
LIN G S. Major anti-wind and alkali-resisting landscape plants of South China’s seaside region[J]. Forest Inventory and Planning, 2004, 29(3): 78-81. (in Chinese)
|
[24] |
曹流芳. 滨海湿地围垦区灌草群落对土壤养分特性改良测评[D]. 上海: 华东师范大学, 2014
CAO L F. Evaluation on improvement of soil nutrient characteristics by shrub-grass community in coastal wetland reclamation area[D]. Shanghai: East China Normal University, 2014. (in Chinese)
|
[25] |
卞阿娜, 王文卿, 陈琼. 福建滨海地区耐盐园林植物选择与配置构想 [J]. 南方农业学报, 2013, 44(7):1154−1159. doi: 10.3969/j:issn.2095-1191.2013.7.1154
BIAN A/E/E N, WANG W Q, CHEN Q. Selection and configuration of salt-tolerant landscaping plant in the coastal areas of Fujian [J]. Journal of Southern Agriculture, 2013, 44(7): 1154−1159. (in Chinese) doi: 10.3969/j:issn.2095-1191.2013.7.1154
|
[26] |
林武星, 朱炜, 聂森, 等. 台湾海岸乡土树种引进应用的初步研究 [J]. 中国农学通报, 2014, 30(13):59−65. doi: 10.11924/j.issn.1000-6850.2013-2903
LIN W X, ZHU W, NIE S, et al. Preliminary study on introduction and application of local tree species in coastal zone of Taiwan island [J]. Chinese Agricultural Science Bulletin, 2014, 30(13): 59−65. (in Chinese) doi: 10.11924/j.issn.1000-6850.2013-2903
|
[27] |
黄建荣, 李子华, 郭淑红, 等. 广东海陵岛滨海植物资源调查与造景应用效果研究 [J]. 广东园林, 2015, 37(3):10−13.
HUANG J R, LI Z H, GUO S H, et al. Resource research and application of coastal plant in Guangdong hayling island [J]. Guangdong Landscape Architecture, 2015, 37(3): 10−13. (in Chinese)
|
[28] |
尤龙辉, 叶功富, 陈增鸿, 等. 滨海沙地主要优势树种的凋落物分解及其与初始养分含量的关系 [J]. 福建农林大学学报(自然科学版), 2014, 43(6):585−591.
YOU L H, YE G F, CHEN Z H, et al. Litter decomposition and initial nutrient content of major dominant tree species on coastal sandy areas [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2014, 43(6): 585−591. (in Chinese)
|
[29] |
孙战, 王圣洁, 杨锦昌, 等. 木麻黄根区土壤理化特性及酶活性与青枯病发生关联分析 [J]. 生态环境学报, 2022, 31(1):70−78.
SUN Z, WANG S J, YANG J C, et al. Correlation analysis of the occurrence of bacterial wilt and physicochemical properties and enzyme activity of root-zone soil of Casuarina spp [J]. Ecology and Environmental Sciences, 2022, 31(1): 70−78. (in Chinese)
|
[30] |
曹世伟, 金辰. 多群落配置下滨海盐碱土壤修复研究进展 [J]. 基因组学与应用生物学, 2019, 38(6):2725−2730.
CAO S W, JIN C. Research progress on the fertility restoration and salt-water control of multiple community in the coastal saline-alkali land [J]. Genomics and Applied Biology, 2019, 38(6): 2725−2730. (in Chinese)
|
[31] |
林爱玉. 福建沿海沙地4种防护林类型的群落学特征 [J]. 福建农林大学学报(自然科学版), 2018, 47(1):66−73.
LIN A Y. Vegetation characteristics of four types of protection forests on sandy coast in Fujian [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(1): 66−73. (in Chinese)
|
[32] |
陈恒彬. 福建滨海观赏植物的多样性及园林应用 [J]. 亚热带植物科学, 2018, 47(4):345−351. doi: 10.3969/j.issn.1009-7791.2018.04.008
CHEN H B. The diversity of coastal ornamental plants and their landscape application in Fujian [J]. Subtropical Plant Science, 2018, 47(4): 345−351. (in Chinese) doi: 10.3969/j.issn.1009-7791.2018.04.008
|
[33] |
周丽丽, 钱瑞玲, 李树斌, 等. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征 [J]. 应用生态学报, 2019, 30(7):2320−2328.
ZHOU L L, QIAN R L, LI S B, et al. Leaf functional traits and nutrient resorption among major silviculture tree species in coastal sandy site [J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2320−2328. (in Chinese)
|
[34] |
苏燕苹. 福建平潭抗风耐盐园林植物的筛选与配置 [J]. 亚热带植物科学, 2013, 42(3):267−270. doi: 10.3969/j.issn.1009-7791.2013.03.018
SU Y P. Selection and application of wind-resistant and salt-tolerant landscape plants in Pingtan Island, Fujian Province [J]. Subtropical Plant Science, 2013, 42(3): 267−270. (in Chinese) doi: 10.3969/j.issn.1009-7791.2013.03.018
|
[35] |
阮雪玉, 丁国华, 陈玉凯, 等. 海南岛海马齿种质资源收集及耐盐性初步筛选 [J]. 植物遗传资源学报, 2022, 23(3):691−705. doi: 10.13430/j.cnki.jpgr.20211029001
RUAN X Y, DING G H, CHEN Y K, et al. Collection of Sesuvium portulacastrum germplasm in Hainan Island and salt tolerance test [J]. Journal of Plant Genetic Resources, 2022, 23(3): 691−705. (in Chinese) doi: 10.13430/j.cnki.jpgr.20211029001
|
[36] |
王晓盈, 江怡萱, 范凌玥, 等. 福州长乐地区滨海植物资源调查及应用分析 [J]. 南方农业, 2022, 16(11):164−170. doi: 10.19415/j.cnki.1673-890x.2022.11.042
WANG X Y, JIANG Y X, FAN L Y, et al. Investigation and application analysis on coastal plant resources in Changle region, Fuzhou [J]. South China Agriculture, 2022, 16(11): 164−170. (in Chinese) doi: 10.19415/j.cnki.1673-890x.2022.11.042
|
[37] |
罗涛, 杨小波, 黄云峰, 等. 中国海岸沙生植被研究进展 [J]. 亚热带植物科学, 2008, 37(1):70−75. doi: 10.3969/j.issn.1009-7791.2008.01.020
LUO T, YANG X B, HUANG Y F, et al. Research progress of psammophilous vegetation on coasts in China [J]. Subtropical Plant Science, 2008, 37(1): 70−75. (in Chinese) doi: 10.3969/j.issn.1009-7791.2008.01.020
|
[38] |
刘小芬, 褚克丹, 丁志山, 等. 福建省野生沙生药用植物资源与研究进展 [J]. 中国野生植物资源, 2016, 35(5):41−46. doi: 10.3969/j.issn.1006-9690.2016.05.011
LIU X F, CHU K D, DING Z S, et al. Wild resources and research of officinal psammophytes in Fujian Province [J]. Chinese Wild Plant Resources, 2016, 35(5): 41−46. (in Chinese) doi: 10.3969/j.issn.1006-9690.2016.05.011
|
[39] |
张明亮. 滨海盐沼湿地退化机制及生态修复技术研究进展 [J]. 大连海洋大学学报, 2022, 37(4):539−549.
ZHANG M L. Research advancement on degradation mechanism and ecological restoration technology of coastal salt-marsh: A review [J]. Journal of Dalian Ocean University, 2022, 37(4): 539−549. (in Chinese)
|
[40] |
AHMAD E, ZAIDI A, KHAN M S. Response of PSM inoculation to certain legumes and cereal crops[M]//Phosphate Solubilizing Microorganisms. Cham: Springer International Publishing, 2014: 175-205.
|
[41] |
SALES DA SILVA I G, GOMES DE ALMEIDA F C, PADILHA DA ROCHA E SILVA N M, et al. Soil bioremediation: Overview of technologies and trends [J]. Energies, 2020, 13(18): 4664. doi: 10.3390/en13184664
|
[42] |
MANOUSAKI E, KALOGERAKIS N. Halophytes: An emerging trend in phytoremediation [J]. International Journal of Phytoremediation, 2011, 13(10): 959−969. doi: 10.1080/15226514.2010.532241
|
[43] |
SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives [J]. Chemosphere, 2017, 171: 710−721. doi: 10.1016/j.chemosphere.2016.12.116
|
[44] |
FOURATI E, VOGEL-MIKUŠ K, WALI M, et al. Nickel tolerance and toxicity mechanisms in the halophyte Sesuvium portulacastrum L. as revealed by Ni localization and ligand environment studies [J]. Environmental Science and Pollution Research, 2020, 27(19): 23402−23410. doi: 10.1007/s11356-019-05209-8
|
[45] |
NOUAIRI I, GHNAYA T, BEN YOUSSEF N, et al. Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress [J]. Journal of Plant Physiology, 2006, 163(11): 1198−1202. doi: 10.1016/j.jplph.2005.08.020
|
[46] |
RABIER J, LAFFONT-SCHWOB I, PRICOP A, et al. Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone[J]. Water, Air, & Soil Pollution, 2014, 225(7): 1993.
|
[47] |
KACHOUT S S, MANSOURA A B, MECHERGUI R, et al. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil [J]. Journal of the Science of Food and Agriculture, 2012, 92(2): 336−342. doi: 10.1002/jsfa.4581
|
[48] |
SAMIEI L, DAVOUDI PAHNEHKOLAYI M, KARIMIAN Z, et al. Morpho-physiological responses of halophyte Climacoptera crassa to salinity and heavy metal stresses in in vitro condition [J]. South African Journal of Botany, 2020, 131: 468−474. doi: 10.1016/j.sajb.2020.03.037
|
[49] |
MUJEEB A, AZIZ I, AHMED M Z, et al. Spatial and seasonal metal variation, bioaccumulation and biomonitoring potential of halophytes from littoral zones of the Karachi Coast [J]. Science of the Total Environment, 2021, 781: 146715. doi: 10.1016/j.scitotenv.2021.146715
|
[50] |
DE LA ROSA G, PERALTA-VIDEA J R, MONTES M, et al. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies [J]. Chemosphere, 2004, 55(9): 1159−1168. doi: 10.1016/j.chemosphere.2004.01.028
|
[51] |
MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils [J]. Biotechnology Advances, 2011, 29(2): 248−258. doi: 10.1016/j.biotechadv.2010.12.001
|
[52] |
GARCÍA-SÁNCHEZ M, KOŠNÁŘ Z, MERCL F, et al. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil [J]. Ecotoxicology and Environmental Safety, 2018, 147: 165−174. doi: 10.1016/j.ecoenv.2017.08.012
|
[53] |
SUN W H, LO J B, ROBERT F M, et al. Phytoremediation of petroleum hydrocarbons in tropical coastal soils I. Selection of promising woody plants [J]. Environmental Science and Pollution Research, 2004, 11(4): 260−266. doi: 10.1007/BF02979634
|
[54] |
GIRONES L, OLIVA A L, NEGRIN V L, et al. Persistent organic pollutants (POPs) in coastal wetlands: A review of their occurrences, toxic effects, and biogeochemical cycling [J]. Marine Pollution Bulletin, 2021, 172: 112864. doi: 10.1016/j.marpolbul.2021.112864
|
[55] |
FENG N X, YU J, ZHAO H M, et al. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships [J]. Science of the Total Environment, 2017, 583: 352−368. doi: 10.1016/j.scitotenv.2017.01.075
|
[56] |
林庆祺, 蔡信德, 王诗忠, 等. 植物吸收、迁移和代谢有机污染物的机理及影响因素 [J]. 农业环境科学学报, 2013, 32(4):661−667.
LIN Q Q, CAI X D, WANG S Z, et al. Uptake, translocation and metabolism of organic pollutants by plants: mechanisms and affecting factors [J]. Journal of Agro-Environment Science, 2013, 32(4): 661−667. (in Chinese)
|
[57] |
BOLAN N S, PARK J H, ROBINSON B, et al. Phytostabilization[M]//Advances in Agronomy. Amsterdam: Elsevier, 2011: 145-204.
|
[58] |
胡智勇, 陆开宏, 梁晶晶. 根际微生物在污染水体植物修复中的作用 [J]. 环境科学与技术, 2010, 33(5):75−80. doi: 10.3969/j.issn.1003-6504.2010.05.018
HU Z Y, LU K H, LIANG J J. Role of rhizosphere microorganisms of aquatic plants in phytoremediation of wastewater [J]. Environmental Science & Technology, 2010, 33(5): 75−80. (in Chinese) doi: 10.3969/j.issn.1003-6504.2010.05.018
|
[59] |
WU Y B, CHENG Z B, WU C W, et al. Water conditions and arbuscular mycorrhizal symbiosis affect the phytoremediation of petroleum-contaminated soil by Phragmites australis [J]. Environmental Technology & Innovation, 2023, 32: 103437.
|
[60] |
刘雅辉, 孙建平, 马佳, 等. 3种耐盐植物对滨海盐土化学性质及微生物群落结构的影响 [J]. 农业资源与环境学报, 2021, 38(1):28−35.
LIU Y H, SUN J P, MA J, et al. Effects of 3 salt-tolerant plants on the chemical properties and microbial community structure of coastal saline soil [J]. Journal of Agricultural Resources and Environment, 2021, 38(1): 28−35. (in Chinese)
|
[61] |
李帅, 杨敏, 曹惠翔, 等. 连年种植菊芋对滨海盐碱地的生态修复效果与机制 [J]. 南京农业大学学报, 2021, 44(6):1107−1116. doi: 10.7685/jnau.202104023
LI S, YANG M, CAO H X, et al. Ecological restoration effect and mechanism of continuous-year cultivation of Jerusalem artichoke on coastal saline-alkali land [J]. Journal of Nanjing Agricultural University, 2021, 44(6): 1107−1116. (in Chinese) doi: 10.7685/jnau.202104023
|
[62] |
VERGIEV S. Tall wheatgrass (Thinopyrum ponticum): Flood resilience, growth response to sea water immersion, and its capacity for erosion and flooding control of coastal areas [J]. Environments, 2019, 6(9): 103. doi: 10.3390/environments6090103
|
[63] |
王媛, 李文庆, 李晗灏. 生物质炭与草炭混配基质的养分状况及其对凤仙花生长的影响 [J]. 农业资源与环境学报, 2019, 36(5):656−663.
WANG Y, LI W Q, LI H H. Effect of biochar and peat on the growth of Impatiens balsamina as a growth medium [J]. Journal of Agricultural Resources and Environment, 2019, 36(5): 656−663. (in Chinese)
|
[64] |
果才佳, Gamareldawla H D Agbna, 佘冬立. 生物炭施用对滨海盐碱地番茄生长与耗水规律的影响 [J]. 中国农村水利水电, 2021, (7):181−184,191. doi: 10.3969/j.issn.1007-2284.2021.07.030
GUO C J, AGBNA G, SHE D L. The effect of biochar application on tomato growth and water consumption in coastal saline alkaline soil [J]. China Rural Water and Hydropower, 2021(7): 181−184,191. (in Chinese) doi: 10.3969/j.issn.1007-2284.2021.07.030
|
[65] |
丁守鹏, 张国新, 姚玉涛, 等. 蚯蚓粪生物炭配施对盐碱地设施番茄生长及光合作用的影响 [J]. 北方园艺, 2021, (18):60−67.
DING S P, ZHANG G X, YAO Y T, et al. Effects of combined application of earthworm manure and biochar on protected tomato growth and photosynthesis in saline-alkali soils [J]. Northern Horticulture, 2021(18): 60−67. (in Chinese)
|
[66] |
赵长江, 鞠世杰, 贝丽霞, 等. 生物炭与化肥不同比例配施对生菜产量和品质的影响 [J]. 黑龙江农业科学, 2020, (2):33−37. doi: 10.11942/j.issn1002-2767.2020.02.0033
ZHAO C J, JU S J, BEI L X, et al. Effects of different proportion of fertilizer to biochar on the yield and quality of Lactuca sativa [J]. Heilongjiang Agricultural Sciences, 2020(2): 33−37. (in Chinese) doi: 10.11942/j.issn1002-2767.2020.02.0033
|
[67] |
胡云, 马建华, 李明, 等. 生物炭对基质栽培黄瓜根际养分与真菌丰度的影响 [J]. 分子植物育种, 2022, 20(8):2773−2780.
HU Y, MA J H, LI M, et al. Effects of biochar on rhizosphere nutrients and fungi abundances of cucumber using soilless substyate culture [J]. Molecular Plant Breeding, 2022, 20(8): 2773−2780. (in Chinese)
|
[68] |
黄清扬, 江超, 俞元春, 等. 不同秸秆生物炭复配基质对波斯菊生理性质的影响 [J]. 中国农业科技导报, 2021, 23(6):147−153.
HUANG Q Y, JIANG C, YU Y C, et al. Effects of different straw biochar substrate on the physiological properties of Cosmos bipinnatus [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 147−153. (in Chinese)
|
[69] |
CUI L Q, LIU Y M, YAN J L, et al. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth [J]. Ecological Engineering, 2022, 179: 106594. doi: 10.1016/j.ecoleng.2022.106594
|
[70] |
ZHANG P, BING X, JIAO L, et al. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar [J]. Chemical Engineering Journal, 2022, 431: 133904. doi: 10.1016/j.cej.2021.133904
|
[71] |
罗成, 郭力维, 李佳洲, 等. 3种微生物菌剂处理三七种子对其生长及种苗品质的影响 [J]. 中国农业大学学报, 2022, 27(5):189−198. doi: 10.11841/j.issn.1007-4333.2022.05.18
LUO C, GUO L W, LI J Z, et al. Effects of treating seeds with three microbial agents on growth and seedling quality of Panax notoginseng [J]. Journal of China Agricultural University, 2022, 27(5): 189−198. (in Chinese) doi: 10.11841/j.issn.1007-4333.2022.05.18
|
[72] |
杨晓蕾, 李建宏, 姚拓, 等. 复合促生菌剂发酵条件优化及其对青稞促生效果评价 [J]. 草地学报, 2022, 30(1):212−219.
YANG X L, LI J H, YAO T, et al. Optimization of fermentation conditions of three growth promoting strains and evaluation of effects on highland barley [J]. Acta Agrestia Sinica, 2022, 30(1): 212−219. (in Chinese)
|
[73] |
朱东新, 杨念江, 许晓春, 等. BSC生物基质生态修复(防护)技术在滨海生境营造工程中的应用研究 [J]. 水利水电技术(中英文), 2022, 53(2):121−132. doi: 10.13928/j.cnki.wrahe.2022.02.012
ZHU D X, YANG N J, XU X C, et al. Study on application of BSC biological matrix eco-restoration(protection) technology in coastal habitat construction project [J]. Water Resources and Hydropower Engineering, 2022, 53(2): 121−132. (in Chinese) doi: 10.13928/j.cnki.wrahe.2022.02.012
|
[74] |
JIA Z H, MENG M J, LI C, et al. Rock-solubilizing microbial inoculums have enormous potential as ecological remediation agents to promote plant growth [J]. Forests, 2021, 12(3): 357. doi: 10.3390/f12030357
|
[75] |
CAO M M, CUI L N, SUN H M, et al. Effects of Spartina alterniflora invasion on soil microbial community structure and ecological functions [J]. Microorganisms, 2021, 9(1): 138. doi: 10.3390/microorganisms9010138
|
[76] |
ZHANG W L, ZENG C S, TONG C, et al. Analysis of the expanding process of the Spartina alterniflora salt marsh in shanyutan wetland, Minjiang River Estuary by remote sensing [J]. Procedia Environmental Sciences, 2011, 10: 2472−2477. doi: 10.1016/j.proenv.2011.09.385
|
[77] |
ZHOU Y, WANG L L, ZHOU Y Y, et al. Eutrophication control strategies for highly anthropogenic influenced coastal waters [J]. The Science of the Total Environment, 2020, 705: 135760. doi: 10.1016/j.scitotenv.2019.135760
|
[78] |
KLOMJEK P, NITISORAVUT S. Constructed treatment wetland: A study of eight plant species under saline conditions [J]. Chemosphere, 2005, 58(5): 585−593. doi: 10.1016/j.chemosphere.2004.08.073
|
[79] |
ABDELLAOUI R, ELKELISH A, EL-KEBLAWY A, et al. Editorial: Halophytes: Salt stress tolerance mechanisms and potential use [J]. Frontiers in Plant Science, 2023, 14: 1218184. doi: 10.3389/fpls.2023.1218184
|
[80] |
RAHMAN M M, MOSTOFA M G, KEYA S S, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants [J]. International Journal of Molecular Sciences, 2021, 22(19): 10733. doi: 10.3390/ijms221910733
|
[81] |
SONG J, LI Q, DZAKPASU M, et al. Integrating stereo-elastic packing into ecological floating bed for enhanced denitrification in landscape water [J]. Bioresource Technology, 2020, 299: 122601. doi: 10.1016/j.biortech.2019.122601
|