Citation: | HAN L Y, ZHANG G Z, LIU Y, et al. Bioactivities of Honeys from Bees Fed on Different Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(7):857−867 doi: 10.19303/j.issn.1008-0384.2024.07.013 |
[1] |
FERREIRA I C F R, AIRES E, BARREIRA J C M, et al. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract [J]. Food Chemistry, 2009, 114(4): 1438−1443. doi: 10.1016/j.foodchem.2008.11.028
|
[2] |
DE ALMEIDA-MURADIAN L B, STRAMM K M, HORITA A, et al. Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera [J]. International Journal of Food Science & Technology, 2013, 48(8): 1698−1706.
|
[3] |
GOMES S, DIAS L G, MOREIRA L L, et al. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal [J]. Food and Chemical Toxicology, 2010, 48(2): 544−548. doi: 10.1016/j.fct.2009.11.029
|
[4] |
SULAIMAN N H I, SARBON N M. Physicochemical, antioxidant and antimicrobial properties of selected Malaysian honey as treated at different temperature: A comparative study [J]. Journal of Apicultural Research, 2022, 61(4): 567−575. doi: 10.1080/00218839.2020.1846295
|
[5] |
FARAZ A, FERNANDO W B, WILLIAMS M, et al. Effects of different processing methods on the antioxidant and antimicrobial properties of honey: A review [J]. International Journal of Food Science & Technology, 2023, 58(7): 3489−3501.
|
[6] |
ZAWAWI N, CHONG P J, MOHD TOM N N, et al. Establishing relationship between vitamins, total phenolic and total flavonoid content and antioxidant activities in various honey types [J]. Molecules, 2021, 26(15): 4399. doi: 10.3390/molecules26154399
|
[7] |
HABIB H M, AL MEQBALI F T, KAMAL H, et al. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions [J]. Food Chemistry, 2014, 153: 28−34. doi: 10.1016/j.foodchem.2013.12.044
|
[8] |
NGUYEN H T L, PANYOYAI N, PARAMITA V D, et al. Physicochemical and viscoelastic properties of honey from medicinal plants [J]. Food Chemistry, 2018, 241: 143−149. doi: 10.1016/j.foodchem.2017.08.070
|
[9] |
WU F H, ZHAO H A, SUN J, et al. ICP-MS-based ionomics method for discriminating the geographical origin of honey of Apis cerana Fabricius [J]. Food Chemistry, 2021, 354: 129568. doi: 10.1016/j.foodchem.2021.129568
|
[10] |
MAVRIC E, WITTMANN S, BARTH G, et al. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand [J]. Molecular Nutrition & Food Research, 2008, 52(4): 483−489.
|
[11] |
SINHA S, SEHGAL A, RAY S, et al. Benefits of manuka honey in the management of infectious diseases: Recent advances and prospects [J]. Mini Reviews in Medicinal Chemistry, 2023, 23(20): 1928−1941. doi: 10.2174/1389557523666230605120717
|
[12] |
WANG K, WAN Z R, OU A Q, et al. Monofloral honey from a medical plant, Prunella Vulgaris, protected against dextran sulfate sodium-induced ulcerative colitis via modulating gut microbial populations in rats [J]. Food & Function, 2019, 10(7): 3828−3838.
|
[13] |
SUN L P, SHI F F, ZHANG W W, et al. Antioxidant and anti-inflammatory activities of safflower (Carthamus tinctorius L. ) honey extract [J]. Foods, 2020, 9(8): 1039. doi: 10.3390/foods9081039
|
[14] |
ZHAO L W, REN C J, XUE X F, et al. Safflomin A: A novel chemical marker for Carthamus tinctorius L. (Safflower) monofloral honey [J]. Food Chemistry, 2022, 366: 130584. doi: 10.1016/j.foodchem.2021.130584
|
[15] |
ENGWA G A, ENNWEKEGWA F N, NKEH-CHUNGAG B N. Free radicals, oxidative stress-related diseases and antioxidant supplementation [J]. Alternative Therapies in Health and Medicine, 2022, 28(1): 114−128.
|
[16] |
DRÖGE W. Free radicals in the physiological control of cell function [J]. Physiological Reviews, 2002, 82(1): 47−95. doi: 10.1152/physrev.00018.2001
|
[17] |
GULUMBE B H, SAHAL M R, ABDULRAHIM A, et al. Antibiotic resistance and the COVID-19 pandemic: A dual crisis with complex challenges in LMICs [J]. Health Science Reports, 2023, 6(9): e1566. doi: 10.1002/hsr2.1566
|
[18] |
ETERAF-OSKOUEI T, NAJAFI M. Traditional and modern uses of natural honey in human diseases: A review [J]. Iranian Journal of Basic Medical Sciences, 2013, 16(6): 731−742.
|
[19] |
ISRAILI Z H. Antimicrobial properties of honey [J]. American Journal of Therapeutics, 2014, 21(4): 304−323. doi: 10.1097/MJT.0b013e318293b09b
|
[20] |
DENG J L, LIU R, LU Q, et al. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey [J]. Food Chemistry, 2018, 252: 243−249. doi: 10.1016/j.foodchem.2018.01.115
|
[21] |
KWAKMAN P H S, VAN DEN AKKER J P C, GÜÇLÜ A, et al. Medical-grade honey kills antibiotic-resistant bacteria in vitro and eradicates skin colonization [J]. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America, 2008, 46(11): 1677−1682. doi: 10.1086/587892
|
[22] |
JENKINS R E, COOPER R. Synergy between oxacillin and manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin [J]. The Journal of Antimicrobial Chemotherapy, 2012, 67(6): 1405−1407. doi: 10.1093/jac/dks071
|
[23] |
GAO R R, HU Y T, DAN Y, et al. Chinese herbal medicine resources: Where we stand [J]. Chinese Herbal Medicines, 2020, 12(1): 3−13. doi: 10.1016/j.chmed.2019.08.004
|
[24] |
WILCZYŃSKA A. Effect of filtration on colour, antioxidant activity and total phenolics of honey [J]. LWT - Food Science and Technology, 2014, 57(2): 767−774. doi: 10.1016/j.lwt.2014.01.034
|
[25] |
BUENO-COSTA F M, ZAMBIAZI R C, BOHMER B W, et al. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil [J]. LWT, 2016, 65: 333−340. doi: 10.1016/j.lwt.2015.08.018
|
[26] |
GUO N N, ZHAO L W, ZHAO Y Z, et al. Comparison of the chemical composition and biological activity of mature and immature honey: An HPLC/QTOF/MS-based metabolomic approach [J]. Journal of Agricultural and Food Chemistry, 2020, 68(13): 4062−4071. doi: 10.1021/acs.jafc.9b07604
|
[27] |
JAHAN N, ISLAM M A, ALAM F, et al. Prolonged heating of honey increases its antioxidant potential but decreases its antimicrobial activity [J]. African Journal of Traditional, Complementary and Alternative Medicines, 2015, 12(4): 134. doi: 10.21010/ajtcam.v12i4.20
|
[28] |
MOHAMMED M E A. Factors affecting the physicochemical properties and chemical composition of bee’s honey [J]. Food Reviews International, 2022, 38(6): 1330−1341. doi: 10.1080/87559129.2020.1810701
|
[29] |
BERTONCELJ J, DOBERŠEK U, JAMNIK M, et al. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey [J]. Food Chemistry, 2007, 105(2): 822−828. doi: 10.1016/j.foodchem.2007.01.060
|
[30] |
KAYGUSUZ H, TEZCAN F, BEDIA ERIM F, et al. Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis [J]. LWT - Food Science and Technology, 2016, 68: 273−279. doi: 10.1016/j.lwt.2015.12.005
|
[31] |
FERRARIS R P, DIAMOND J. Regulation of intestinal sugar transport [J]. Physiological Reviews, 1997, 77(1): 257−302. doi: 10.1152/physrev.1997.77.1.257
|
[32] |
ZAREI M, FAZLARA A, TULABIFARD N. Effect of thermal treatment on physicochemical and antioxidant properties of honey [J]. Heliyon, 2019, 5(6): e01894. doi: 10.1016/j.heliyon.2019.e01894
|
[33] |
ZHANG Y Z, SI J J, LI S S, et al. Chemical analyses and antimicrobial activity of nine kinds of unifloral Chinese honeys compared to manuka honey (12+ and 20+) [J]. Molecules, 2021, 26(9): 2778. doi: 10.3390/molecules26092778
|
[34] |
FLANJAK I, KENJERIĆ D, BUBALO D, et al. Characterization of selected Croatian honey types based on the combination of antioxidant capacity, quality parameters, and chemometrics [J]. European Food Research and Technology, 2016, 242(4): 467−475. doi: 10.1007/s00217-015-2557-0
|
[35] |
GHELDOF N, WANG X H, ENGESETH N J. Identification and quantification of antioxidant components of honeys from various floral sources [J]. Journal of Agricultural and Food Chemistry, 2002, 50(21): 5870−5877. doi: 10.1021/jf0256135
|
[36] |
KISHORE R K, HALIM A S, NURUL SYAZANA M S, et al. Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources [J]. Nutrition Research, 2011, 31(4): 322−325. doi: 10.1016/j.nutres.2011.03.001
|
[37] |
GOŚLIŃSKI M, NOWAK D, KŁĘBUKOWSKA L. Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys [J]. Journal of Food Science and Technology, 2020, 57(4): 1269−1277. doi: 10.1007/s13197-019-04159-w
|
[38] |
ANTHIMIDOU E, MOSSIALOS D. Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey [J]. Journal of Medicinal Food, 2013, 16(1): 42−47. doi: 10.1089/jmf.2012.0042
|
[39] |
HOSSAIN M L, LIM L Y, HAMMER K, et al. A review of commonly used methodologies for assessing the antibacterial activity of honey and honey products [J]. Antibiotics, 2022, 11(7): 975. doi: 10.3390/antibiotics11070975
|
[40] |
BODÓ A, RADVÁNYI L, KŐSZEGI T, et al. Quality evaluation of light- and dark-colored Hungarian honeys, focusing on botanical origin, antioxidant capacity and mineral content [J]. Molecules, 2021, 26(9): 2825. doi: 10.3390/molecules26092825
|
[41] |
GÜL A, PEHLIVAN T. Antioxidant activities of some monofloral honey types produced across Turkey [J]. Saudi Journal of Biological Sciences, 2018, 25(6): 1056−1065. doi: 10.1016/j.sjbs.2018.02.011
|
[42] |
KUŚ P M, SZWEDA P, JERKOVIĆ I, et al. Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters [J]. Letters in Applied Microbiology, 2016, 62(3): 269−276. doi: 10.1111/lam.12541
|
[43] |
ESCUREDO O, SILVA L R, VALENTÃO P, et al. Assessing Rubus honey value: Pollen and phenolic compounds content and antibacterial capacity [J]. Food Chemistry, 2012, 130(3): 671−678. doi: 10.1016/j.foodchem.2011.07.107
|
[44] |
KRETAVIČIUS J, KURTINAITIENĖ B, RAČYS J, et al. Inactivation of glucose oxidase during heat-treatment de-crystallization of honey [J]. Zemdirbyste Agriculture, 2010, 97(4): 115−122.
|
[45] |
WAHDAN H A. Causes of the antimicrobial activity of honey [J]. Infection, 1998, 26(1): 26−31. doi: 10.1007/BF02768748
|
[46] |
STOJKOVIĆ D, PETROVIĆ J, SOKOVIĆ M, et al. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems [J]. Journal of the Science of Food and Agriculture, 2013, 93(13): 3205−3208. doi: 10.1002/jsfa.6156
|
[47] |
PELÁEZ-ACERO A, COBOS-VELASCO J E, GONZÁLEZ-LEMUS U, et al. Bioactive compounds and antibacterial activities in crystallized honey liquefied with ultrasound [J]. Ultrasonics Sonochemistry, 2021, 76: 105619. doi: 10.1016/j.ultsonch.2021.105619
|
[48] |
FYFE L, OKORO P, PATERSON E, et al. Compositional analysis of Scottish honeys with antimicrobial activity against antibiotic-resistant bacteria reveals novel antimicrobial components [J]. LWT - Food Science and Technology, 2017, 79: 52−59. doi: 10.1016/j.lwt.2017.01.023
|
[49] |
ANAND S, DEIGHTON M, LIVANOS G, et al. Antimicrobial activity of Agastache honey and characterization of its bioactive compounds in comparison with important commercial honeys [J]. Frontiers in Microbiology, 2019, 10: 263. doi: 10.3389/fmicb.2019.00263
|
[50] |
JANDRIĆ Z, FREW R D, FERNANDEZ-CEDI L N, et al. An investigative study on discrimination of honey of various floral and geographical origins using UPLC-QToF MS and multivariate data analysis [J]. Food Control, 2017, 72: 189−197. doi: 10.1016/j.foodcont.2015.10.010
|
[51] |
BASSON N J, GROBLER S R. Antimicrobial activity of two South African honeys produced from indigenous Leucospermum cordifolium and Erica species on selected micro-organisms [J]. BMC Complementary and Alternative Medicine, 2008, 8: 41. doi: 10.1186/1472-6882-8-41
|