• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
LIAN C L, LAN J X, YANG J F, et al. Identification and Expressions of TIFY Family Based on the Full-Length Transcriptome in Isodon rubescens [J]. Fujian Journal of Agricultural Sciences,2024,39(3):290−301 doi: 10.19303/j.issn.1008-0384.2024.03.006
Citation: LIAN C L, LAN J X, YANG J F, et al. Identification and Expressions of TIFY Family Based on the Full-Length Transcriptome in Isodon rubescens [J]. Fujian Journal of Agricultural Sciences,2024,39(3):290−301 doi: 10.19303/j.issn.1008-0384.2024.03.006

Identification and Expressions of TIFY Family Based on the Full-Length Transcriptome in Isodon rubescens

doi: 10.19303/j.issn.1008-0384.2024.03.006
  • Received Date: 2023-10-11
  • Rev Recd Date: 2023-12-02
  • Available Online: 2024-03-28
  • Publish Date: 2024-03-28
  •   Objective   TIFY protein is a key regulator of the JA signalling pathway and plays a significant regulatory role in plant growth and development, abiotic stress and the accumulation of secondary metabolites. The identification of the TIFY gene in Isodon rubescens provides a theoretical foundation for the breeding of I. rubescens with enhanced stress tolerance and the investigation of the synthesis of secondary metabolites.  Method  TIFY family was identified using bioinformatic methods based on the full-length transcriptome database of I. rubescens. Expressions of the genes in tissues were analyzed by RT-qPCR.   Result   (1) A total of 12 IrTIFYs genes were identified in I. rubescens. (2) The amino acid length was 124—378, the molecular weight 13 924.89—39 692.38 Da, and the isoelectric point ranged from 5.05 to 9.69. All members were unstable proteins, except for IrTIFY10. IrTIFY proteins were all located in the nucleus and were hydrophilic proteins without signal peptides. (3) Structural analysis indicates that IrTIFY proteins lack transmembrane structure and that the most abundant secondary structure type is random coil. Furthermore, all TIFY proteins contain multiple phosphorylation sites. (4) The IrTIFY gene family had weak codon preference, with a slight tendency to use codons ending in A or U. (5) There were many light-, hormone-, and stress-responsive cis-elements in the IrTIFY gene family, but cis-elements were difference in numbers and types among different members.(6)Evolutionary tree analysis showed that the 12 members of the TIFY family were divided into four subfamilies: PPD (IrTIFY2), ZML (IrTIFY3/8/10), TIFY (IrTIFY7/12), and JAZ (IrTIFY1/4/5/6/9/11). They were closest to that of Salvia miltiorrhiza of Labiaceae family. (7) RT-qPCR analysis revealed that the expression of all 12 members of the TIFY family of I. rubescens in different tissues was as follows: leaves > stems > roots, and most of them were significantly different.   Conclusion  Based on the above results, it is hypothesised that the TIFY gene family plays an important regulatory role in the growth and development of I. rubescens and may be involved in the regulation of the synthesis of secondary metabolites of I. rubescens, which lays the foundation for further in-depth study of the function of the TIFY gene family in I. rubescens and provides an idea for the further study of the function of the TIFY gene family in I. rubescens.
  • loading
  • [1]
    国家药典委员会. 中华人民共和国药典-二部: 2020年版[M]. 北京: 中国医药科技出版社, 2020.
    [2]
    谢涛, 杨正强, 徐文武, 等. 冬凌草化学成分、药理作用及临床应用研究进展 [J]. 中草药, 2022, 53(1):317−325.

    XIE T, YANG Z Q, XU W W, et al. Research progress on chemical constituents, pharmacological effects and clinical application of Rabdosia rubescens [J]. Chinese Traditional and Herbal Drugs, 2022, 53(1): 317−325. (in Chinese)
    [3]
    靳保龙. 冬凌草二萜合酶基因的克隆及其功能研究[D]. 武汉: 湖北中医药大学, 2019.

    JIN B L. Cloning and functional study of the diterpene synthase genes from Isodon rubescens[D]. Wuhan: Hubei University of Chinese Medicine, 2019. (in Chinese)
    [4]
    张济萌. 茉莉酸甲酯对冬凌草次生代谢的调控机理研究[D]. 郑州: 郑州大学, 2021.

    ZHANG J M. Regulation mechanism of methyl jasmonate on secondary metabolism of Isodon rubescens[D]. Zhengzhou: Zhengzhou University, 2021. (in Chinese)
    [5]
    李永华, 肖能文, 刘勇波. 植物防御中茉莉酸信号通路抑制与终止的作用机制 [J]. 植物保护学报, 2021, 48(3):563−569.

    LI Y H, XIAO N W, LIU Y B. Mechanisms of repression and termination of jasmonate signaling in plant defense [J]. Journal of Plant Protection, 2021, 48(3): 563−569. (in Chinese)
    [6]
    BAI Y H, MENG Y J, HUANG D L, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family [J]. Genomics, 2011, 98(2): 128−136. doi: 10.1016/j.ygeno.2011.05.002
    [7]
    杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展 [J]. 生物技术通报, 2020, 36(12):121−128.

    YANG R J, ZHANG Z B, WU Z Y. Progress of the structural and functional analysis of plant transcription factor TIFY protein family [J]. Biotechnology Bulletin, 2020, 36(12): 121−128. (in Chinese)
    [8]
    WU H, YE H Y, YAO R F, et al. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice [J]. Plant Science, 2015, 232: 1−12. doi: 10.1016/j.plantsci.2014.12.010
    [9]
    ZHANG F, YAO J, KE J Y, et al. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling [J]. Nature, 2015, 525(7568): 269−273. doi: 10.1038/nature14661
    [10]
    于欣欣, 米要磊, 孟祥霄, 等. 人参TIFY基因家族鉴定与分析 [J]. 中华中医药学刊, 2022, 40(3):72−76,261-263.

    YU X X, MI Y L, MENG X X, et al. Identification and analysis of TIFY gene family of Renshen (Panax ginseng C. A. Meyer) [J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(3): 72−76,261-263. (in Chinese)
    [11]
    巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析 [J]. 中国农学通报, 2022, 38(8):17−24.

    GONG Y Y, DUANMU H Z. TIFY gene family in sugar beet: Whole genome identification and bioinformatics analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17−24. (in Chinese)
    [12]
    姚新转, 张宝会, 陈湖芳, 等. 茶树TIFY基因家族鉴定及非生物胁迫下表达分析 [J]. 广西植物, 2022, 42(12):2044−2055.

    YAO X Z, ZHANG B H, CHEN H F, et al. Genome identification of Camellia sinensis TIFY gene family and its expression analysis of abiotic stress [J]. Guihaia, 2022, 42(12): 2044−2055. (in Chinese)
    [13]
    刘俊, 陈玉龙, 刘燕, 等. 杜仲TIFY转录因子鉴定与表达分析 [J]. 中国实验方剂学杂志, 2021, 27(19):165−174.

    LIU J, CHEN Y L, LIU Y, et al. Identification and expression analysis of TIFY transcription factor in Eucommia ulmoides [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(19): 165−174. (in Chinese)
    [14]
    胡睿, 郭建秀, 郭小强, 等. 铁皮石斛DoTIFY基因家族全基因组鉴定及在原球茎发育过程中的表达[J]. 生物学杂志, 2021, 38(5):53−58.

    HU R, GUO J X, GUO X Q, et al. Genome-wide identification and analysis of the TIFY gene family in Dendrobium officinale Kimura et Migo during protocorm development [J]. Journal of Biology, 2021, 38(5): 53−58. (in Chinese)
    [15]
    秦振芬, 孟祥霄, 温东, 等. 乌拉尔甘草TIFY基因家族鉴定及调控分析 [J]. 世界科学技术-中医药现代化, 2022, 24(5):1855−1864.

    QIN Z F, MENG X X, WEN D, et al. Genome-wide identification and regulatory analysis of the TIFY gene family in Glycyrrhiza uralensis [J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2022, 24(5): 1855−1864. (in Chinese)
    [16]
    CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [17]
    LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Research, 2002, 30(1): 325−327. doi: 10.1093/nar/30.1.325
    [18]
    TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725−2729. doi: 10.1093/molbev/mst197
    [19]
    ZHANG H K, GAO S H, LERCHER M J, et al. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees [J]. Nucleic Acids Research, 2012, 40(W1): W569−W572. doi: 10.1093/nar/gks576
    [20]
    王晨玮. 磷酸化蛋白质组数据整合及分析[D]. 武汉: 华中科技大学, 2020.

    WANG C W. Data integration and analysis of phosphoproteome[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
    [21]
    周慧琦. 基因组GC含量与碱基、密码子和氨基酸使用偏好的关系[D]. 成都: 电子科技大学.

    ZHOU H Q. Analysis of the relationship between genomic GC content and patterns of base usage, Codon usage and amino acid usage in prokaryotes[D]. Chengdu: University of Electronic Science and Technology of China. (in Chinese)
    [22]
    郭玉平, 单天雷, 袁延超, 等. 不同作物FAD2基因密码子偏好性分析 [J]. 山东农业科学, 2013, 45(7):24−28,32.

    GUO Y P, SHAN T L, YUAN Y C, et al. Analysis of Codon usage bias of FAD2 gene in different crops [J]. Shandong Agricultural Sciences, 2013, 45(7): 24−28,32. (in Chinese)
    [23]
    张维洵, 潘小勇, 沈红斌. 基于深度学习与领域规则建模的蛋白质信号肽及其切割位点预测 [J]. 南京理工大学学报, 2020, 44(3):278−287.

    ZHANG W X, PAN X Y, SHEN H B. Predicting protein signal peptides and their cleavage sites based on deep learning and domain rule modeling [J]. Journal of Nanjing University of Science and Technology, 2020, 44(3): 278−287. (in Chinese)
    [24]
    WANG W J, LIU G S, NIU H X, et al. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L. cv. TN90) [J]. Journal of Experimental Botany, 2014, 65(8): 2147−2160. doi: 10.1093/jxb/eru084
    [25]
    DAI Z N, DONG S Y, MIAO H, et al. Genome-wide identification of TIFY genes and their response to various pathogen infections in cucumber (Cucumis sativus L.) [J]. Scientia Horticulturae, 2022, 295: 110814. doi: 10.1016/j.scienta.2021.110814
    [26]
    MA Y J, SHU S S, BAI S L, et al. Genome-wide survey and analysis of the TIFY gene family and its potential role in anthocyanin synthesis in Chinese sand pear (Pyrus pyrifolia) [J]. Tree Genetics & Genomes, 2018, 14(2): 25.
    [27]
    HAKATA M, KURODA M, OHSUMI A, et al. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem [J]. Bioscience, Biotechnology, and Biochemistry, 2012, 76(11): 2129−2134. doi: 10.1271/bbb.120545
    [28]
    WHITE D W R. PEAPOD regulates lamina size and curvature in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 13238−13243.
    [29]
    LIAN C L, LAN J X, ZHANG B, et al. Molecular cloning and functional analysis of IrUGT86A1-like gene in medicinal plant Isodon rubescens (Hemsl. ) Hara [J]. Life, 2022, 12(9): 1334. doi: 10.3390/life12091334
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (352) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return